Our life and work with

Michal Černý¹ and Milan Hladík²

Department of Econometrics Faculty of Computer Science and Statistics Prague University of Economics & Business, Czech Republic

 $^2\,$ Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

J. A. Symposium, MFF UK, Prague, May 12, 2023

Practice: Modelling durability of dairy products (cheese, ice-cream, yoghurt)

- Practice: Modelling durability of dairy products (cheese, ice-cream, yoghurt)
- Theory: Interval-valued data, set-valued estimators

- Practice: Modelling durability of dairy products (cheese, ice-cream, yoghurt)
- Theory: Interval-valued data, set-valued estimators
- EIV-regression

- Practice: Modelling durability of dairy products (cheese, ice-cream, yoghurt)
- Theory: Interval-valued data, set-valued estimators
- EIV-regression
- Algorithms for robust regression (current project)

- Practice: Modelling durability of dairy products (cheese, ice-cream, yoghurt)
- Theory: Interval-valued data, set-valued estimators
- EIV-regression
- Algorithms for robust regression (current project)
- Life: Joint research projects (Czech Science Foundation)

- Practice: Modelling durability of dairy products (cheese, ice-cream, yoghurt)
- Theory: Interval-valued data, set-valued estimators
- EIV-regression
- Algorithms for robust regression (current project)
- Life: Joint research projects (Czech Science Foundation)
- A bit of exotic travelling

Part One

Part I

• M.Č., M.H. and J.A. On the possibilistic approach to linear regression models involving uncertain, indeterminate or interval data (Inform Sci)

- M.Č., M.H. and J.A. On the possibilistic approach to linear regression models involving uncertain, indeterminate or interval data (Inform Sci)
- M.Č., M. Rada, J.A. and M. H: A class of optimization problems motivated by rank estimators in robust regression (Optimization)

- M.Č., M.H. and J.A. On the possibilistic approach to linear regression models involving uncertain, indeterminate or interval data (Inform Sci)
- M.Č., M. Rada, J.A. and M. H: A class of optimization problems motivated by rank estimators in robust regression (Optimization)
- M.Č., M.H. and J.A. *EIV* regression with bounded errors in data: total 'least squares' with Chebyshev norm (Stat Pap)

- M.Č., M.H. and J.A. On the possibilistic approach to linear regression models involving uncertain, indeterminate or interval data (Inform Sci)
- M.Č., M. Rada, J.A. and M. H: A class of optimization problems motivated by rank estimators in robust regression (Optimization)
- M.Č., M.H. and J.A. *EIV* regression with bounded errors in data: total 'least squares' with Chebyshev norm (Stat Pap)
- M.Č. and M.H. Antoch: a new LATEX package without which it's impossible to typeset a good paper in statistics (J Stat Softw)

» \usepackage{Antoch}

- » \usepackage{Antoch}
- » \Antoch

- » \usepackage{Antoch}
- » \Antoch

- » \usepackage{Antoch}
- » \Antoch

» \AntochPenseur

- » \usepackage{Antoch}
- » \Antoch

» \AntochPenseur

- » \usepackage{Antoch}
- » \Antoch

» \AntochPenseur

Marc Chagall, Portrait of an Unknown Soldier of Mathematics, MOMA NYC

» \AntochAfterMasterExams

» \AntochAfterMasterExams

» \AntochAfterMasterExams

» \AntochAfterMasterExamsDayTwo

» \AntochAfterMasterExams

» \AntochAfterMasterExamsDayTwo

» \AntochAfterMasterExams

» \AntochAfterMasterExamsDayTwo

» \AntochAfterMasterExamsDayThree

» \AntochAfterMasterExams

» \AntochAfterMasterExamsDayTwo

» \AntochAfterMasterExamsDayThree

» \AntochAfterMasterExams

» \AntochAfterMasterExamsDayTwo

» \AntochAfterMasterExamsDayThree

» \usepackage[ChangepointFriendly=On]{Antoch}

- » \usepackage[ChangepointFriendly=On]{Antoch}
- » \Antoch

- » \usepackage[ChangepointFriendly=On]{Antoch}
- » \Antoch

- » \usepackage[ChangepointFriendly=On]{Antoch}
- » \Antoch

» \usepackage[RobustRegFriendly=On]{Antoch}

- » \usepackage[ChangepointFriendly=On]{Antoch}
- » \Antoch

- » \usepackage[RobustRegFriendly=On]{Antoch}
- » \Antoch

- » \usepackage[ChangepointFriendly=On]{Antoch}
- » \Antoch

- » \usepackage[RobustRegFriendly=On]{Antoch}
- » \Antoch

- » \usepackage[ChangepointFriendly=On]{Antoch}
- » \Antoch

- » \usepackage[RobustRegFriendly=On]{Antoch}
- » \Antoch

Language settings of Antoch

- » \usepackage[ChangepointFriendly=On]{Antoch}
- » \Antoch

- » \usepackage[RobustRegFriendly=On]{Antoch}
- » \Antoch

Language settings of Antoch

» \usepackage[RobustRegFriendly=On, LovesFrance=On]{Antoch}

How to configure your Antoch

- » \usepackage[ChangepointFriendly=On]{Antoch}
- » \Antoch

- » \usepackage[RobustRegFriendly=On]{Antoch}
- » \Antoch

Language settings of Antoch

- » \usepackage[RobustRegFriendly=On, LovesFrance=On]{Antoch}
- » \Antoch

How to configure your Antoch

- » \usepackage[ChangepointFriendly=On]{Antoch}
- » \Antoch

- » \usepackage[RobustRegFriendly=On]{Antoch}
- » \Antoch

Language settings of Antoch

- » \usepackage[RobustRegFriendly=On, LovesFrance=On]{Antoch}
- » \Antoch

» \usepackage[RedWineLover=On]{Antoch}

- » \usepackage[RedWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[RedWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[RedWineLover=On]{Antoch}
- » \Antoch

» \usepackage[WhiteWineLover=On]{Antoch}

- » \usepackage[RedWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[WhiteWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[RedWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[WhiteWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[RedWineLover=On] {Antoch}
- » \Antoch

- » \usepackage[WhiteWineLover=On]{Antoch}
- » \Antoch

» \usepackage[WhiteWineLover=On, Russian=On]{Antoch}

- » \usepackage[RedWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[WhiteWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[WhiteWineLover=On, Russian=On]{Antoch}
- » \Antoch

- » \usepackage[RedWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[WhiteWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[WhiteWineLover=On, Russian=On]{Antoch}
- » \Antoch

- » \usepackage[RedWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[WhiteWineLover=On]{Antoch}
- » \Antoch

- » \usepackage[WhiteWineLover=On, Russian=On]{Antoch}
- » \Antoch

» \usepackage[AsymptoticsAllowed=Off]{Antoch}

- » \usepackage[AsymptoticsAllowed=Off]{Antoch}
- » \AntochProvingTheorem

- » \usepackage[AsymptoticsAllowed=Off]{Antoch}
- » \AntochProvingTheorem

- » \usepackage[AsymptoticsAllowed=Off]{Antoch}
- » \AntochProvingTheorem

» \usepackage[AsymptoticsAllowed=On]{Antoch}

- » \usepackage[AsymptoticsAllowed=Off]{Antoch}
- » \AntochProvingTheorem

- » \usepackage[AsymptoticsAllowed=On]{Antoch}
- » \AntochProvingTheorem

- » \usepackage[AsymptoticsAllowed=Off]{Antoch}
- » \AntochProvingTheorem

- » \usepackage[AsymptoticsAllowed=On]{Antoch}
- » \AntochProvingTheorem

- » \usepackage[AsymptoticsAllowed=Off]{Antoch}
- » \AntochProvingTheorem

- » \usepackage[AsymptoticsAllowed=On]{Antoch}
- » \AntochProvingTheorem

Part Two

Part II

• Czech Science Foundation (GAČR)

• Czech Science Foundation (GAČR)

• Panel P415 History, theory and applications of

• Project 19-00907S How influenced the world and society? (2019-2022)

PI: Milan Hladík

• Czech Science Foundation (GAČR)

• Panel P415 History, theory and applications of

• Project 19-00907S How influenced the world and society? (2019-2022)

PI: Milan Hladík

Main result:

• Czech Science Foundation (GAČR)

• Panel P415 History, theory and applications of

• Project 19-00907S How influenced the world and society? (2019-2022)

PI: Milan Hladík

Main result: Insufficiently.

Details to appear in Acta Antochologica, currently available as online-first.

Case study I: Young people and chats

Case study I: Young people and chats

» Hey Anežka!

» Hey Anežka!

» You heard the [censored] news?

» Hey Anežka!

» You heard the [censored] news?

» What?

» Hey Anežka!

» You heard the [censored] news?

» What?

» Suzi is in love with Spiderman!!!!!!

» Hey Anežka!

» You heard the [censored] news?

» What?

» Suzi is in love with Spiderman!!!!!

» Noooool

- » Hey Anežka!
 - » You heard the [censored] news?

- » What?
- » Suzi is in love with Spiderman!!!!!
- » Noooooo!
- It's me who loves him!

- » Hey Anežka!
 - » You heard the [censored] news?

- » What?
- » Suzi is in love with Spiderman!!!!!
- » Noooooo! ""
- - » Don't be a [censored]! Batman is better!

- » Hey Anežka!
 - » You heard the [censored] news?

- » What?
- » Suzi is in love with Spiderman!!!!!
- » Noooooo!
- It's me who loves him! ...
 - » Don't be a [censored]! Batman is better!

- » Hey Anežka!
 - » You heard the [censored] news?

- » What?
- » Suzi is in love with Spiderman!!!!!
- » Noogooo!
- » It's me who loves him!
 - » Don't be a [censored]! Batman is better!

» You're always choosing wrong guys

- » Hey Anežka!
 - » You heard the [censored] news?

- » What?
 - » Suzi is in love with Spiderman!!!!!!
- » Noooooo! ""
- » It's me who loves him!
 - » Don't be a [censored]! Batman is better!

- » You're always choosing wrong guys
- » Don't be sad

- » Hey Anežka!
 - » You heard the [censored] news?

- » What?
 - » Suzi is in love with Spiderman!!!!!
- » Nooooo!
- » It's me who loves him!
 - » Don't be a [censored]! Batman is better!

- » You're always choosing wrong guys
- » Don't be sad
- » Let's go to McDonalds instead

- » Hey Anežka!
 - » You heard the [censored] news?

- » What?
- » Suzi is in love with Spiderman!!!!!!
- » Noooooo!
- » It's me who loves him!
 - » Don't be a [censored]! Batman is better!

- » You're always choosing wrong guys
- » Don't be sad
- » Let's go to McDonalds instead
- » And have ten beers cokes, it'll help you!!!

- » Hey Anežka!
 - » You heard the [censored] news?

- » What?
 - » Suzi is in love with Spiderman!!!!!!
- » Noooooo!
- » It's me who loves him!
 - » Don't be a [censored]! Batman is better!

- » You're always choosing wrong guys
- » Don't be sad
- » Let's go to McDonalds instead
- » And have ten beers cokes, it'll help you!!!
- » Sure!

Case study II: Florida

Case study II: Florida

Antoch Avenue — Stuart City, Florida, USA

Case study II: Phoenix

Case study II: Phoenix

Case study II: Phoenix

Phoenix, Arizona, USA (detail)

And the Czech Republic?

And the Czech Republic? Nothing!

And the Czech Republic? Nothing!

Milan Hladík's project:

• 1884 – 1922 Jungmann Avenue

And the Czech Republic? Nothing!

- 1884 1922 Jungmann Avenue
- 1922 1940 Foch Avenue

And the Czech Republic? Nothing!

- 1884 1922 Jungmann Avenue
- 1922 1940 Foch Avenue
- 1940 1945 Schwerin Avenue

And the Czech Republic? Nothing!

- 1884 1922 Jungmann Avenue
- 1922 1940 Foch Avenue
- 1940 1945 Schwerin Avenue
- 1945 1946 Foch Avenue

And the Czech Republic? Nothing!

- 1884 1922 Jungmann Avenue
- 1922 1940 Foch Avenue
- 1940 1945 Schwerin Avenue
- 1945 1946 Foch Avenue
- 1946 1962 Stalin Avenue

And the Czech Republic? Nothing!

- 1884 1922 Jungmann Avenue
- 1922 1940 Foch Avenue
- 1940 1945 Schwerin Avenue
- 1945 1946 Foch Avenue
- 1946 1962 Stalin Avenue
- 1962 2023 Vinohradská (Wineyard) Avenue

And the Czech Republic? Nothing!

- 1884 1922 Jungmann Avenue
- 1922 1940 Foch Avenue
- 1940 1945 Schwerin Avenue
- 1945 1946 Foch Avenue
- 1946 1962 Stalin Avenue
- 1962 2023 Vinohradská (Wineyard) Avenue
- 2023 − ∞ Antoch Avenue

Part Three

Part III

My personal experience

My first meeting with statistical thinking

Durability of dairy products (cheese, yoghurt, ice-cream, ...)

 A model for biological growth process of pathogens (bacteria, fungi) in dairy products

My first meeting with statistical thinking

Durability of dairy products (cheese, yoghurt, ice-cream, ...)

 A model for biological growth process of pathogens (bacteria, fungi) in dairy products

- Task: construct a model for the length of the initial phase as a function of:
 - citric acid, propionic acid, concentration of salts, water activity, temperature, pH, presence of "good" bacteria...

Then we did a lot of things

My very first paper — a tiny contribution to changepoint

• Binary segmentation and Bonferroni-type bounds

Then we did a lot of things

- Binary segmentation and Bonferroni-type bounds
- Max-type statistics: bounds are often derived in terms of Bonferroni bounds

$$Pr\left[\bigcup_{i=1}^{n}A_{i}\right]\leqslant\sum_{i=1}^{n}Pr[A_{i}]$$

 One can get tighter lower and upper bounds by adding second-order terms

$$Pr\left[\bigcup_{i=1}^{n} A_{i}\right] \geqslant \sum_{i=1}^{n} Pr[A_{i}] - \sum_{k < \ell} Pr[A_{k} \cap A_{\ell}]$$

$$Pr\left[\bigcup_{i=1}^{n} A_{i}\right] \leqslant \sum_{i=1}^{n} Pr[A_{i}] - \sum_{k} Pr[A_{k} \cap A_{k+1}]$$

Interval-valued data

$$\underline{x}_i \leqslant x_i \leqslant \overline{x}_i$$
 a.s.

Interval-valued data

• Say that a distribution D_{θ} samples triplets $(\underline{x}_i, x_i, \overline{x}_i)$ such that

$$\underline{x}_i \leqslant x_i \leqslant \overline{x}_i$$
 a.s.

• We can observe only $(\underline{x}_i, \overline{x}_i)$ but not x_i itself [i.e., estimators and statistics are only allowed to be functions of $(\underline{x}_i, \overline{x}_i)$]

Interval-valued data

$$\underline{x}_i \leqslant x_i \leqslant \overline{x}_i$$
 a.s.

- We can observe only $(\underline{x}_i, \overline{x}_i)$ but not x_i itself [i.e., estimators and statistics are only allowed to be functions of $(\underline{x}_i, \overline{x}_i)$]
- We want to learn the "latent" distribution of x_i (or some characteristics theoreof)

Interval-valued data

$$\underline{x}_i \leqslant x_i \leqslant \overline{x}_i$$
 a.s.

- We can observe only $(\underline{x}_i, \overline{x}_i)$ but not x_i itself [i.e., estimators and statistics are only allowed to be functions of $(\underline{x}_i, \overline{x}_i)$]
- We want to learn the "latent" distribution of x_i (or some characteristics theoreof)
- The crucial question is whether we can make some assumptions about the relation of x_i w.r.t. $(\underline{x}_i, \overline{x}_i)$ usually are not testable

Interval-valued data

$$\underline{x}_i \leqslant x_i \leqslant \overline{x}_i$$
 a.s.

- We can observe only $(\underline{x}_i, \overline{x}_i)$ but not x_i itself [i.e., estimators and statistics are only allowed to be functions of $(\underline{x}_i, \overline{x}_i)$]
- We want to learn the "latent" distribution of x_i (or some characteristics theoreof)
- The crucial question is whether we can make some assumptions about the relation of x_i w.r.t. $(\underline{x}_i, \overline{x}_i)$ usually are not testable
- Even simple cases, such as one-dimensional data, are "difficult"

Interval-valued data

$$\underline{x}_i \leqslant x_i \leqslant \overline{x}_i$$
 a.s.

- We can observe only $(\underline{x}_i, \overline{x}_i)$ but not x_i itself [i.e., estimators and statistics are only allowed to be functions of $(\underline{x}_i, \overline{x}_i)$]
- We want to learn the "latent" distribution of x_i (or some characteristics theoreof)
- The crucial question is whether we can make some assumptions about the relation of x_i w.r.t. $(\underline{x}_i, \overline{x}_i)$ usually are not testable
- Even simple cases, such as one-dimensional data, are "difficult"
- Often one gets only partial-identification results (e.g. zonotope estimators in linear regression with interval-valued dependent variable)

Interval-valued data

$$\underline{x}_i \leqslant x_i \leqslant \overline{x}_i$$
 a.s.

- We can observe only $(\underline{x}_i, \overline{x}_i)$ but not x_i itself [i.e., estimators and statistics are only allowed to be functions of $(\underline{x}_i, \overline{x}_i)$]
- We want to learn the "latent" distribution of x_i (or some characteristics theoreof)
- The crucial question is whether we can make some assumptions about the relation of x_i w.r.t. $(\underline{x}_i, \overline{x}_i)$ usually are not testable
- Even simple cases, such as one-dimensional data, are "difficult"
- Often one gets only partial-identification results (e.g. zonotope estimators in linear regression with interval-valued dependent variable)

Interval-valued data (continued)

- M.Č., M.H. and : On the possibilistic approach to linear regression models involving uncertain, indeterminate or interval data (Inform Sci)
- M.Č. and M.H.: The complexity of computation and approximation of the t-ratio over one-dimensional interval data (Comp Stat Data Anal)
- M. Brzezina, R. Miele: A note on variability of interval data (Comp Stat)
- M.Č., M. Rada and O. Sokol: The NP-hard problem of computing the maximal sample variance over interval data is solvable in almost linear time with high probability (to appear in Computational Complexity)

Interval-valued data (continued)

- M.Č., M.H. and : On the possibilistic approach to linear regression models involving uncertain, indeterminate or interval data (Inform Sci)
- M.Č. and M.H.: The complexity of computation and approximation of the t-ratio over one-dimensional interval data (Comp Stat Data Anal)
- M. Brzezina, R. Miele: A note on variability of interval data (Comp Stat)
- M.Č., M. Rada and O. Sokol: The NP-hard problem of computing the maximal sample variance over interval data is solvable in almost linear time with high probability (to appear in Computational Complexity)

Remark. For the lovers of asymptotics: if n is large enough, then, with a very high probability, our method is extremely fast — almost a linear time algorithm. (However, the asymptotics works for $n \geqslant 10^{10^{10^{271}}}\dots$)

- Rank-estimators in robust linear regression
- A new algorithm for minimization of Jaeckel's dispersion
- M.Č., M. Rada, and M. Hladík: A class of optimization problems motivated by rank estimators in robust regression (Optimization)

- Rank-estimators in robust linear regression
- A new algorithm for minimization of Jaeckel's dispersion
- M.Č., M. Rada, and M. Hladík: A class of optimization problems motivated by rank estimators in robust regression (Optimization)
- Remark: Jaeckel's dispersion is a nonsmooth function

- Rank-estimators in robust linear regression
- A new algorithm for minimization of Jaeckel's dispersion
- M.Č., M. Rada, and M. Hladík: A class of optimization problems motivated by rank estimators in robust regression (Optimization)
- Remark: Jaeckel's dispersion is a nonsmooth function
- J.D. Kloke and J.W. McKean: Rfit: Rank-based Estimation for Linear Models (The R Journal)
 - Rfit uses package optim with option BFGS to minimize the dispersion function. We investigated other minimization methods (e.g., Nelder-Mead or CG), however the quasi-Newton method works well in terms of speed and convergence.
 - The documentation of the optim package: BFGS is a quasi-Newton method (...). It uses function values and gradients to build up a 'picture' of the surface to be optimized.

And the last slide...

Thanks for your attention!

