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20.3 When are two assembled cubes equivalent? 251

(a) X(1,0,0): solved (b) X(−1,0,0): edge swap (c) X(1,0,1): edge flip

(d) X(−1,0,1): edge swap
& edge flip

(e) X(1,1,0): counter-
clockwise corner twist

(f) X(−1,1,0): ccw corner
twist & edge swap

(g) X(1,1,1): ccw corner
twist & edge flip

(h) X(−1,1,1): ccw cor-
ner twist & edge swap
& edge flip

(i) X(1,2,0): clockwise
corner twist

(j) X(−1,2,0): cw corner
twist & edge swap

(k) X(1,2,1): cw corner
twist & edge flip

(l) X(−1,2,1): cw corner
twist & edge swap &
edge flip

Figure 20.6: Representatives for the 12 different equivalence classes in RC∗3

Example 20.2 The following diagram shows a (possibly illegal) configuration of the last
layer of Rubik’s cube. We’d like to determine which of the configurations in Figure 20.6 it is
equivalent to. To do this it suffices to determine the position vector.

22.2 Permutations Acting on Sets: Application of the Orbit-Stabilizer Theorem 271

(a) ε (b) (1 4)(2 3) (c) (1 3)(2 4)

(d) (1 2)(3 4) (e) (2 3 4) (f) (2 4 3)

(g) (1 4 3) (h) (1 3 4) (i) (1 2 4)

(j) (1 4 2) (k) (1 3 2) (l) (1 2 3)

Figure 22.5: All 12 rotational symmetries of a regular tetrahedron

22.2.4 Rotation Group of an Dodecahedron

Let GD be the group of all rotational symmetries of a regular dodecahedron.
We can view GD as a groups of permutations of the 20 vertices, that is as a subgroup of S20.

Observe that

orbGD(1) = {1,2,3, . . . ,20} ⇒ |orbGD(1)|= 20

and that

|stabGD(1)|= 3.

The elements of the stabilizer are the rotations about an axis through vertices 1 and 18.

Tuto knihu, shrnující poznatky z přednášek kurzuMath 302 – Mathematics of
Permutations Puzzles, http://www.sfu.ca/jtmulhol/math302/, jsem po-
tkal již v roce 2016 jako verzi předběžnou k této knize. Vůči knize jsem
změny nezaznamenal, jedná se hlavně o grafickou úpravu.
Kniha čtenáře, resp. studenty, uvádí do teorie grup. Výhodou je, že nevy-

užívá jen Rubikovu kostku, ale další čtyři hry: Swap, 15-Puzzle, Oval Track
Puzzle a Hungarian Rings (číslovanou a čtyřbarevnou verzi). S tím, že Ru-
bikova kostka těžké partie vždy završuje. Speciální skupinu tvoří v knize hra
Light’s Out, zmiňuje ukázku práce se SageMath při užití lineární algebry.
Pro připomenutí her přikládám jejich grafickou reprezentaci:80 Chapter 6. Permutations: Products of 2-Cycles

The dotted arrows indicate the two tiles that are about to be swapped.
The permutations corresponding to the moves are:

τ1 = (1 3), τ2 = (2 4), τ3 = (3 5), τ4 = (4 7), τ5 = (6 8), τ6 = (7 8)

and so the game-play corresponds to the composition: ατ1τ2τ3τ4τ5τ6 = ε . It follows that

α = τ
−1
6 τ

−1
5 τ
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3 τ
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1 (6.1)

= (7 8)(6 8)(4 7)(3 5)(2 4)(1 3) (6.2)

This is precisely what we wanted, α is written as a product of 2-cycles.

Exercise 6.1 Write the permutation β = (1 5 3 4 2) as a product of 2-cycles. Do this by using
β as the starting scramble of the Swap puzzle, then solving the puzzle and keeping track of your
moves as 2-cycles.

Answer on page 82 �

6.2 Product of 2-Cycles
There doesn’t seem to be anything special about the particular permutation α that we used in the
last example. Our strategy was to just move the numbers, one at a time, to their home positions,
and we chose to do this in increasing order, though we could have done it an any order we wanted.

This means we should be able to write any permutation as a product of 2-cycles. This is such
an important observation that will state it as a theorem (a complete proof is given below).

Theorem 6.2.1 — Product of 2-Cycles. Every permutation in Sn,n > 1, can be expressed as a
product of 2-cycles.

Playing with the Swap puzzle showed us intuitively why the theorem is true, it also gave us a
method for finding such a decomposition into 2-cycles. As quick as it was to find a decomposition,
we will require a much quicker method: a way to “eyeball" the decomposition. Having to draw
a Swap game each time we want to compute a decomposition into 2-cycles would be too time
consuming. So how can we do this even more quickly?

Well, consider a 5-cycle: β = (1 5 3 4 2). By direct computation we can check

(1 5 3 4 2) = (1 5)(1 3)(1 4)(1 2).

9. The 15-Puzzle

We have now developed enough theory to give a full analysis of the 15-puzzle. We will present a
solvability criteria which will allow us to easily see whether a given scrambling of the puzzle is
solvable. We will also sketch a strategy for solving the puzzle.

9.1 Solvability Criteria

Determining the solvability of a scrambling of the tiles on the 15-puzzle is a simple task as we will
see. Let’s first consider the case where a scrambling places the empty space back into its original
box (box 16). This means the corresponding permutation α fixes 16: α(16) = 16. We can think
of such a permutation as an element of S15. (Just think about the disjoint cycle form, 16 doesn’t
appear since it is mapped back to itself.)

Figure 9.1 shows three different configurations of the 15-puzzle corresponding to permutations
in S15. The permutations are written below each puzzle. We’d like to be able to quickly determine
which configurations are solvable.

(a) (b) (c)

Figure 9.1: Which of the positions are solvable?

76 Chapter 5. From Puzzles To Permutations

12. 15-Puzzle arrangements and moves in cycle notation. In each part (a) - (c) below, a
sequence of moves has been applied to a scrambling of the tiles in the 15-Puzzle. Do the
following:
(i) Express the starting position α as a permutation in cycle notation.
(ii) Express each move τi as a 2-cycle.
(iii) Express the whole move sequence as a permutation in cycle notation.
(iv) Express the final position β as a permutation in cycle notation and show that ατ1 · · ·τn =
β .
(a)

(b)

13. Oval Track Puzzle arrangements into cycle notation. Express, in cycle form, the permu-
tation describing each of the positions of the Oval Track puzzle drawn below.

(a) (b)

14. Oval Track Puzzle move sequence in cycle notation. Express the move sequence α given
in the diagram below as a permutation in cycle notation.

5.7 Exercises 77

15. For each of the following move sequences, which are applied to the solved-state Oval Track
puzzle, draw the resulting configuration of the disks on the puzzle.

(a) T 2

(b) R19

(c) R−1T R
(d) T R−1T R

16. Hungarian Rings arrangements into cycle notation. Express, in cycle form, the permuta-
tion describing each of the positions of the Hungarian Rings puzzle drawn below.

(a) (b)

17. Hungarian Rings move sequence in cycle notation. Express the move sequence α given
in the diagram below as a permutation in cycle notation.

18. For each of the following move sequences, which are applied to the solved-state Hungarian
Rings puzzle, draw the resulting configuration of the disks on the puzzle.

(a) R2

(b) RL
(c) L5R5L−5R−6LR6L5R−5L−5R−1L−1R (use SageMath to compute this)

19. Rubik’s cube arrangements into cycle notation. Express, in cycle form, the permutation
corresponding to the position of the Rubik’s cube where the cubies have been moved and
positioned as follows:
• the UR cubie is in the bu cubicle (recall this means the U face of the UR cubie is in the

B face of the bu cubicle)
• the UB cubie is in the lu cubicle
• the UL cubie is in the ur cubicle.

(Look back at Chapter 1 where the terms “cubie" and “cubicle" are discussed.)
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