
A Cellular Texture Basis Function

Steven Worley1

ABSTRACT

Solid texturing is a powerful way to add detail to the surface of
rendered objects. Perlin’s “noise” is a 3D basis function used in
some of the most dramatic and useful surface texture algorithms.
We present a new basis function which complements Perlin noise,
based on a partitioning of space into a random array of cells. We
have used this new basis function to produce textured surfaces re-
sembling flagstone-like tiled areas, organic crusty skin, crumpled
paper, ice, rock, mountain ranges, and craters. The new basis func-
tion can be computed efficiently without the need for precalculation
or table storage.

INTRODUCTION

Procedural texturing has proved itself valuable in image synthesis,
allowing for complex surfaces to be rendered without requiring im-
age mapping or hand modeling of geometric details. The most use-
ful texturing techniques were introduced by Perlin [7] with his in-
troduction of a fractal noise basis function which has become the
primary tool used in procedural texturing. Since the fractal noise
basis does not need any storage or precomputation, and returns a
value for all locations in<3, it is easy to use and applicable to many
applications. The scalar value can be directly mapped into a color,
but it is often used for spatially perturbing regular patterns. Its de-
rivatives can be used for bump mapping. [1, 3, 5, 6, 7, 8]

Many texture algorithms are not as broadly applicable as noise
because of their limited form. For example, the class of reaction-
diffusion textures, as in [10], provides interesting surfaces, with a
character that provides features such as spots and stripes. An al-
gorithm by Miyata [4] generates impressive stone wall patterns.
These methods, while powerful, aren’t as generally useful as noise
since they require extensive precomputation and don’t return a
scalar value to be used as part of a larger texture.

The simple functional nature of noise makes it an adaptable tool
one might call a texture “basis” function. A basis function should
be a scalar value, defined over <3. This allows it to be used in the
same manner noise is applied. Fourier methods [1, 2] produce ef-
fective basis functions, but usually similar appearances can be pro-
duced more easily using noise. The immense utility of the noise
function motivates us to find new texture functions that can also be
used as basis functions, so they may be used in the same versatile
manner that noise is used.

1405 El Camino Real Suite 121, Menlo Park CA 94025 E-
mail: steve@worley.com

In this paper, we propose a new set of related texture basis func-
tions. They are based on scattering “feature points” throughout
<3 and building a scalar function based on the distribution of the
local points. The use of distributed points in space for texturing
is not new; “bombing” is a technique which places geometric fea-
tures such as spheres throughout space, which generates patterns
on surfaces that cut through the volume of these features, forming
polkadots, for example. [9, 5] This technique is not a basis func-
tion, and is significantly less useful than noise. Lewis also used
points scattered throughout space for texturing. His method forms a
basis function, but it is better described as an alternative method of
generating a noise basis than a new basis function with a different
appearance.[3]

In this paper, we introduce a new texture basis function that has
interesting behavior, and can be evaluated efficiently without any
precomputation. After defining the function and its implementation,
we show some applications demonstrating its utility.

nTH-CLOSEST POINT BASIS FUNCTION

We can define a new basis function based on the idea of random fea-
ture points. Imagine points randomly distributed through all of <3.
For any locationx, there is some feature point which lies closer to x
than any other feature point. DefineF1(x) as the distance from x to
that closest feature point. As x is varied, F1 varies smoothly since
the distance between the sample location and the fixed feature point
varies smoothly. However, at certain cusp locations, the pointxwill
be equidistant between two feature points. Here, the value ofF1(x)
is still well defined, since the value is the same no matter which fea-
ture point is chosen to calculate the distance. Varying the position of
xwill return values of F1 that are still continuous, though the deriv-
ative of F1 will change discontinuously as the distance calculation
“switches” from one feature point to its neighbor.

It can be seen that the locations where the functionF1 “switches”
from one feature point to the next (where its derivative is discon-
tinuous) are along the equidistance planes that separate two points
in <3. These planes are exactly the planes that are computed by a
Voronoi diagram, which by definition partitions space into cellular
regions where all the points within each region are closer to its de-
fining point than any other point.

The function F2(x) can be defined as the distance between the
location x and the feature point which is the second closest to the
x. With similar arguments as before, F2 is continuous everywhere,
but its derivative is not at those locations where the second-closest
point swaps with either the first-closest or third-closest. Similarly,
we can define Fn(x) as the distance between x and the nth closest
feature point.

The functions F have some interesting properties. Fn is always
continuous. Fn are nondecreasing; 0 � F1(x) � F2(x) � F3(x):
In general,Fn(x) � Fn+1(x) by the definition ofFn. The gradient
ofFn is simply the unit direction vector from the nth closest feature
point to x.

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.




COMPUTATION OF Fn(x)

To evaluate the functionsFn, we must first define how feature points
are spread through space. The density and distribution of points will
change the character of the basis functions. We want an isotropic
distribution of points to avoid artifacts such as an obvious grid-like
pattern. This eliminates any regular lattices such as a cubic spacing.
Even if the lattice points are jittered, the underlying lattice structure
may cause odd patterns.

The simplest distribution is simply a Poisson distribution, which
specifies a mean density of points in space, with the location of each
point being independent of the other points. The expected number
of points in any region is simply the point density times the volume
of the region. There may be more or less than this expected num-
ber of points in the region; the exact probabilities of any number of
points in a region can be computed by using the discrete Poisson
distribution function.

Our approach divides space into a grid of uniformly spaced
cubes, separated at the integer coordinate locations. Each “cube” in
space can be uniquely represented by its integer coordinates, and by
simple floor operations we can determine, for example, that a point
like (1.2, 3.33, 2.3) lies within the cube indexed by (1, 3, 2).

Each cube in space may contain zero, one, or more feature points.
We determine this on-the-fly quite simply by noting that the Pois-
son random distribution function describes the exact probabilities of
each of the possible number of feature points occuring in the cube.
For a mean density of � feature points per unit volume , the probab-
ility ofm points occuring in a unit cube is (��m e�m!)

�1
. Thus we

can tabulate the probabilities for m = 0; 1; 2; 3::: and index a ran-
dom number into this table to determine how many feature points
fall within this cube. In practice, we use a density of about m = 4,
but clamp the points in each cell to range between 1 and 9, for effi-
ciency reasons discussed later. This cutoff in theory breaks some of
the isotropy of the distribution of feature points, but in practice we
see no visual consequence.

The “random” number we use to determine the number of fea-
ture points in a cube obviously must be unique to that cube and re-
producible at need. There is a similar requirement in the noise func-
tion, which also uses a cubic lattice with fixed values associatedwith
each gridpoint. The solution to this problem is to hash the three in-
teger coordinates of a cube into a single 32 bit integer which is used
as the seed for a fast random number generator. One simple (but
poor) hash function of three variables (i; j; k) is a linear combina-
tion like 541i+79j +31kmod 232 , but a much better (less correl-
ated) method uses permutation arrays, such as the one described in
([1] pp 198.)

We find the number of points in the cube by using the first value
from the seeded random number generator as an index into a list
of the precomputed probabilities for different numbers of feature
points. This is a binary search needing just couple of comparison
tests to identify m.

Next, we compute the locations of the m feature points. Again,
these are values that are random, but fixed for each cube. We use the
already initialized random number generator to compute the XYZ
locations of each of the feature points. These coordinates are rel-
ative to the base of the cube, and always range from 0..1 for each
coordinate.

As we generate these points, we compute its distance to the ori-
ginal function evaluation location x, and keep a sorted list of the of
the n smallest distances we’ve seen so far. As we test each point in
turn, we effectively do an insertion sort to include the new point in
the current list. This sounds expensive, but for typical values of n
of 1 or 2, these cases are hard-wired tests of only one or two com-
parisons.

This finds the closest feature points and the values of Fn for the
points within the current cube of space. However, the feature points

within a neighboring cube could quite possibly contain a feature
point even closer than the ones we have found already, so we must
iterate among the boundary cubes too. Testing each of 26 bound-
ary cubes would be slow, but by checking the closest distance we’ve
computed so far (our tentative nth closest feature distance) we can
throw out whole rows of cubes at once by noting that no point in the
cube could possibly contribute to our list. Typically, only 1–3 cubes
actually need to be tested.

Note that when we compute Fn we are effectively finding val-
ues for F1; F2; :::;Fn simultaneously. In practice our routine re-
turns all these values, plus the direction vectors corresponding to
each feature point, plus a unique ID integer for each point (equal
to the hashed cube ID plus the index of the feature point as it was
computed). These tend to be useful when using the function to form
solid textures.

In practice, computation is extremely efficient. A fast, linear con-
gruential (LCG) random number generator is effectively just an in-
teger multiply and add. By using fixed point arithmetic, the 32 bit
random number can be manipulated directly. We avoid square roots
by sorting on squared distance. Testing a point requires generation
of its coordinates (three multiplies), computing the squared distance
to the sample location (three multiplies), and insertion into the best
candidate list (usually one to three compares.) The computation
speed is therefore surprisingly fast. In our implementation, simul-
taneously computing F1 and F2 requires about the same amount of
time as computing one scale of Perlin’s noise.

We also found that by varying the point density� we were able to
tune our algorithm. Low � requires fewer points to be computed in
each cube. Higher � makes it more likely to find the best points in
the initial cube, reducing the number of neighboring cubes that must
also be tested. We can choose � to optimize speed, since the final
point density can be manipulated at evaluation by simply scaling x
beforeFn(x) is evaluated.Our implementation was most efficient at
about � = 3.

We lost some isotropy with the decision to forbid empty cubes.
This was done to solve the problem of having such a sparse set of
points in the cubes that huge numbers of neighbors may have to be
evaluated to find all potential candidates. This is mainly a problem
with low �, since higher densities quickly reduce the average num-
ber of neighbors that need to be visited.

APPLICATION TO TEXTURING

The effort in implementing a function to compute Fn(x) is rewar-
ded by its extreme effectiveness as a solid texturing primitive. As
with the Perlin noise function, mapping values of the function into a
color and normal-displacement can produce visually interesting and
impressive effects. A dense collection of ways to use the noise func-
tion can be found in [1]; since this new texturing basis function has
the same functional form, it can be used in similar ways (but with
different appearances.)

In the simplest case,F1(x) can be mapped into a color spline and
bump. The character of F1 is very simple, since the function in-
creases radially around each feature point. Thus, mapping a color to
small values ofF1 will cause a surface texture to place spots around
each feature point; polka dots! Figure 1 shows this radial behavior
in the upper left corner.

More interesting behavior begins when we start using the func-
tions F2 and F3, shown as grey gradients in the upper right and
lower left of Figure 1. These have more rapid changes and internal
structure, and are slightly more visually interesting. These can be
directly mapped into colors and bumps, but they can also produce
even more interesting patterns by forming linear combinations with
each other. For example, since F2 � F1 for all x, we can map the
function F2(x)� F1(x) to colors and bumps. The bottom right of
Figure 1 shows this as a grey scale. This combination has a value of



0 whereF1 = F2, which occurs at the Voronoi boundaries. This al-
lows an interesting way to make a latticework of connected ridges,
forming a vein-like tracery.

If the F1 function returns a unique ID number to represent the
closest feature point’s identity, this number can be used to form val-
ues that are constant over a Voronoi cell; for example to shade the
entire cell a single constant color. When combined with bumping
based on F2 � F1, quite interesting surfaces can be easily gener-
ated. Figure 2 shows this technique, which also uses fractal noise
discoloration in each cell. Note that unlike [4], no precomputation
is necessary and the surface can be applied at any 3D object.

Bump mapping of the flagstone-like areas is particularly effect-
ive, and it is cheap to add since the gradient of Fn is just the radial
unit vectorpointing away from the appropriate feature point towards
the sample location. Making raised spots or inset channels is done
exactly like noise-based textures; ([1], pp105–110)has a useful dis-
cussion of applicable bump mapping methods.

We have slightly interesting patterns in the basis functions
F1; F2; F3 and now we see that the linear combination F2 � F1
forms a yet another basis. This leads us to experiment with other
linear combinations, such as 2F3�F2�F1 orF1+F2. In our first
experiments, we generated about 40 different linear combinations
to evaluate their appearance. We find that F4 and other high n start
looking similar, but the lower values ofn (up to 4) are quite interest-
ing and distinct. More importantly, linear combinations of theseFn
have more “character” than the plain Fn, particularly differences of
two or more simple bases. Figure 4 shows twenty sample surfaces
which are all just examples of combinations of these low n basis
functions (C1F1 + C2F2 + C3F3 + C4F4 for various values of
Cn). We found that it was easy to try dozens of combinations simul-
taneously by mapping the value of each combination into a generic
color spline. After empirically determining the range of values that
the combination returns (by evaluating it at several thousand loca-
tions), we normalized this range to fall approximately between 0 and
1 for easier use as a texturing primitive. This process was only done
once for each combination, after which it was simply hard-wired
into the primitive basis.

These patterns are interesting and useful, but we can also use the
basis functions to make fractal versions, much like noise is used to
produce fractal noise. By computing multiple “scales” of the func-
tion at different weights and scaling factors, a more visually com-
plex appearance can be made. This is a simple loop, computing a
functionGn =

P
2�iFn(2

i
x) for moderate rangesof i (i = 0�5),

and using Gn as the index for colors and bumps.
The fractal versions of any of the basic basis function combin-

ations become extremely appealing. Figure 5 shows a fractal ver-
sion of F1 forming the spotted pattern and bumps on the hide of a
creature. Fractal noise is used for the tongue, and a linear gradient is
applied to the main body for color variation. Other fractal versions
of primitives are shown in the row of cut tori in Figure 6.

The fractal version of F1 is perhaps the most useful. Applied
solely as bump map, the surface becomescrumpled like paper or tin-
foil. This surface has been extremely popular with artists as a way
to break up a smooth surface, providing a subtle roughening with an
appearance unlike fractal noise bumps. A surprising discovery was
that a reflective, bumped map plane with this “crumple” appearance
bears an excellent resemblance to seawater, as shown in Figure 7.

A variation of the algorithm uses different distance metrics. Us-
ing the Manhattan distance metric forms regions that are rigidly
rectangular, but still random. Thesemake surfaces like random right
angle channels; useful for space ship hulls. Figure 3 shows a non-
fractal version of F1 which uses this Manhattan distance metric. A
radial coordinate version can cover spheres, creating a surface sim-
ilar to the “Death Star.”

Other variations of the basic algorithms can produce even more
effects. The density of the feature points can be made to vary spa-

tially, allowing for small, dense features in one area and larger fea-
tures in another. Object geometry might be used to disperse pre-
computed feature spots (similar to Turk[10]) at the expense of re-
quiring precomputation and table lookup, but gaining object surface
dependence similar to the advantages Turk found. The algorithm is
normally computed in 3D, but 2D variants are even faster. 4D vari-
ants can be used for animated fields, though we find this to become
significantly slower to compute by about a factor of 10.

CONCLUSION

We have found that this new texturing basis function is extremely
useful in practical texture design. We have been using it in com-
mercial products for several years and it is now an essential part of
our texturing toolkit. It complements Perlin fractal noise; in any al-
gorithm that uses noise, the new basis can be substituted. The visual
effects are not necessarily similar, but this is desirable since it in-
creases the visual diversity of the possible images.

ACKNOWLEDGEMENTS

Thanks to Richard Payne for his Gator and to Greg Teegarden for
his water renderings. Particular thanks go to the referees with their
excellent suggestions which made this a significantly better paper.

References

[1] EBERT, D. E. Texturing and Modeling: A Procedural Ap-
proach. Academic Press, 1994.

[2] GARDNER, G. Y. Simulation of natural scenes using tex-
tured quadric surfaces. In Computer Graphics (SIGGRAPH
’84 Proceedings) (July 1984), H. Christiansen, Ed., vol. 18,
pp. 11–20.

[3] LEWIS, J.-P. Algorithms for solid noise synthesis. In Com-
puter Graphics (SIGGRAPH ’89 Proceedings) (July 1989),
J. Lane, Ed., vol. 23, pp. 263–270.

[4] MIYATA, K. A method of generating stone wall patterns.
In Computer Graphics (SIGGRAPH ’90 Proceedings) (Aug.
1990), F. Baskett, Ed., vol. 24, pp. 387–394.

[5] PEACHEY, D. Solid texturing of complex surfaces. In Com-
puter Graphics (SIGGRAPH ’85 Proceedings) (July 1985),
B. A. Barsky, Ed., vol. 19, pp. 279–286.

[6] PEACHEY, D. Writing renderman shaders. In 1992 Course 21
Notes. ACM SIGGRAPH, 1992.

[7] PERLIN, K. An image synthesizer. In Computer Graphics
(SIGGRAPH ’85 Proceedings) (July 1985), B. A. Barsky, Ed.,
vol. 19, pp. 287–296.

[8] PERLIN, K., AND HOFFERT, E. M. Hypertexture. In Com-
puter Graphics (SIGGRAPH ’89 Proceedings) (July 1989),
J. Lane, Ed., vol. 23, pp. 253–262.

[9] SCHACHTER, B. J., AND AHUIA, N. Random pattern gen-
eration processes. Computer Graphics and Image Processing
10 (1979), 95–114.

[10] TURK, G. Generating textures for arbitrary surfaces us-
ing reaction-diffusion. In Computer Graphics (SIGGRAPH
’91 Proceedings) (July 1991), T. W. Sederberg, Ed., vol. 25,
pp. 289–298.


















	PAPER.PDF.pdf
	FIG1
	FIG2
	FIG3
	FIG4
	FIG5
	FIG6
	FIG7A
	FIG7B

