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Foreword

It is now almost forty years since a rainy afternoon in Nijmegen when I
found that a fit of absent-minded doodling had inadvertantly developed into
an attempt to construct a magic square. I was twenty-six at the time, a Brit
recently arrived in Holland, where I was destined to remain domiciled down
to the present day. Nijmegen is a town on the eastern side of the
Netherlands, not far from Arnhem, close to the border with Germany. The
reasons that had brought me to Nijmegen might be of interest in a different
context, but are of no relevance to the present account. Like the First
Patriarch of Zen Buddhism, I had just blown in from the West. The year
was 1970, and I had landed a job as an electronics engineer at the local
university, getting in via the back door as a member of their non-academic
staff. The lab was new and set amid woodland. Compared to the working
conditions I’d known back home, this was paradise. Also, the technical
equipment available in the department was years ahead of anything I’d seen
in England. Moreover, my income had doubled. Small wonder then that I
stayed, although little did I then realize that it would be for life.

I cannot now even recall how or where I had first learned what a magic
square is. The most probable source would have been one of the comics I
read as a boy growing up in London, most likely my favourite, The Eagle,
which enlivened its pages with verbal and mathematical curiosities, and had
introduced me to my first palindrome, “Evil rats on no star live.” A
palindrome is a sentence that reads the same backwards as it does forwards.
My own name can be appended backwards to itself to produce the almost-
palindrome, “Lee Sallows swollas eel.” If you like palindromes then there is
a good chance you will like magic squares too. It is a thirst for symmetry
shared by many. In any case, the concept of a magic square had somehow
lodged in my mind, so that the purpose guiding my doodling hand all those
years later was at least clear. It was to arrange the numbers from 1 to 9 in a
square grid of nine cells so that the sum of any three of them lying in a
straight line would be the same. Eight such straight-line-triplets can be
traced in a square of nine cells, three of them forming its rows, three its
columns, and two its corner-to-corner diagonals. Warming to my task, it
seemed to me sufficiently wonderful that nine numbers could be found to



realize the desired result at all, let alone that it could be achieved using the
natural numbers from one to nine. However, I could clearly remember
having seen such a square somewhere before, so there was no doubt in my
mind that it could be done. In fact, the puzzle presents little difficulty, and
within a few minutes I was able to examine my solution at leisure. It can be
seen in Figure 1.1 of the Introduction, the very first illustration in this book.

To the receptive eye there is something deeply satisfying in such a
square. See, for example, how the four pairs straddling the centre number
each sum to ten. There are just four possible ways to split ten into two
distinct whole numbers, and all of them appear here. Similarly, there are
just eight possible ways in which three different decimal digits can combine
to yield 15. Again, every one of them is to be found occupying a row,
column, or diagonal in the magic square.

In my mind’s eye, I imagined the numbers replaced by weights of 1, 2, 3,
…, standing on a square board at nine spots corresponding to the exact
centre of each cell in the 3×3 grid. Ideally, these weights would all be of the
same size and shape. Underneath the board, at its exact centre, was a pivot.
And upon this pivot the board would perch in perfect balance, a reflection
of the numerical balance realized in the magic square. Years later I saw a
photograph of an almost identical construction due to Craig Knecht, only
with the board suspended from its centre by a wire, instead of balanced on a
pivot1. Craig had the clever idea of building his weights from different
numbers of identical metal rings, or washers, piled atop each other on
vertical posts that stuck upwards from the centre of every square cell.

But back to that rainy day in Nijmegen. Re-examining my new plaything,
questions began to form. Could a second magic square be produced by
arranging the same numbers differently? What of alternative numbers?
Simple and pleasing as are 1,2,3, … , clearly others might be used to similar
effect. Then again, were larger magic squares to be found? Could the
numbers from 1 to 16 be used to produce a 4×4 specimen? Let’s see,
supposing we call the number in the top left-hand cell … I had no training
in mathematics, but I found myself trying to recall some of the half-
forgotten algebra learned at school. Little did I know it, but I was playing
with fire. There are some people for whom magic squares are more
addictive than cocaine. I should know; here I am forty years later and still
hooked.



It was soon after this that I first ran across Martin Gardner’s
“Mathematical Games” column in Scientific American, and was thus
introduced to the world of recreational mathematics. With his genius for
making difficult things easy, Gardner led me into that world until I felt
confident enough to start making my own way. There was no Internet in
those days. It was only through Martin Gardner’s writings that I became
aware of the extensive literature on magic squares, a literature that I now
began to explore. However, beyond this there were the rows of bound
volumes of Scientific American I found lining the shelves of our university
library. The series went back some twenty-five years, and every single issue
contained an as-yet-to-be-read Mathematical Games column. It took me a
around a month to work through the entire series, an exercise from which I
emerged with more or less glazed eyes and a burning desire to contribute to
the field something new of my own. Gardner had woken me up to the fact
that many of the ideas and inventions found in Mathematical Games were
the products of amateurs; that you didn’t need a diploma to do your own
research, that permission is not required before making a new discovery.

It was, in fact, in the field of magic squares that I landed my first ever
new ‘find,’ which was an improved algebraic generalization of 4×4 squares.
A trifling innovation, it was nonetheless poignant for me in showing that it
was indeed possible for a rank amateur to make an original discovery, an
insight from which I never looked back. Thus, while no mathematical
mountaineer, I set out on my own to explore low-level routes, discovering
in the process a great liking for mathematical wordplay. It was in this way
that what had become a compulsive habit of playing with words and
numbers lead eventually to the idea of ‘alphamagic’ squares, a frivolous
invention that has come to enjoy a modest renown. Some examples can be
found in this volume. Still, later, these were followed by two more novelties
in the shape of ‘septivigesimal’ magic squares and ‘ambimagic’ squares.
Septivigesimal is just a long word for “twenty-seven-based.” It refers to a
certain gematria or system for interpreting words as numbers. The magic
squares referred to are ones in which words occupy the cells, their values,
as interpreted in the gematria, then emerging as numbers that form a
conventional magic square. Ambimagic squares come up for brief
elucidation in Part II of this book. Of course, magic squares were only one
among other topics in recreational math to attract my interest. But that they



have loomed large in my thoughts over a long period of years cannot be
denied.

I first hit on the idea of a geometric magic square in October 2001, and I
sensed at once that I had penetrated some previously hidden portal and was
now standing on the threshold of a great adventure. It was going to be like
exploring Aladdin’s Cave. That there were treasures in the cave, I was
convinced, but how they were to be found was far from clear. The concept
of a geometric magic square is so simple that a child will grasp it in a single
glance. Ask a mathematician to create an actual specimen and you may
have a long wait before getting a response; such are the formidable
difficulties confronting the would-be constructor.

The present volume seeks to throw some light on these matters. Although
only a feeble light, it must be admitted. For the truth is that the informal
methods here introduced are a far cry from what I would have liked to
present, given the mathematical character of the topic. I can only say that a
more rigorous treatment has proved beyond my amateur capacities. As a
magic-square enthusiast, my guiding instincts have been those of the
collector, whose chief aim is ever to add a new specimen to his collection. It
is an ambition that is unlikely to go hand-in-hand with mathematical rigour.
But if you are looking for a hunter’s handbook that includes tips on how to
set traps and stalk prey, and so on, then perhaps you could do worse.

This book has been long in the making, the writing having at one stage
been abandoned in favour of creating a website devoted to the same topic:
http://www.geomagicsquares.com. But life can play funny tricks. From the
start, the website turned out to attract more attention than was ever
anticipated. Soon after launching, the journal New Scientist ran an
enthusiastic review of the site by Alex Bellos, in the wake of which 14,000
hits were received on one day. Still later, Michael Kleber offered to
reproduce the website Introduction in his “Mathematical Entertainments”
column in The Mathematical Intelligencer. It appeared in the Winter edition
for 2011, Vol. 23, No. 4, the cover of which was adorned with a geomagic
square. A lively interest in the site continues down to the present day. It was
thus largely in response to this surprising success that I was prompted to
resume writing and so bring this book to completion. In the appendices I
have included some further material on magic squares that I hope may
prove of interest. There is a good deal of overlap among these pieces which
were written at various periods over the past thirty years. However, they

http://www.geomagicsquares.com/


include some personal insights that are not to be found elsewhere, and they
will paint a picture of the way my thoughts were turning in the years
preceeding the emergence of geometric magic squares.

Lee Sallows Nijmegen, September 2011

1 Knecht’s construction can be viewed on Harvey Heinz’s wonderfully rich website devoted to
magic squares: http://www.magic-squares.net.

http://www.magic-squares.net/


Part I

Geomagic Squares of 3×3
There is mystery in symmetry. With an m to spare.

1 Introduction

I expect most readers will be familiar with the traditional magic square: a
chessboard-like array of cells in which numbers, usually but not always
consecutive, are written so that their totals taken in any row, any column, or
along either diagonal, are alike. Figure 1.1 shows the best known example
of size 3×3, the smallest possible, a square of Chinese origin known as the
Lo shu. The constant sum of any three entries in a straight line is 15. The
diagram at left shows the Lo shu in traditional form, an engaging device
nowadays identified by sinologists as a pseudo-archaic invention of the
10th century A.D.; see Cammann[1]. The dot-and-line notation was
intended to suggest an origin of extreme antiquity.

Fig. 1.1 The Lo shu.

The history of magic squares is a venerable one, earliest writings on the
topic dating from the 4th century BC[2]. Abstruse as they may appear, these
curiosities have long exercised a peculiar fascination over certain minds,
attracting over the centuries a steady following of devotees, by no means all
of them mathematicians. As Martin Gardner has written, “The literature on
magic squares in general is vast, and most of it was written by laymen who
became hooked on the elegant symmetries of these interlocking number
patterns.”

It is true. I myself am such a layman; a mathematical amateur with an
irrational fondness for the crystalline quality of these numerical prisms (see,



for example, [3] and [4].) But with that humble position owned up to, my
purpose in the present essay is in fact decidedly less timid.

My thesis is that the magic square is, and has ever been, a misconstrued
entity; that for all its long history, and for all its vast literature, it has
remained steadfastly unrecognised for the essentially non-numerical object
it really is. Just as a cylinder may be mistaken for a circle when observed
from a single viewpoint, so may a familiar object turn into something quite
unexpected when seen from a new perspective. In a similar vein, I suggest
the numbers that appear in magic squares are better understood as symbols
standing for (degenerate instances of) geometrical figures. Hence the prefix
geometric to distinguish the wider genus of magic square that will turn out
to include the old species within it. For, as we shall see, the traditional
magic square is really no more than that special instance of a geometric
magic square in which the entries happen to be one-dimensional. But once
we are introduced to squares using two-dimensional entries the scales fall
from our eyes and we step into a wider, more exhilarating world in which
the ordinary magic square occupies but a humble position.

2 Geometric Magic Squares

Consider a graphical representation of the Lo shu as seen in Figure 2.1 at
right, in which straight line segments of length 1, 2 ,3, … replace like-
valued numbers in each cell. The orientation of these segments in their cells
is unimportant; they may be horizontal, vertical, or slanted at any angle.
The constant sum, 15, as represented by 8+1+6 in the bottom row, say, then
becomes three segments of length 8, 1, and 6 that are joined head to tail so
as to form a single straight line of length 15.

Fig. 2.1 A geometrical version of the Lo shu.

We note that the order in which 8, 1, and 6 are abutted is non-critical, the
important thing being only that they fit together end-to-end so as to fill or



‘pave’ a straight line of length 15. And similarly for the seven other sets of
three line segments occupying the remaining rows, columns, and main
diagonals, collectively known as ‘magic lines.’ Hence more generally:

(1)   The numbers that occur in magic squares can be seen as abbreviations for their geometrical
counterparts, which are straight line-segments of appropriate length.

(2)   The process of adding numbers so as to yield the recurring constant sum is then easier to
interpret as the arithmetical counterpart of partitioning or tiling a space with these line segments.

The advantage of this view now emerges in an entirely novel contingency
it immediately suggests. For just as line segments can pave longer
segments, so areas can pave larger areas, volumes can pack roomier
volumes, and so on up through higher dimensions. In traditional magic
squares, we add numbers so as to form a constant sum, which is to say, we
‘pave’ a one-dimensional space with one-dimensional ‘tiles.’ What happens
beyond the one dimensional case?

Geometric or, less formally, geomagic is the term I use for a magic
square in which higher dimensional geometrical shapes (or tiles or pieces)
may appear in the cells instead of numbers. For the moment we shall dwell
on flat, or two-dimensional shapes, although non-planar figures of 3 or
higher dimensions may equally be used. The orientation of each shape
within its cell is unimportant. Such an array of N × N geometrical pieces is
called magic when the N entries occurring in each row, each column, as
well as in both main diagonals, can be fitted together jigsaw-wise to
produce an identical shape in each case. In tessellating this constant region
or target, pieces are allowed to be flipped. As with numerical, or what I
now call numagic squares, geomagic squares showing repeated entries are
denoted (and deemed) trivial or degenerate, which are terms we shall have
need of more often. Rotated or reflected versions of the same geomagic
square are counted identical, as are rotations and reflections of the target. A
square of size N × N is said to be of order N. We say that a geomagic square
is of dimension D when its constituent pieces are all D-dimensional. This is
an informal introduction to geomagic squares; for a formal definition see
Appendix I. In the following, our concern will be almost exclusively with
2-D, or two-dimensional squares.

Figure 2.2 shows a 3×3 two-dimensional geomagic square in which the
target is itself a square. Any 3 entries in a straight line can be assembled to
pave this same square-shape without gaps or overlaps, as illustrated to right



and below. Note how some pieces appear one way in one target, while
flipped and/or rotated in another. Thin grid lines on pieces within the square
help identify their precise shape and relative size.

Fig. 2.2 A 3 × 3 geomagic square.

At the top is a smaller 3 × 3 square with numbers indicating the areas of
corresponding pieces in the geomagic square, expressed in units of half
grid-squares. Since the three pieces in each row, column, and diagonal tile
the same shape, the sum of their areas must be the same. This is, therefore,
an ordinary numagic square (or one-dimensional geomagic square) with a
constant sum equal to the target area. Analogous area squares for many
geomagic squares are often degenerate because differently shaped pieces
may share equal areas.

The concept of geometric magic squares grew out of an original impulse
to create a pictorial representation of the algebraic square shown in Figure
2.3, a formula due to the 19th century French mathematician Édouard
Lucas[5] that describes the structure of every 3×3 numagic square. The Lo



shu, for example, is that instance of the formula in which a = 3, b = 1, and
c = 5. From here on the terms formula and generalization will be used
interchangeably.

The idea underlying this pictorial representation was as follows. Suppose
the three variables in the formula are each represented by a distinct planar
shape. Then the entry c + a could be shown as shape c appended to shape a,
while the entry c – a would become shape c from which shape a has been
excised. And so on for the remaining entries. A back-of-the-envelope trial
then lead to Figure 2.4, in which a is a rectangle, b a semi-circle, and c a
(relatively larger) square, three essentially arbitrary choices.

Fig. 2.3 Lucas’s formula for the general 3×3 numagic square.

This result was more effective than anticipated, the match between
protrusions and indentations (“keys” and “keyholes”) making it easy to
imagine the pieces interlocking, and thus visually obvious that the total area
of any three in a straight line is the same as a rectangle of size 1×3, or three
times the area of the central piece, in agreement with the formula. However,
the fact that the 3 central row and 3 central column pieces will not actually
fit together to complete a rectangle, as the pieces in all other cases will, now
seemed a glaring flaw. The desire to find a similar square lacking this defect
was then inevitable, and the idea of a geometric magic square was born.



Fig. 2.4 Lucas’s formula realised in geometric shapes.

It was not until later, however, that the relationship between geometric
and traditional magic squares became clear. For, as we have seen, although
the term geometric magic square may seem to suggest a certain kind of
magic square, in fact things are the other way around. On the contrary, it is
ordinary magic squares that turn out to be a special kind of geometric magic
square, the kind that use one-dimensional pieces.

The problem of how to actually produce such a square now took centre
stage. Following a lot of thought on this question, thus far two approaches
have suggested themselves: (1) pencil and paper methods based on
algebraic formulae, along the lines just mentioned. (2) in the case of squares
restricted to polyforms or shapes built up from repeated atoms, brute force
searches by computer. For short, I call the latter polymagic squares, which
is probably a misnomer, but no matter. Foremost among the polyforms are
polyominoes (built up from unit squares), polyiamonds (equilateral
triangles) and polyhexes (regular hexagons). Figure 2.5 shows ‘Magic
Potion‘, an example using nine hexominoes. I’m afraid I have been unable
to resist the temptation of assigning titles to some of the better specimens.
In searching for such a square different target shapes must be tried. In this



case, the result was felicitous. In general, both construction methods have
proved fruitful. Some simple inferences that follow from Lucas’s formula
are an essential basis for both.

Fig. 2.5 ‘Magic Potion,’ a polymagic square.

3 The Five Types of 3×3 Area Squares

Let G be a geomagic square, where G´ is the square that results from
replacing each piece in G by a number representing its area. Then, by the
definition of a geomagic square, G´ is a numagic square, although perhaps
degenerate, since piece areas may repeat. Thus, if G´ is of order-3, its
entries must satisfy the relations expressed in Lucas’s formula, and, if G is a
polymagic square, these entries will be whole numbers. It is easily verified
that these are distinct if, and only if, a ≠ ± b or ± 2b, or 0.



Consider now the possible forms that a degenerate magic square may
take. We shall use Figure 3.1 as our standard for identifying cells. Suppose
now that Figure 3.1 is a trivial square in which A = B.

Then by Lucas’s formula, c + a = c – a – b, or b = – 2a, which on
substitution in the formula yields the type 1 square of Figure 3.2. Here we
see the full set of relations implied by A = B, or equivalently, of B = C, C =
F, F = I, I = H, H = G, G = D, and D = A, when rotations and reflections of
the same square are in turn considered. Repeating this process for the cases
A = C, A = E, . . . , B = D, . . etc, we discover just three further possible
forms of a degenerate square, as seen in the remaining instances of Figure
3.2.

Fig. 3.1 Standard labelling for 3 × 3 squares.

Thus, for every geomagic square G, either G´ is a magic square in which
every number is distinct or non-degenerate (call this type 0: Lucas’s
formula with a ≠ ± b or ± 2b or 0), or G´ is a degenerate magic square
showing one of the four structures of Figure 3.2. We are now ready for a
look at the first method for producing geomagics.



Fig. 3.2 The four degenerate types of magic square. Note that a type t square contains exactly 9
- 2T different entries.

4 Construction by Formula

As discussed previously, every numerical magic square has a primitive
geometrical analog using straight line-segments. We have only to broaden
these lines into strips or rectangles of same height to result in a two-
dimensional geomagic square, the target then being a longer strip that is
formed simply by concatenating the shorter ones occupying each magic line
(i.e., each row, column, and diagonal). By suitable choice of rectangle
height, the target can even be made a square, as in the example based on the
Lo shu shown in Figure 4.1.



Fig. 4.1 Rectangles replace numbers in the Lo shu.

Similarly, just as any set of contiguous points along the real number line
can be mapped one-to-one onto another set of contiguous points around the
circumference of a circle or part-circle, so numerical magic squares have
another primitive geometrical analog using circular arcs or sectors of
appropriate angle, the target then being the circle or part circle formed by
subjoining these arcs or sectors. Figure 4.2 shows such a representation of
the Lo shu using sectors. Since the constant sum in the Lo shu is 15, the



smallest sector subtends an angle of 360 ÷ 15 = 24°, the angles of the other
sectors being multiples of 24°, up to 9 × 24 = 216°.

It is easy to see that this circular target could be replaced by a regular 15-
gon, the sectors then changing to 15-gon segments of corresponding size.
Likewise, the sectors in Figure 4.2 could be changed into annular segments,
the target then becoming a ring with a central hole, or central 15-gon hole.
Further variations may occur to the reader. By combining the straight line
segment and circular arc interpretations, numerical squares could equally be
mapped onto 3-D helical segments.

The rectangles and sectors in Figures 4.1 and 4.2 can be further
elaborated. Earlier I spoke simplistically of ‘broadening the line segments
into strips of same height.’ A better way of conceiving this is to think of the
broadened strip as just two 1-D segments of same length, one above the
other, their ends joined by two straight vertical lines so as to form a
rectangle. However, it is not necessary that these lines be straight, only that
they be congruent. Imagine a piece formed by a pile of contiguous line
segments, all parallel to each other, and yet shifted to left or right so that
their ends describe some non-linear profile, as in Figure 4.3.



Fig. 4.2 Numbers in the Lo shu replaced by circular segments.



Fig. 4.3 Piece edges need only be congruent.

Provided all are contructed similarly, differing only in their lengths,
pieces constructed in this way can again be concatenated to form a long,
thin target whose ends are sculpted with the same curve. Similar remarks
apply to circular segments, a striking example of the kind of profile just
mentioned being realized in Figure 20.13 in the section on picture-
preserving geomagic squares in Part 3.

This view of 2-D shapes as a stack of parallel straight line-segments
appropriately aligned might seem to preclude shapes with re-entrant angles
such as Figure 4.4 because the 1-D segments become broken. Happily,
however, it turns out that this doesn’t matter. In fact, it wouldn’t matter if
the projecting lug were entirely detached from the main body of the piece to
become an island, so that that its corresponding indentation became an
isolated hole. This brings us to disconnected pieces.

Fig. 4.4 A piece with broken line-segments.

Previously we saw that every numerical magic square corresponds to a 1-
D geometrical magic square written in shorthand notation. But this is not to
say that numerical squares account for all possible 1-D geomagic squares.
In fact, they account only for that subset of 1-D squares using connected
line segments. Figure 4.5 shows a 1-D geomagic square of order-3 that
includes disjoint pieces, or pieces composed of two or more separated
islands bearing a fixed spatial relation to each other. The overall shape of



the compound piece is thus preserved even when moved. Here, the 1-D
lines have been broadened and colored to enhance clarity, a trick that could
obviously be extended so as to yield a true 2-D geomagic square sporting
rectangular targets. However, the point to be made here is that Figure 4.5 is
a 1-D geomagic square for which there exists no corresponding numerical
magic square. Magic squares using numbers thus account for no more than
a small fraction of all 1-D geomagic squares.

Fig. 4.5 A square using disconnected pieces.

Just as with linear pieces, so circular arc pieces do not have to be
connected. Figure 4.6 shows a 3×3 square using disjoint arcs, their unit
segments here simplified into single colored dots. Once again, such
disconnected pieces cannot be represented by single numbers.

Of course, the trouble with geomagic squares of the type seen in Figures
4.1 and 4.2 is that they are really nothing more than the same old numerical
magic square in alternate guise. The question is: how do we go about
producing more interesting 2-D geomagics such as the first one looked at in
Figure 2.2, which are something other than just a geometrical rehash of an
arithmetical square? One approach is to start with a trivial geomagic square
based on a trivial algebraic formula, and then to de-trivialise this by adding
appropriate keys and keyholes. I call algebraic squares, trivial or otherwise,
that are used in this way, templates. An example will clarify.



Fig. 4.6 Circular arcs may also be disconnected.

Consider the trivial type 3 square (page 5), which is that case of Lucas’s
formula with b = 0. Setting a = 1 and c = 2, the lowest possible whole
number values, results in Figure 4.7, a trivial numagic square with a
constant line total or ‘magic sum’ of 6:

Fig 4.7 A type 3 numagic square.

As before, a primitive geometrical analog of this is easily produced, the
magic sum of 6 now suggesting (on analogy with the 15-gon) a regular
hexagon, say, as a nice choice of target. The latter can be divided radially
into segments subtending angles of one, two, and three sixths of 360° so as



to yield a triangle, parallellogram and trapezium respectively, as in Figure
4.8.

Fig 4.8 A substrate or trivial geomagic square.

The hexagons show the two ways in which the 3 pieces in each line
assemble to complete the target. I call such an initial, necessarily trivial
geomagic square that has yet to be elaborated, a substrate. Detrivializing
this substrate so as to yield 9 distinct piece-shapes is then merely a matter
of assigning a nominal shape (a small lug, say) to variable b in the type 3
formula, to result in the pattern of keys (+b) and keyholes (–b) seen in
Figure 4.9.



Fig 4.9 The trivial substrate detrivialised.

This is now a non-trivial 2-D geomagic square that is not simply a
numerical magic square in different guise. Note that the keys and keyholes
may be of any shape, provided only they remain within piece boundaries.
They are thus in a sense geometric variables, in that they are arbitrary
shapes that can be taken as standing for any other shape we might choose
instead. The strong effect of an alternative choice of key/keyhole shape can
be seen from Magic Crystals in Figure 4.10, which is a polymagic square,
identical to Figure 4.9, except that the key shape is now a unit triangle
belonging to the underlying isometric grid.

A striking result of this change is that the identity of the keys and
keyholes as such now becomes lost to sight, making it far more difficult for
the viewer to discern the principle of construction. So although Figure 4.10
is the prettier picture, as well as a greater feat of illusion, it is better
understood as a particular instance of Figure 4.9, which provides the
blueprint for an entire family of geomagic squares.

There are in fact two kinds of key/keyhole at work, in Figure 4.9; one
obvious, the lug, the other invisible. It is again a triangle, the 60° hexagon



segment that corresponds to variable a in Lucas’s formula, and is half that
of the 120° segment corresponding to variable c, the parallelogram. The
effect of appending this a-shaped “key” to c is thus indistinguishable from
enlarging c (the segment angle increases), and the effect of excizing the a-
shaped key from c is indistinguishable from reducing c (the segment angle
decreases). Similar effects are at work in Figure 4.1, where the rectangular
“keys” and “keyholes” represented by both a and b merely increase or
decrease the length of rectangle c. Call the latter “size-altering”
keys/keyholes to distinguish them from “lug-type” keys/ keyholes. Figure
4.11 shows another geometrical analog of Lucas’s formula in which the
variables a and b are now both represented by lug-type keys and keyholes.

Fig 4.10 ‘Magic Crystals’ The principle of construction is difficult to detect.

Looking again at Lucas’s formula, we see that the trivial square started
with here is a uniform array with c in each cell, giving rise to a substrate
composed of 9 identical pieces. It took a little while to arrive at the choice
of 9 squares. My difficulty was in seeing how two keys on one piece,
whatever its shape, could be made to marry with two keyholes on another
piece of same shape (as for example in the centre column), as well as two



single keyholes on two separate pieces (e.g. in the bottom row). The T-
shaped target provided a solution, the only one I have been able to find.
Figure 4.12 shows a different rendering of Figure 4.11 using polyominoes.
Variable c is now a square 16-omino, a a square tetromino and b a domino.
The target remains a T-shape. See again how the identity of the keys and
keyholes disappears from view with the change to polyominoes.

Fig. 4.11 Lucas’s formula used as template.



Fig. 4.12 Polyominoes obscure the keys and keyholes.

Compare this now with an alternative geometrical analog of Lucas’s
formula (Figure 4.13) in which variables a and b are of lug-type and size-
altering type keys, respectively. The target here, not shown, is of course
simply a rectangle of length 3 times the width of c.



Fig. 4.13 Combining size-altering with lug-type keys and keyholes.

In the foregoing we have been considering a single example. However,
the important point is that just as Figure 4.9 was derived from the trivial
square of type 3 on page 5, so different piece schemes will emerge when we
start from a different trivial type. Likewise, setting c= 2 in the type 3 square
gave a magic sum of 6 in Figure 4.7, which is the origin of the hexagonal
target chosen. Different assignments will suggest different regular polygons
as targets. Moreover, Figure 4.8 shows but one way to divide a hexagon
into one, two, and three sixths of 360°; there are many others. Nor need the
target be a regular hexagon, the essential requirement being in fact only six-
fold rotational symmetry. Figure 4.14 shows an alternative to a hexagon in
the form of a six-pointed star. Here, the circular presentation makes it a
little harder for the viewer to spot which star belongs to which row, column
or diagonal. Even so, it can be done without recourse to a telescope; Figure
4.15 provides a key.

So far so good, but at this point a word of caution. In section 3, we saw
that the area square, G', of a geomagic square, G´, must always correspond
to one of the five algebraic square types listed. Thereafter we took one of
those types, type 3, and used it as a template to create the non-trivial square
in Figure 4.9. But this doesn’t mean that every 3×3 geomagic square can be
identified as a particular instance of one of those types. For example, there
is at least one further subtlety at work here about which we need to be
aware.



Fig. 4.14 ‘Star Formation’ Evil rats on no star live.



Fig. 4.15 Key to ‘Star Formation’.

Consider the 3×3 square in Figure 4.16. The keys and keyholes belonging
to each of the three pieces occupying the main diagonal (\) re-echo the
congruent piece profiles of Figure 4.3, except in this case applied to circular
segments rather than rectangular pieces. That is, the projecting profile on
one radial edge is the image of the indented profile on the other radial edge.
It is informative to reconstruct the algebraic template of which this square is
a geometrical interpretation. To this end, substituting distinct variables A, B,
and C for the three different segment sizes (60°, 180°, 120°, respectively),
with a and b for the two distinct keys, brings to light the algebraic square of
Figure 4.17. It is a square that will not be magic unless the sum of the
entries occupying the co-diagonal (/) is made equal to the sum of the three
entries in every other line. That is, when 3C = A + B + C, or 

.



Fig. 4.16 A square using circular segments of three sizes.

Fig. 4.17 A template for Figure 4.16.

The result is then a trivial square formed by A, B, and (A+B)/2
accompanied by a detrivializing pattern of a’s and b’s that includes a curious
feature. The three entries on the main diagonal all contain ‘a – a ’, a term
we would normally ignore or omit because redundant, but is here an
intrinsic and necessary part of the template. Such a square reminds us that
in applying the template technique we wander somewhat from the path of
everyday mathematics and enter a weird world in which the very mode of
expression used to identify relations becomes as important as those relations
themselves. For example, as the reader may like to verify, Figure 4.17 can
be shown to be simply an alternative expression of Lucas’s formula, which
is to say, a square of type 0. But whereas it supplies a template for the 2-D



square in Figure 4.16, Lucas’s formula emphatically does not, even though
the two algebraic squares are mathematically isomorphic.

Little wonder then that the devising of algebraic templates is something
of an art, involving at times an uncomfortable reliance on intuition
tempered only by trial and error. This is a curious development in what was
supposedly to be an exercise in algebra. In defence, I can only say that the
challenge confronted in creating geomagic squares has proved too
demanding in every other direction, save that of brute force searches using a
computer. But better, I thought, a slipshod method that produces results of
some kind, rather than a more respectable approach that yields none. And
whatever its shortcomings, the template method has certainly proved itself
fruitful, as I hope the many examples to be found in these pages will attest.

The brute force searches by computer just referred to are applicable only
in the case of squares using polyforms. Special instances of the latter are
polyominoes, polyiamonds and polyhexes, which produce tilings showing a
greater regularity than that found in other cases. It is this regularity that
enables computer programs to be written that are able to identify all the
tilings of a given target using a given set of pieces. However, less regular
polyforms exist, as exampled in Figure 4.18, which is again based on the
template of Figure 4.17.

Here the target is a ‘medallion’ due to Michael Hirschhorn, who
discovered it in connection with some teaching work involving pentagonal
tiles conducted at the University of New South Wales in Australia in
1976[6] [7]. The medallion is really the central hub of an infinite
tessellation showing six-fold rotational symmetry; it can be extended
outwards indefinitely so as to cover the entire plane. The basic tile used is
an equilateral pentagon that is among ten pentagonal tiles independently
identified at around the same time by Marjorie Rice, a San Diego housewife
with a mathematically inventive bent [8] [9], Complicated as it may seem at
first sight, examination will show how the radial profiles of each piece are
exactly mirrored by those in the square of Figure 4.16. Figure 20.13 is yet
another example modelled on the same template.

There is, in fact, a good deal more to be said about the construction of
geomagics based on the template technique. However, the peculiarities of
order-3 squares make them an unsuitable vehicle for explaining certain
points. In the section on 4×4 geomagics we return to this topic, but for now
we pass on.



Fig. 4.18 A square using Michael Hirschhorn’s medallion as target.

5 Construction by Computer

The five area types discussed before are critical in designing a program able
to seek for 3×3 polymagic squares, since besides the need to specify the
target shape required, we must also specify the sizes of the pieces to be
used. An example will clarify how one such program works.

Suppose we seek a 3×3 polymagic square P using nine polyominoes of
equal size; i.e. the area square is of type 4 above. From Lucas’s formula we
know that the area of its target is an integer divisible by 3, making a 3×5
rectangle, say, a suitable choice of shape. All pieces will then be of size
15÷3 = 5, or pentominoes, of which there exist exactly 12 distinct
exemplars. Number these from 1 to 12. A brute force search for a set of 9
pentominoes able to construct P is then simple enough, given first a list L of
all the possible sets of 3 distinct pentominoes that will tile a 3×5 rectangle.
Every entry in L is thus a triad of distinct numbers in the range 1 to 12.
Taking now every possible combination of three distinct entries one at a
time, say {R,S,T}, {U,V,W} and {X,Y,Z}, we imagine these entered into a



3×3 array to produce a square whose rows are now magic because they
contain pentomino triads taken from L that therefore tile the target; see
Figure 5.1.

Fig. 5.1 Every row contains a target-tiling triad.

A second routine can now scan L to discover in turn whether the triads
{R, U, X}, {S, V ,Y} and {T, W ,Z} are perhaps also on the list. If so, we
have found an orthomagic square, or one magic on rows and columns only.
Following this the diagonal triads {R, V, Z} and {T, V, X} can be checked
and, if it is fully magic, the array saved as a solution. If not, an alternative
ordering of the same elements may yet yield a solution. Since the rows are
already magic, leaving {R, S, T} unchanged, we re-test the array under each
of the 6×6 row permutations of {U, V, W} and {X, Y, Z} in turn, to exhaust
all possibilities. With these 36 tests performed, a new combination of three
triads from L can be called, say {RST}, {UVW} and {ABC}, and the process
reiterated. Such a program, in fact, reveals there exist no geomagic squares
with a 3×5 rectangular target using nine pentominoes; 3×3 polymagics
using nine hexominoes do exist, as we saw in Figure 2.5 for example. Note
that the program just described searches for squares using pieces of
identical size. Programs for non-uniform area squares are similar in
principle but generally more complicated.

Of course, the difficult part in the above scheme is writing a program to
generate the list L. In this, I can hardly overstate my indebtedness to Pat
Hamlyn, professional programmer and leading name in the field of
polyforms, without whose ever generous help my explorations would have



been seriously curtailed. At the time, I didn’t let on to Pat exactly what I
was up to for fear of opening up the topic prematurely. And especially so, in
view of the kind of bright polyform-oriented mathematicians Pat hangs out
with. If you’ve been lucky enough to stumble across a previously unknown
gold-field then it is only natural to gather up a few of the larger nuggets
before rushing into town to let your friends in on the find. So I guess Pat
simply assumed I was trying to construct some mechanical puzzles, which
would explain my requests for programs that could tell me all the ways that
a certain shape could be tiled by certain other shapes. But whatever he
thought, he not only provided me with an entire suite of his sophisticated
programs, in email after email, time and trouble were not spared in
responding at length to my endless questions, and even in adopting his
software to my specific demands. Thus, if there is any credit due for
tracking down the polymagic squares to be seen in these pages then a very
big chunk of it belongs to Pat Hamlyn, the real brains behind the research,
and a warm and generous man besides.

So much for a brief sketch of the two present known methods for
producing 2-D magic squares. We shall now take a look at some example
squares of order 3.

6 3×3 Squares

When I first started thinking about how to produce a geomagic square, not
knowing any better, I began with the Lo shu and tried to create a
geometrical analog using polyominoes. The Lo shu is a so-called normal’
square, meaning one using the numbers 1, 2 . . . N2, where N is the order of
the square. Working by trial and error, at length I landed on a solution; see
Figure 6.1. The three colors used are merely to assist the eye in
distinguishing pieces.

It is an example of what I now term a normal 2-D square because the
areas of the pieces form the arithmetic progression 1, 2,.., 9, a rare and
wonderful property, as it seemed to me at the time. Later on I wrote a
computer program able to search for every geomagic square using
polyominoes with these sizes and same 3×5 rectangular target. The result
came as a shock. The above is one of 1,411 distinct solutions, the 8
rotations and reflections of each square not counted. If the target is changed



to a 4×4 square missing one of its four centre cells (see Figure 6.2), the
computer finds 4,370 solutions.

Fig. 6.1 One of 1,411 normal squares with 3×5 rectangular target.

If the target is a 4×4 square minus one of its inner edge cells (see Figure
6.3) there are 16,465 solutions.

Fig. 6.2 One among 4,370 normal squares using a 4×4 target with inner hole.



Fig. 6.3 16,465 normal squares share this 4×4 target minus edge cell.

When the target is a 4×4 square minus one of its corner cells then we find
27,110 solutions. Surprising perhaps, but true.

Fig. 6.4 One of the 27,110 normal squares with 4×4 target minus corner cell.

These large numbers of normal squares discovered by computer searches
were stored in the form of lists, the items on each list being a set of nine
integers that identified the polyominoes appearing in each square. Still later,
I wrote another program that could draw these squares one after the other



on screen, so as to browse the entire collection and pause on visually
interesting specimens. This suggested the idea that a square belonging to
the list of solutions associated with one target might also be present in the
list for a different target. Or in other words, that a given square might have
two distinct targets. A search of the above lists proved fruitless however,
although at length I did succeed in finding such a ‘bi-magic’ square; see
Figure 6.5.

Fig. 6.5 A geomagic square able to tile two distinct targets.

Had I but known it, the pride felt in this seemingly remarkable discovery
could hardly have been less appropriate. This would come to light only
later, in the wake of a competion held by Pythagoras, a well-known
mathematics periodical in the Netherlands. Pythagoras had published some
examples of geomagic squares[10], following which readers were invited to
submit geomagic creations of their own. Among those received was the
fruit of a combined effort involving three people in three different
countries: Odette de Meulenmeester in Belgium, Aad N. J. Thoen from
Amsterdam in the Netherlands, and Helmut Postl in Austria. In these days
of email, such collaborations are only too easy.

Figure 6.6 shows their amazing discovery. It is a normal 3×3 square
using polyominoes, being, in fact, one of the 1,411 solutions with 3×5
rectangular target mentioned above. But as Figure 6.6 clearly demonstrates,
this rectangle is far from being the only target that can be assembled with



these pieces. Incredibly, it is one of twelve alternative shapes that may be
used! Little wonder that it took three collaborators to identify this gem:
Thoen to discover an initial five targets, de Meulenmeester to find three
more, followed by Postl with the final four. I can only admit to
astonishment and offer my congratulations.

Fig. 6.6 A normal square able to tile twelve distinct targets.

Note an important difference between Figures 6.1–4 and the geomagic
square with which we started, Figure 2.2. Lucas’s formula shows us that
every 3×3 numagic square is a so-called ‘symmetric’ or ‘associated’ square.
That is, the sum of any two numbers diametrically opposed about the centre
is 2c, or twice the centre number. Remarkably, Figure 2.2 is geometrically
symmetric: each of the 4 pairs of diametrically opposed pieces will together
tile a rectangle of 4×6, which is also tiled by two copies of the 2×6 centre
rectangle. Figure 6.7, an alternative presentation of Figure 2.2, seeks to
highlight this property, which is absent from Figures 6.1–4, as it is from
most 3×3 geomagics. Figures 4,10, 4.11 and 6.5 however yield three further
examples of symmetric squares. In the latter the two complementary pieces
will combine to complete a 4×4 square.



Readers who, like me, have a preference for square over rectangular
targets might surmise that the building blocks of polymagic squares could
be deformed so as to achieve this result whenever required. Consider Figure
6.1, for example. Squashing the 1×1 unit squares forming each piece into
unit rectangles of width 3/5 ought to do the trick, for then the shapes must
contract horizontally so as to yield the desired square target. However, this
will work only so long as each piece occurs in the same orientation within
every target. But a look at the tetromino in the bottom left-hand cell of
Figure 6.1, say, shows that here this is not the case. In the bottom row and
left-hand column targets it appears unchanged in orientation, but in the co-
diagonal (/) target it is rotated. Following horizontal squashing, it would
therefore be too short to completely tile the latter target.

Fig. 6.7 Complementary piece pairs tile the same rectangle.

In fact, experience teaches that the interlocking relations within
geomagics can be very deceptive. Again and again, one feels convinced that
some in significant detail can be altered, only to find out that the change has
disastrous consequences elsewhere in the square. Figure 6.8(a) is one
among a few examples found of a geomagic square in which the pieces
appear neither rotated nor reflected in any target. This is perhaps
unsurprising; just as a conventional magic square may contain the number



zero, so Figure 6.8(a) makes use of the ‘empty’ piece, with the result that
only eight pieces are involved. The constant orientation of these eight
pieces means that the entire square can be stretched or squashed without
affecting its geomagic properties, as shown in Figures 6.8(b) and (c). The
target can then be a square (b), or even a parallelogram (d).

Fig. 6.8 A square that includes the ‘empty’ piece.

7 3×3 Nasiks and Semi-Nasiks

Often geomagics with some desired special property can be found only at
the price of accepting less pleasing targets. Consider for instance Figure 7.1,
in which the region tiled is a 4×5 rectangle missing two edge cells.



Fig. 7.1 A semi-nasik square.

The pieces used are of three sizes: 3 pentominoes, 3 hexominoes, and 3
heptominoes, the areas forming a Latin square, seen above left. The subject
of Latin squares has a long history, abounding as it does with unsolved
problems, some of them as many as 200 years old [11]. By a Latin square of
order N, we refer to a square of N2 entries composed of N distinct elements,
each of which occurs exactly once in every row and column. Here the
entries happen to be numbers, but could equally be elements of a different
kind, such as letters or geometrical shapes. We shall have more to do with
Latin squares when we come to 4×4 geomagics.

Figure 7.1 is an example of a square that is ‘semi-panmagic’ or ‘semi-
nasik’. Fully panmagic or nasik2 squares (so named after the town in India
where an early 4×4 specimen was found) are those in which every diagonal,
including the so-called ‘broken’ diagonals, AFH, BDI, CDH, and BFG, are
also magic lines, which is to say, their pieces tile the target. Note that AFH
and BDI are parallel and hence non-intersecting, as are CDH and BFG.
Semi-nasik squares of 3×3 are those showing a total of 4 magic diagonals
that include the two main diagonals plus one of these two parallel pairs. In
Figure 7.1 the latter are AFH and BDI, as shown by the targets at top.



There exist similar 3×3 geomagics with a total of 4 magic diagonals that
are different to those in semi-nasiks. These are squares in which the two
main diagonals, plus two broken diagonals that are non-parallel and thus
intersecting are magic. I call these demi-panmagic or demi-nasik squares.
Figure 7.2 shows an example that includes weakly-connected pentominoes,
or those in which some unit squares join only at their corners. On referring
to Lucas’s formula, we see that a magic diagonal such as AFH will imply (c
+ a) + (c + a – b) + (c + a + b) = 3c, from which is found b = 0. Continuing
in the same way, it is simple to verify that semi-nasiks must have area
squares of type 3 or 4, while those of demi-nasiks can be of type 4 only.

Fig. 7.2 A demi-nasik square.

The semi-nasik property of Figure 7.1 is remarkable for the reason that,
as is well known (and again, easy to ascertain with the help of Lucas’s
formula), there exist no non-trivial 3×3 nasik or semi-nasik numerical
magic squares3, although such can be found for all higher orders. Figure 7.1
is thus a potent demonstration that geomagics listen to laws different to
those governing ordinary magic squares. Alas, attempts to find a 3 × 3
semi-nasik square sporting a more symmetrical target have thus far come to
nothing.



The discovery of semi-nasiks led inevitably to a search for fully nasik
squares, a quest that was eventually successful, but only at the price of
introducing disconnected polyominoes. Among the 5 area types, only type
4, showing same entries in every cell, enjoys 6 magic diagonals. In any
nasik geomagic square, pieces will thus be of uniform area. Figure 7.3
shows an example including both weakly-connected and fully disconnected
pentominoes. This square is remarkable for a further reason. Choose any
three pieces belonging to any three of the four corner cells. There are 4
possible choices. The selected triad will tile the target in every case. The
resulting 16 near-square targets that encircle the 3×3 array make for a
pleasing mathematical ornament. A key to the square is shown in Figure
7.4.

It is a well-known property of nasik squares of any size that they remain
nasik under cyclic permutation of their rows and columns. This is nicely
demonstrated when the plane is tiled with repeated copies of an N × N nasik
square, with the result that any arbitrarily selected N × N area will again be
found to be a nasik square. This is illustrated in Figure 7.5 using the above
3×3 specimen.

The identification of 3×3 nasik and semi-nasik geomagics —there are
many to be found beside those shown here, as well as squares showing 0, 1,
3, or 5 magic diagonals— raises an interesting question. As seen with the
nasik-preserving cyclic permutations of rows and columns, unlike standard
3×3 geomagics, the entries in nasik and semi-nasik squares can be
rearranged to yield still more geomagic squares. But exactly how many
distinct specimens can be thus formed? The non-existence of numagic
nasiks or semi-nasiks means that this question has never before been
addressed. A simple computer program provided the answer by examining
in turn every permutation of the 9 letters in Figure 7.4 (or Figure 3.1),
which is interpreted as representing a nasik square exhibiting the 12 magic
triads: ABC, DEF, GHI, ADG, BEH, CFI, AEI, BFG, CDH, CEG, AFH and
BDI.



Fig. 7.3 A nasik square of order-3.

Fig. 7.4 Key to Fig 7.3



Fig. 7.5 Tiling the plane with copies of a nasik square means that any randomly selected 3× 3
area is again a nasik square. Three examples are outlined.

Nasik-preserving permutations of the letters will be those in which every
row, column and diagonal is again occupied by one of the listed 12 triads. A
similar method established the number of semi- and demi-nasik
rearrangements. In comparing the squares identified by the program, it took
but a little detective work to unravel their relations so as to describe these in
terms of a few basic transformations. As a matter of fact, these
investigations were performed before ever a nasik or semi-nasik geomagic
square had actually been discovered. I was thus in the curious position of
having a pretty thorough understanding of 3×3 nasik and semi-nasik
geomagic squares long before even knowing whether or not any existed.

The number of magic rearrangements for semi-nasiks is nine, rotations
and reflections not counted. Two transformations (T1, T2), both of order-3,
generate all nine, as diagrammed in Figure 7.6(a.) AFH and BDI are the two
magic broken diagonals. Demi-nasiks yield just four squares, as generated
by transformation T3 in Figure 7.6(b.) Nasik squares are still more prolix,
T1 and T2 combining with the two transformations T4 and T5 shown in



Figure 7.6(c,) as well as two further transformations that produce the 8
rotations and reflections of each square, to form a group of order-432.
Thanks are due to my friend Michael Schweitzer for identifying this as the
affine general linear group AGL(2,3). In consequence, the entries in any 3×3
nasik geomagic square can always be permuted to produce at least 432 ÷ 8
= 54 distinct squares, rotations and reflections not counted. Squares that
result from permuting pieces in nasik or semi-nasik squares are themselves
always nasik or semi-nasik, respectively.

Surprising as it may seem, there are still more magic triads to be found in
Figure 7.3 than the 16 appearing in the targets drawn. In all there are 36.
They are as follows:



Fig. 7.6 (a) Rearranging the pieces in a semimagic square gives rise to 9 variants. (b) Demi-
magic rearrangements number 4. (c) TransformsT1,T2,T4, andT5 yield 54 variants of a nasik

square.

We have seen that the pieces in Figure 7.3 can be rearranged so as to
yield at least 54 different nasik squares. Might it be that this large number
of extra magic triads will allow even more to be formed? If so, the total



must be a multiple of 54, since for every extra square, there will be its
accompanying 53 nasik permutations. In fact a computer trial shows that
this is not the case with Figure 7.3. But squares having this property can be
found. The pieces in Figure 7.7, for example, another nasik square with a
smaller number of magic triads, can be rearranged so as to yield 2 × 54 =
108 nasik squares. Its 31 magic triads are as follows:

Fig. 7.7 A nasik square using 9 pentominoes, normal, weakly-connected, and disjoint.

The reason for this doubling in numbers is not difficult to find. As the
reader can verify, pieces E and I in Figure 7.7 can be switched, yet the
square remains geomagic. Scrutiny shows that this will be possible only
when the 6 triads, DFI, BHI, CGI, CEF, EGH, and BDE, are among the 31.
This is a consequence of the fact that, following such a switch, all six of



these triads will find themselves occupying rows, columns and diagonals.
Hence a nasik square might have as few as just six extra magic triads and
still yield 108 different squares.

8 Special Examples of 3×3 Squares

Above we noted the existence of thousands of geomagics using pieces with
areas of 1, 2, . . . , 9 units. Since the areas are all different, their area squares
are of type 0. Research indicates that the fertility4 of a set of pieces falls
dramatically as the number of same-sized pieces in the set increases. For
example, the pieces in a type-2 square (page 15), exhibit just five different
areas. Figure 8.1 shows an example; the pieces are of sizes 4, 6, 8, 10 and
12. It is one of only three solutions found. 3×3 squares in which all the
pieces are of same size are even rarer. Figures 2.5 and 8.5 show examples
using nine hexominoes and decominoes, respectively.

Fig. 8.1 Repeated piece sizes imply fewer solutions.

The target with central hole in Figure 8.1 is less a decorative flourish than
a consolation prize. To see why, suppose we seek a 3×3 polymagic square
showing a solid square target. The target area must then be a square number



that is a multiple of 3, or 3 times the area of the centre piece. The
possibilities are thus 9, 36, 81, . . . . However, 9 is impossible because the
pieces required would be too small to allow enough distinct shapes. 81
implies an average piece size of 81 ÷ 3 = 27, which is too large for a
personal computer to handle because the numbers of piece combinations
becomes prohibitively large. 36 seems hopeful. Let us begin with a search
for a square using nine dodecominoes, or polyominoes formed of 12 unit
squares. The program requires a list L of all the triads of dodecominoes that
tile a 6×6 square. There are 32,222 such triads. Being a longish list, it takes
the program a while to check whether the triad of pieces in a candidate
column/ diagonal is, or is not, in L. And with 36 permutations of each
candidate square to test, there are a lot of checks to perform. Such a
program ran for weeks on my PC, without finding a solution. Figure 8.2
shows one of several simple or orthomagic squares discovered along the
way. The latter are squares that are magic on rows and columns only.

Fig. 8.2 An orthomagic square using same-sized pieces.

A next step might be to search for a square using three 11-ominoes, three
12-ominoes (or dodecominoes), and three 13-ominoes, as in the area square
of type 3 shown in Figure 8.3. The area of the target is then 11 + 12 + 13 =
36, as required. Alas, the program that I use to generate lists cannot handle
polyominoes larger than 12-ominoes.



There is a good reason for that; the number of resulting piece
combinations becomes simply too huge to handle. So you see, the little
matter of finding a polymagic square with a square target is no trivial task.
After a little thought, the 5×5-square-minus-centre-cell target with area 24
then suggests itself as a next best choice. Even so, searching for such a
polymagic square is far from simple. With a target area of 24, the area of
the centre piece must be 8. The posssible piece area schemes (using pieces
not larger than 12) in are then as shown Figure 8.4.

Fig. 8.3 An area square of type 3.

Fig. 8.4 Piece area schemes for a target of area 24.

A dedicated program must examine each of these cases separately. In the
program that searched for and found Figure 8.1, there is not one list L
needed, but five, corresponding to the 5 different triads found in the rows,
columns and diagonals of the area square in Figure 8.1, the second of the
type-2 schemes listed in Figure 8.4:



L1 lists all target-tiling triads using one 4-omino and two 10-ominoes (top
row).

L2lists all target-tiling triads using three 8-ominoes (centre row),
L3 lists all target-tiling triads using two 6-ominoes and one 12-omino

(bottom row).
L4 lists all target-tiling triads using one 6-omino, 8-omino, and 10-omino (2

columns + 2 diagonals),
L5 lists all target-tiling triads using one 4-omino, 8-omino, and 12-omino

(centre column).

Testing candidate squares entails checking the columns and main
diagonals to see if the three pieces tile the target, which is to say, are present
on their corresponding list.

At the extreme of area variability are squares using nine pieces of same
area, which are rarest of all. Figure 8.5 shows a polymagic square using
nine decominoes; the target is a rectangle of 5×6. It is one of two solutions.
Although polymagics using nine smaller equal area pieces can be found
(starting with 9 hexominoes), Figure 8.5 is the first I have discovered with a
rectangular target.

Fig. 8.5 A square using 9 decominoes.



Fig. 8.6 ‘Diamond Sutra’, uses polyiamonds tiling a diamond-shaped target.

The polymagics looked at so far have all used polyominoes. Figure 8.6,
using polyiamonds, or shapes constructed from unit equilateral triangles, is
among my favourite finds. The target, here drawn at a reduced scale, is an
equilateral parallelogram or diamond, while the piece sizes form a
consective series, obtained by adding 1 to the entries in the Lo shu.

Since the 9 pieces used here form three diamonds, the latter can be put
together to form a regular hexagon. Now the area of the diamond is 18
units, and since there are only eight ways in which three integers with a sum
of 18 can be chosen from 2, 3, . . . , 10, the targets shown in Figure 8.6 must
account for every possible diamond formable using three of these pieces.
Three diamonds can be chosen from among the eight possibilities in (8/3) =
56 ways. Moreover, each diamond can be reflected about either or both of
its diagonals so as to yield 4 possible orientations, with the result that any
given triad of diamonds can be assembled in 4 × 4 × 4 = 64 different ways
so as to complete a distinct hexagon. In total there are thus 56 × 64 = 3,584
distinct hexagons that can be created in this manner. Remarkably, however,
the same pieces can be assembled to form a regular hexagon in many other
ways, such as the following:



Fig. 8.7 A regular hexagon formed with the Diamond Sutra pieces.

In fact, computer investigation reveals an astonishing 17,213 distinct
hexagons that can be constructed in this way, over and above the 3,584
already identified, a total of 20,797 in all.

The title of Figure 8.6, Diamond Sutra, is perhaps a bit fanciful, but
reflects my romantic view of geomagic squares as objects of contemplation
(not to say veneration). The same tendency reappears in the top center cover
illustration and Figure 8.8, not merely in their titles, Magic Mandala I and
II, but in their octagonal layout, an idea suggested by a Tibetan astrological
diagram at the centre of which a 3×3 magic square is enclosed within a
circle surrounded by eight trigrams. The pieces used are again polyiamonds,
with targets that are in both cases a regular hexagon. The key in Figure 8.9
identifies the target associated with each row, column, and diagonal. These
are the only two solutions using polyiamonds with these sizes and same
target shape, the corresponding area squares being in both cases Latin
squares. However, using nine pieces of size 4, 5, 6, . . . ,12, there exist 38
solutions in which the target is again a regular hexagon of area 24. It would
be difficult to exaggerate my delight in the discovery of these objects. I
don’t suppose they are of any mathematical significance, but their effect on
my aesthetic sense is mesmeric.

I conclude this brief overview of 3×3 geomagic squares with a glance
backward to our starting point at Figure 1.1, showing the Lo shu in both its
conventional and traditional guises. In the latter, lines and dots represent the
numbers from one to nine, a device suggestive of great antiquity, but in
reality the work of a medieval ironist [2]. In fact, by the time of its
composition, it had long been common practice in China to represent
numbers by means of characters. It is amusing to see how close this
prankster came to unwittingly inventing geomagic squares, as the modern



specimen shown in Figure 8.10, borrowing heavily on his own idea of using
geometrical patterns to represent numbers, will attest.

Fig. 8.8 A 3×3 square with hexagonal target and octagonal layout.

Fig. 8.9 Key to ‘Magic Mandala II’.



Fig. 8.10 ‘ Lo shu and Hi hat’.

It may not be immediately apparent that the pieces appearing in Figure
8.9 are essentially polyhexes, or figures composed of unit hexagons. The
underlying target, a symmetrical shape of area 15, is thus better interpreted
as the triangular honeycomb of Figure 8.11, in which the hexagons might
equally be replaced by kissing circles.

Fig. 8.11 Close-up of the target used in Figure 8.10.

Almost incredibly, Figure 8.10 is one of 169,344 distinct solutions, their
rotations and reflections as usual not included, using polyhexes of size 1, 2 ,



. . . , 9 to produce the same triangular target. If we think of the target outline
as a rough approximation to an elongated Chinese peasant’s straw sun-hat,
then a good title for Figure 8.10 might be ‘Lo shu and Hi hat.’

The lines and dots representation need not be confined to hexagonal
grids. Figure 8.12 shows “Chinese Abacus,” an alternative version based on
polyominoes. Along with Figure 6.1, it is one of the set of 1,411
consecutive area squares with 3×5 rectangular target mentioned earlier (see
Figure. 6.1).

Fig. 8.12 A normal 3×3 square with Chinese abacus as target.

2 Nasik squares are also known as pandiagonal, diabolic, or satanic.
3 Whereas semi-nasik 3 × 3 multiplicative numagic squares do exist (using complex cube roots of

unity), a fact nowhere previously recorded in the literature, so far as I am aware.
4 A detailed discussion of fertility can be found in my article ‘New Advances with 4×4 Magic

Squares’, which is included as Appendix III.



Part II

Geomagic Squares of 4×4
God invented the integers; everything else is the work of mantissae.

9 Geo-Latin Squares

Small is beautiful, yet the very compactness of 3×3 squares makes for
stringent internal constraints that severely delimit the solutions possible.
Order-4 squares are less tightly knit, for which reason they are more
numerous, as well as richer in variety. Specimens were sought in the same
ways as hitherto: (1) computer searches for polymagic types, and (2) hand
constructions using algebraic formulae as templates. In comparing squares
brought to light by the two methods, at first, the finds of the computer seem
to outshine those of the pencil. In the sequel, however, the template
technique yields results that exceed every expectation.

Unlike order-3, for which Lucas’s square offers the only candidate, there
exists a plethora of non-trivial 4×4 formulae that may be used as templates.
The latter are not general formulae, but rather generalizations of certain
subsets or special types of 4×4 numerical magic squares. The mathematical
properties of these subsets need not concern us here, our interest lying
solely in the use of these algebraic squares for designing 2-D magic
squares. Many such formulae are based on Latin squares.

We remind ourselves that by a Latin square of order N, we refer to a
square of N2 entries composed of N distinct elements, each occurring
exactly once in every row and column. Figure 9.1 shows a so-called
diagonal Latin square of size 4×4, the elements of which are letters.
Diagonal Latins are those in which each of the N distinct elements again
appears exactly once along the two main diagonals. Interpreting the letters
as algebraic variables, Figure 9.1 can thus itself be treated as a formula for a
certain kind of very trivial 4×4 numagic square.

Since the same 4 elements occur in every straight line, we could replace
each distinct letter in Figure 9.1 with any distinct geometrical shape, to
yield a trivial but fully magic geometric square, or in other words, a
substrate (as explained in section 4). The target in this ‘geo-Latin’ substrate
could then be any spatial configuration of the 4 shapes chosen. In particular,



by choosing 4 same-height rectangles of different lengths, the target can be
a rectangle formed by concatenating the 4 pieces in any order, a property
that will prove useful in the step to follow.

Fig. 9.1 A 4×4 diagonal Latin square.

As in detrivializing 3×3 substrates, a pattern of keys and keyholes is now
needed that will modify these geo-Latin pieces so as to yield 16 distinct
shapes. This is analogous to the task of looking for a pattern of +x ’s and –x
’s that could be added to the Latin square so as to yield 16 distinct entries,
while preserving a constant sum in every row, column, and diagonal.
However, the fact that A, B, C. and D each occur 4 times means that at least
two distinct variables will be needed. A few trials with pencil and paper
came up with the pattern of a´s and b´s in Figure 9.2, which can thus be
interpreted as a formula for a certain subset of non-trivial numagic squares.
The advantage of choosing pieces that can tile the target in any order now
means that pieces assigned keys will be able to marry with those assigned
matching keyholes, irrespective of the particular detrivializing pattern
chosen.

Fig. 9.2 Every entry is unique.



Let a be a small half-circle and b a small isoceles triangle. Then
replacing A, B, C, D with same-height rectangles of length 1, 2, 3, 4,
respectively, we produce the geomagic square in Figure 9.3, the target of
which (not shown) is a rectangle of length 1+2 + 3 + 4 = 10.

Fig. 9.3 A geometric version of Figure 9.2.

As before, the target shape could be changed to a circle or regular
decagon, the pieces then becoming segments showing angles of 1, 2, 3, and
4 tenths of 360°. The result would be a 4×4 counterpart to the 3×3 square of
Figure 4.9 on page 7, the keys and keyholes of which, remember, may be
seen as geometric variables standing for any potential shape. Figure 9.3 is
thus again a blueprint for an entire family of geomagics, in many of which
the principle of construction may become difficult to detect, as it does in
‘Magic Crystals’ of Figure 4.10 on page 8.

Figure 9.3 has perhaps a certain austere beauty, but its artless target
formations are no aesthetic match for the cunning tessellations found in
many computer-discovered squares. Compare for example Figure 9.4, one
of four polymagic squares using 16 hexominoes, in which the target is a
4×6 rectangle. The complete set of four can be seen in Figure 9.10.

The rectangular targets of Figure 9.3 are formed by a linear chain of 4
pieces. Figure 9.5 shows a variant scheme arrived at after some doodling. A
square target is formed by 4 pieces in a closed chain: A abuts B abuts C
abuts D abuts A. The rigid order in which A, B, C, and D now occur makes
it necessary that the links in this chain are reversible: every piece can be



flipped about an axis of bilateral symmetry (shown dotted) so as to switch
hands with its two immediate neighbours.

Placing these shapes as in the Latin square on page 25 (Figure 9.1), the
resulting geo-Latin substrate could be detrivialised with the key/keyhole
pattern of Figure 9.2, but the outcome turns out to be unusable because of
the fixed order in which the new pieces must be assembled. Those
occupying the main diagonals would be unable to tile the target, as a trial
will confirm. This is a warning that not every formula can be used as a
template without further consideration. Figure 9.6 shows an alternative
pattern that will work, again, arrived at after some trial and error. It is
another non-trivial algebraic square. Some entries include both a and b.

Fig. 9.4 A 4×4 square using 16 hexominoes computer.

Fig. 9.5 The 4 shapes form a closed cycle.



Fig. 9.6 An alternative de-trivialised latin square.

Assigning a small square (monomino) and rectangle (domino) to a and b
respectively, now results in the polymagic square of Figure 9.7. Note the
identical piece layout in every target, a feature that can be employed to
interesting effect, as we shall see later.

Fig. 9.7 A geometrical version of Figure 9.6.

Again, the visual logic of Figure 9.7 may be compelling, but the
unvarying target assembly is unsatisying in comparison with Figure 9.8, for
example, which is another computer-discovered polymagic square.

Here, the desire for a square target dictated the choice of piece sizes.
Every magic line contains three hexominoes and one heptomino. 3 × 6 + 7
= 5 × 5, the area of the square target. But things can work the other way
around. In an earlier chapter it was noted that there exist no 3×3 geomagics
using nine pentominoes. Figure 9.9 goes some way to make up for this
injustice. Here, four tetrominoes combine with the full set of twelve



pentominoes to provide the 16 pieces employed. It is a matter of regret that,
despite every attempt to discover a more pleasing result, the target is an
incomplete rectangle.

10 4×4 Nasiks

The template method can also be used to create a 4×4 nasik square.
Glancing again at the Latin square in Figure 9.1, we see that for the broken
diagonals to become magic would require 2A + 2B = 2C + 2D = A + B +
C + D, or A + B = C + D. Rearranging the piece lengths in Figure 9.3 to A
= 1, B = 4, C = 2, and D = 3, which achieves this, would, therefore, result
in a 4×4 nasik square, provided a new key/ keyhole pattern can be found
that will again detrivialize the Latin square without destroying its nasik
property, as both of the previously used patterns in Figures 9.2 and 9.6 in
fact do. Such nasik-preserving patterns can indeed be found, but in every
case tried, the resulting set of pieces were unable to tile the target. Two keys
on one piece cannot marry with their corresponding keyholes because both
of the latter turn out to occupy another single piece.

Fig. 9.8 A computer-discovered 4×4 square.



Fig. 9.9 A 4×4 square containing all twelve pentominoes.

Fig. 9.10 Four squares using 16 hexominoes and 4×6 target.

There exist however Latin squares other than Figure 9.1. Figure 10.1
shows a non-diagonal 4×4 Latin square.



Fig. 10.1 A non-diagonal Latin square

Inspection shows that this becomes nasik when A + D = B + C, or D = B
+ C – A, the magic sum then becoming 2B + 2C. Figure 10.2 shows a
pattern of variables that detrivialises this square without interfering with its
nasik property: every row, column, and diagonal sums to zero.

Fig. 10.2 Every row, column, and diagonal sims to zero.

Combining the nasik Latin with this pattern then yields Figure 10.3, a
non-trivial algebraic square different again to Figures 9.2 or 9.6:

A geometrical analog of this is seen in Figure 10.4, in which A, B, and C
are represented by same-height rectangles of length 1,3, and 2, respectively,
with a a small half-circle and b a half-square. The target is a rectangle of
length 2B + 2C = 10. The piece labels A, B, . . ., P must not be confused
with the variables A, B, C in Figure 10.3.

Fig. 10.3



Fig. 10.4

Fig 10.5 The 4 pieces occupying each of the 16 2×2 sub-squares also tile the target.

Note that the set of pieces is composed of 8 complementary pairs: AK,
BL, CI, DJ, EO, FP, GM, and HN, each of which tile a rectangle of length
5, as seen in the diagonal targets, shown at left. Figure 10.4 is thus a non-
trivial nasik geomagic square, but it is more besides; it is both compact and
ambimagic. ‘Compact’ is the name I use to distinguish a 2-D geomagic
square of order-4 in which the four entries in every 2×2 sub-square are also



able to tile the target. This includes the toroidally-connected 2×2 squares,
which is to say, those groups of 4 cells that form a 2×2 square when the top
and bottom edges of the entire 4×4 array are brought together to make a
cylinder that is then stretched and bent smoothly in a circle until its ends
meet to form a torus. Or in other words, the 2×2 subsquares that can be
found when the left and right-hand columns, as well as the upper and lower
rows, are regarded as adjacent. This results in a total of sixteen 2×2 sub-
squares. Figure 10.5 shows the sixteen sets of four target-tiling pieces
corresponding to each sub-square in Figure 10.4. As we shall see later,
every numagic square of order-4 that is nasik is also compact, and vice
versa, but this is not necessarily the case for 2-D squares. Figure 10.4 is
thus noteworthy in this regard.

Figures 10.4 and 10.5 account for 16 + 16 = 32 sets of 4 target-tiling
pieces, every one of them comprising two pairs, each of which complete a
shorter rectangle. However, the full total of target-tiling quads is 52, the
complete list being as shown (in no particular order) in Table 1.

Below we shall see that the 16 pieces in Figure 10.4 can be rearranged to
produce no fewer than 528 distinct geomagic squares, 48 of which are
nasik.

‘Ambimagic’ which is shorthand for ‘additive-multiplicative bi-magic
square,’ is the name I apply to a novel kind of numerical magic square in
which the orthogonals (rows and columns) each sum to the same total,
while the diagonals (including the broken diagonals) each multiply to the
same product. Figure 10.6 shows an example of order-4 with constant sum
60, and constant product 7560.

By extension, we can say that a geometric square is ambimagic when the
pieces in every orthogonal tile one target, while the pieces in every diagonal
tile another.



Table 1 The 52 target-tiling sets.

Figure 10.4 exhibits this property. As a nasik square, the four pieces in each
orthogonal tile a rectangular target of length 10, as do the four pieces in
every diagonal. The diagonal sets are special however, in that each is
composed of two complementary pairs, both of which tile identical
rectangles of length 5; see Figure 10.4 left. The target of length 10 is
formed by joining the latter end-to-end. But the two length-5 rectangles
need not be so joined. They could be stacked one atop the other, say, to
yield a distinct target of length 5 that is twice the height of the target for
rows and columns. According to our extended definition, Figure 10.4 is
thus ambimagic. Once again though, for more eye-catching target mosaics
we look to computer-discovered polymagic squares. Figure 10.7 shows a
nasik square using 4 tetrominoes, 4 pentominoes, 4 heptominoes, and 4
octominoes arranged size-wise as in a diagonal Latin square (but now
different to Figure 9.1). The target is a 4×6 rectangle of area 4+5 + 7 + 8=
24. The target is also tiled by the four pieces occupying each quadrant. For
a more artistic rendering of this find see Figure 16.8.



Fig. 10.6 An ambimagic square.

Fig. 10.7 A nasik square of 4×4.

11 Graeco-Latin Templates

A square is called Graeco-Latin or Eulerian when the two superimposed
(frequently added) Latin squares of which it is composed result in a distinct
entry in every cell. It was former practice to use Greek or Latin letters to
distinguish these two components. Figure 11.1 shows an example using two
diagonal latin squares, one shown in uppercase, the other in lowercase type.
Their combination results in a square showing 16 unique entries, as
required.



Fig. 11.1 A Graeco-Latin Square.

The close connection between Graeco-Latin and magic squares becomes
clear from a comparison with Figure 11.2, which is a general formula5 that
describes the structure of every 4×4 numagic square. Note that the formula
becomes a Graeco-Latin square when x is zero, just as variable d in Figure
11.1 can also be set to zero, in which case it need not appear.

Fig. 11.2 A generalization of numagic squares of order 4.

In the foregoing we have looked at geomagics based on Latin squares. It
is natural to wonder whether Graeco-Latin squares might also serve as
templates. At first sight it is difficult to see how. Finding a way through the
difficulties presented an interesting puzzle.

Suppose we begin with a trivial geo-Latin square, G, formed by assigning
distinct shapes to A, B, C, and D in Figure 11.1. Initially, it seems that four
new shapes representing a, b, c and d must now be appended to these so as
to detrivialize G, but without there being any corresponding keyholes to
receive or “absorb” the latter.



Fig. 11.3 A geometrical version of Figure 11.1 (seen at top).

The problem is thus: how then can these extra shapes be appended to the A,
B, C, and D pieces so that the square remains geomagic?

We shall look at two solutions, their initial geo-Latin squares forming
circular and (roughly) rectangular targets, respectively. In the first case, the
final form of the target remains a circle, in the second, we are able to
choose virtually any shape desired.

Figure 11.3 shows a geo-Eulerian square in which the target is a circular
disc showing two adjacent holes, one square, and one circular. A, B, C, and
D are represented by annular segments subtending arcs of 1, 2, 3, and 4
tenths of 360°, to result in a geo-Latin square in which the 4 pieces can be
assembled in any order to complete an annular target. This is the ring
sandwiched between a and b, the outer ring and the inner circle, as seen in
the target key shown at top left in Figure 11.3.

The problem of appending magic-preserving keys-without-keyholes to
these pieces is then solved by means of two separate devices:

(1)   By choosing key-shapes with rotational symmetry, a property that allows them to be appended to
the four different annular segments so as to preserve target circularity. These are a and b, the
outer ring and inner circle.



(2)   By interpreting two of the Eulerian elements as negative or excised areas. That is, the second
Latin square (using small letters) is treated as shown in Figure 11.4, in which –c and –d
correspond to the small circular and square holes, respectively.

Fig. 11.4 A latin square with negative entries.

The latter serve to detrivialize the annular segments, whose ability to be
assembled in different orderings means that these two holes can always be
arranged to appear in a fixed relation to each other in every target. Note that
–c and –d are not accompanied by their positive counterparts, c and d. This
concludes our glance at the circular target case.

Figure 11.5 shows a quite different geo-Eulerian square that is based on a
geo-latin square using rectangular rather than annular pieces. The Eulerian
template is now Figure 11.6, which is Figure 11.1 with d = –c, a trick that
provides any key represented by c with a matching keyhole, and thus
overcomes one difficulty at a stroke. As in previous cases, A, B, C, and D
are now replaced by same-height rectangles of length 1 (red), 2 (green), 3
(blue), and 4 (yellow), the target formed by these being a rectangle of
length 10. Again, the ability to concatenate these pieces in any desired order
means that the round and square keys replacing a and b can always be
manoeuvered so as to appear at opposite ends of the target, shown in
skeletal form at the top in Figure 11.5. Variable c is the triangular key that
marries with its matching keyhole in every target.

A more attractive elaboration of this principle is seen in Figure 11.7.
Pythagoras is the title of a long-running, deservedly popular mathematics
magazine aimed at school children in The Netherlands. ‘Magie van Merlijn’
or ‘Merlin’s Magic,’ which appeared in its pages, attempted to be didactic
as well as entertaining. To this end, aside from its swords, shields, flying
pennants, and portcullis, the drawing included the algebraic template of
Figure 11.6 seen at top, from which readers were able to follow how the
square was derived.



Fig. 11.5 A geo-Eulerian square.

Fig. 11.6 A Eulerian template.

Before going further, there is a subtle point involved here that deserves
examination. As we have seen, Figure 11.6 is Figure 11.1 with d = –c.
Could we not go a step further in the same direction by creating a further
template in which b is set equal to -a, as well? The result would then seem
to give rise to a distinct type of geo-Eulerian square.

The answer is yes. In fact, we already did so. It is Figure 9.2 on page 25,
which was the detrivialized Latin square forming the template for Figure
9.3. This raises a fine distinction: whether we wish to regard Figure 9.3 as a
detrivialized geo-latin square (as I do), or as a genuine geo-eulerian square
(which I don’t). However, on reflection we see that the addition of one
(appropriate) latin square to another is in fact one way of detrivializing



them both at once, so that both interpretations may be regarded as
legitimate. The issue is thus perhaps academic, but I judged it worth
bringing to the reader’s attention.

In any case, there is a further reason for taking a closer look at Figure
11.5, which would be unremarkable were in not for the fact that the keys
replacing a and b can be of almost any shape. Figure 11.8, or Indian
Reservation, illustrates this property by combining two shapes for a and b
that completely envelope the remaining rectangular part of the target and
then abut each other so as to complete a wigwam, or equilateral triangle.

A is thus the small rectangular area immediately under the vertical slot in
the (red) top left hand piece, the remainder of the piece (i.e., the (red) left-
and right-hand lower halves of the target triangle) being the key a. In the
piece to right of this is a similar (green) rectangle of length above the slot,
appended to which is the (green) top half of the triangle target, or key b.
Key/keyhole c is a very small triangle (pointed tip) appended to the blue
height – 3 rectangle in the third top row cell, and excised from the yellow
height-4 rectangle in the fourth top row cell (incised tail). Clearly, the
triangular shape of the target is an entirely arbitrary choice that could be
substituted for by any desired alternative. The interior rectangle could even
be tucked away in a far corner as a small, visually insignificant component
of a far more elaborate target.

I fear that this tortuous description will do little to encourage enthusiasm
for Graeco-Latin based geomagics. Given the prominence of Graeco-Latins
in the magic square literature however, a brief comment on the problems
and opportunities they present seemed an appropriate topic to be raised in
this account, for all its tedious character.



Fig. 11.7 ‘Merlin’s Magic’ The sword on the shield is, of course, ‘Excalibur’.

Fig 11.8 ‘Indian Reservation,’ another geo-Eulerian square.



12 Uniform Square Substrates

We have looked at a few examples of 4×4 geomagics based on Latin
squares. The process of construction was the same in each case: from an
initial Latin square we produce a geo-Latin substrate to which keys can be
added and/ or keyholes excised so as to yield a non-trivial geomagic square.
Are there, perhaps, other substrates we might employ instead?

There is at least one avenue to explore, although at first sight it looks
unpromising. Moreover, it seems almost a retrograde step. I refer to
substrates that are modelled on degenerate Latin squares, which is to say,
those in which elements repeat. Figure 12.1 shows some degenerate
versions of the Latin square in Figure 9.1 (reproduced at left).

It is unnecessary to explore every case here, a pursuit that inquisitve
readers may find rewarding. There is however one special instance of a
degenerate Latin that will repay examination. It is the least propitious of
them all: a uniform square of 16 identical elements; see Figure 12.2. A
substrate corresponding to this square is therefore a uniform array of 16
identical shapes.

Fig. 12.1

Fig. 12.2 A uniform array.

A detrivializing pattern of variables is now required to produce a
template from Figure 12.2. Again, relying on trial and error, with a little
patience it is not difficult to come up with candidate patterns. As it



happened however, this was unnecessary, several such squares being
already present among my notes. This was the fruit of some earlier work on
numerical magic squares. A brief digression explaining the origin of this
material will assist in understanding the remarkable geomagic squares that
it brought to light.

13 Dudeney’s 12 Graphic Types

It is a well-known fact, first established by Bernard Frénicle de Bessy in
1693, that the number of ‘normal’ 4×4 magic squares that can be
constructed using the natural numbers 1, 2, . . . , 16 is 880. Writing more
than two hundred years later in The Queen for January 1910, H.E. Dudeney,
the famous English puzzlist, published a system for dividing the 880 normal
squares into twelve numbered “Graphic Types,” depending on the twelve
different patterns in which the eight so-called ‘conjugate’ or
‘complementary’ pairs, 1 and 16, 2 and 15, . . , 8 and 9, are found to occur.
The same classification, including a table showing the number of normal
squares belonging to each Type, appears in his well known Amusements in
Mathematics[12]. The quaint old-fashioned diagrams in which lines link the
complementary pairs have held a peculiar fascination for me from the very
first moment I saw them; see Figure 13.1 and Table 2.

Fig 13.1



Table 2



Fig. 13.2 The formulae corresponding to each of Dudeney’s 12 Types.

Being at that time engrossed with generalizations, I immediately hit on
the idea of producing a set of 12 algebraic formulae that would show the



internal structure of each Dudeney Type. Every Type embodies a set of
relations that, taken in combination with the standard magic conditions,
defines a certain subset of magic squares whose characteristics can be
captured in a restricted or non-general formula. The result of this project,
written up more fully in an unpublished article, “Magic Formulae,” 6 dated
1980, is reproduced in Figure 13.2.

Compression is achieved by writing ab for a+b, and  for –a, the magic
sum in each case being zero. Adding an appropriate constant to each cell
will then yield a square having any desired magic sum. More generally,
adding the same variable, say A, to every cell in, for example, the formula
for Type I, results in Figure 13.3, which is thus a non-abbreviated
generalization of all Type I squares, including those with a non-zero magic
sum.

Fig. 13.3 A formula for Type I squares.

This returns us to our starting point, for Figure 13.3 is a detrivialized
version of the uniform square in Figure 12.2, the magic sum being 4A. Note
that its six broken diagonals each sum to 4A, also. This is because
Dudeney’s classification “Type I,” although at first sight unrelated, is, in
fact, indistinguishable from the classification “nasik”. Specifically, it can be
shown that, normal or not, every numerical 4×4 nasik square is necessarily
composed of 8 complementary pairs distributed as shown in Type I, and
vice versa, the sum of each pair being 2A, or half the magic constant. In the
same way, it can be shown that for numerical magic squares in general,
Type I = nasik = compact, a relation that, as we shall see, does not always
hold for 2-D geomagics.



Fig. 14.1 A generalization of 4×4 nasik squares.

Here then was the first of twelve ready-made templates that were still
there at the back of my mind some 25 years later, by which time two-
dimensional squares had become the focus of interest, with numerical
magic squares now occupying a back seat. A few further remarks on the
background to these 12 formulae will explain my curiosity to examine a
geomagic square based on Figure 13.3.

14 The 12 Formulae

It is important to realize that the expression of a generalization can take
widely differing forms. Figure 13.3, for example, is simply an alternative
way of writing Figure 10.3 on page 30, both of them being formulae that
describe the structure of 4×4 nasik or Type I squares. Figure 14.1 shows yet
a further alternative7. These three algebraic squares are thus mathematically
synonymous, or isomorphic, being simply different expressions of the same
set of intercellular relations. In short, formulae that are mathematically
identical can differ enormously in outward appearance. Nevertheless, as we
have seen, when it comes to using these equivalent formulae as templates,
not only are the geomagic squares they give rise to quite different, but their
magical properties can even differ from those of their parent formulae.

Likewise, any of the 12 formulae of Figure 13.2 could appear in alternate
guises, some of them more elegant than others. By ‘elegant’, I mean more
visually symmetrical, as well as more condensed or economical in symbol
appearances. It was with this in mind that these 12 squares were produced.
That is to say, far from being simply calculated or deduced, they are the
product of a gradual process of refinement based upon trial and error, the
motive behind which was primarily aesthetic, with the aim of culminating
in an ideal, or canonical exemplar, for each Type. Candidate squares arrived
at via this process then had to be tested for validity by comparing them for



isomorphism with a standard formula, known to be correct. As a magic-
square buff hooked on symmetry, it pleased me to strive patiently for the
most elegant expression of each formula, even if the end result was of no
mathematical significance.

But as chance had it, this artistic impulse led to an incidental discovery of
some interest. For I came to notice that in certain cases the formulae for
distinct Types could be written using the same set of 16 algebraic terms.
The effect of this insight prompted a more systematic analysis, the result of
which was decisive for the outcome. In particular, as inspection of Figure
13.2 will verify, the final version of the 12 formulae fall into four classes
sharing identical entries:

Class 1 : Types I, II, III, IV, V, (and that subset of Type VI when t = s or-s)
Class 2 : Type VI (excluding the above subset members)
Class 3 : Types VII, VIII, IX, X
Class 4 : Types XI, XII

Properly understood therefore, Figure 13.2 embodies a visual
demonstration of something that is otherwise far from obvious, namely, that
the entries of a magic square belonging to a given Class may always be
transposed so as to form a new square of different Type in the same Class.
Given any square of Type I, for example, its entries can be rearranged in the
way shown by the formulae to produce still others of Types II, III, IV, V,
and VI. How many can be formed in all?

As shown by Dudeney’s table in Figure 13.1, the numbers 1, 2, . . . , 16
can be placed so as to produce 48 Type I squares. Dudeney arrived at this
result by enumeration, which is to say, by counting squares. It wasn’t until
1938 that a paper by Rosser and Walker [13] gave a proof of the same result
based upon group-theoretic arguments. This was an important advance,
although the authors might have achieved more.

In fact, it is not difficult to extend Rosser and Walker’s result to the 16
algebraic terms in Figure 13.3 (or its isomorphic twin, Figure 10.3). That is,
it can be shown that the entries in Figure 13.3 (or 10.3) can be placed so as
to yield 48 distinct Type I squares. But as just explained, the entries of any
Type I square can be rearranged to produce still others of Types II - VI, the
total for each again being the same as that given in Dudeney’s table, with
one exception: the total for Type VI is not 304 but 192, a discrepancy that is
accounted for by the fact that Type VI squares can also be constructed using



Class 2 entries as well as those of Class 1. Thus, adding these totals
together shows that the entries in Figure 13.3 (or 10.3) can be rearranged to
produce 48 + 48 + 48 + 96 + 96 + 192 = 528 distinct magic squares,
rotations and reflections not counted.

How, I wondered, would a geomagic square derived from Figure 13.3
differ from that based on Fig 10.3? Would the resulting set of pieces exhibit
similar properties so as to yield 528 geomagic squares? How would the
enhanced visual symmetry of the new template reflect itself in the result?

15 A Type I Geomagic Square

Digging out an old copy of Magic Formulae, I pondered the template of
Figure 13.3. The variables p, q, r, s could be allotted four distinct shapes
that would become keys and keyholes on the substrate pieces represented
by A. But what shape to assign the latter? And what shape should the target
take? A little thought showed that the presence of a double key/keyhole on
each piece means that those in the target must form a closed circuit, for an
open chain would leave a key and a keyhole unmarried. This implied a
circular or regular polygonal target. In the latter case, if A = 1 the magic
sum is 4, which suggested a regular 4-gon, otherwise known as a square.
Now here was a promising start.

On analogy with the hexagonal target met with earlier, this square target
could now be divided radially into 4 identical segments subtending angles
of 360°÷ 4 = 90°. Three possibilities present themselves, two of them
yielding symmetrical pieces, shown at right in Figure 15.1.

Choosing the rightmost, the substrate pieces then become square-shaped,
too. Assigning now 4 distinct shapes to p, q, r, and s, Figure 15.2 shows the
geomagic square to emerge from these meditations. The four colors used,
arranged in a Latin configuration, make it easier to follow the construction.

Fig. 15.1 Dividing a square into four similar pieces.



Here then was a nice looking geomagic square, but a glance shows that at
least one important property of its template is lacking. The four pieces
occupying each of the long broken diagonals, such as p + q, –r + s, –p – q,
and r – s, will not tile the target. The two key/keyholes on any one piece
must marry with the two keyhole/keys on another (its complement), which
is obviously impossible. Hence, even though it is of Type I, this geometric
magic square is not nasik.

In the realm of numerical magic squares a nasik square is always of Type
I, and a Type I square is always nasik. Why should geomagics behave
differently? It is because the combinative properties of numbers are not
shared by geometrical forms. In the template technique we replace algebraic
variables with geometrical shapes, a stratagem that owes more to
abracadabra than it does to mathematics. Small wonder then if this dubious
method occasionally leads to odd results. For, as with my original square
based on Lucas’s formula (Figure 2.4), there can be no guarantee that the
pieces it yields are able to successfully tile the target, even though their
combined area will be the one required.

Notwithstanding this nasik deficiency, Figure 15.2 retains most of the
attributes of its template. In particular, it embraces many other quads of
target-tiling pieces besides those seen in the 10 targets depicted. The square
is compact, for example, a property that entails a further 16 target-tiling
quads. It is natural to wonder how many there are in total.

The magic constant in the template is 4A. The sum of the 4 algebraic
terms corresponding to any quad of target-tiling pieces must therefore be
the same. A computer program that examined in turn every set of 4 distinct
terms occurring in the formula finds 52 that sum to 4A. In the nasik square
of Figure 10.4, every one of these corresponds to a target-tiling piece set.
But not all of these will work here. There are 8 ‘forbidden’ sets among the
52 whose corresponding pieces will not tile a square. They are those that
consist of two complementary pairs having no variable in common, as
shown in Figure 15.3.

It is easy to see why these sets will not tile the target in spite of
possessing the appropriate area of 4A. In the geomagic square these 8 sets
are to be found occupying (1) the 4 long broken diagonals and (2) the 4
corner cells of the four embedded 3×3 squares. In the list of 52 target-tiling
quads associated with Figure 10.4 (Table 1, page 31) they are the sets



AHKN, DEJO, CFIP, BGLM, ACIK, BDJL, EGMO, and FHNP. The full
number of target-tiling piece sets in Figure 15.2 is thus 52 – 8 = 44.

As discussed above, a more striking attribute of the template is that its 16
algebraic terms (the Class-1 entries) can be rearranged so as to form new
squares of Types II, III, IV, V, and VI. Identical rearrangements of the 16
pieces in Figure 15.2 will thus result in new geomagic squares, provided no
forbidden set occupies a row, column, or main diagonal, which would
render the square non-magic. A computer program that generated all 528
squares in turn and then filtered out the latter cases found 144 squares
remaining. The 16 pieces in Figure 15.2 will thus yield 144 distinct
geomagic squares distributed over Types I – VI, the totals for each Type
being as shown in Table 3.

Fig. 15.2 A geomagic square based on the Type I formula.



Table 3

These figures exclude rotations and reflections. Examples of geomagics
corresponding to each Type are seen in Figure 15.4. Note that the Type I
square shown is distinct from that appearing in Figure 15.2.

16 Self-Interlocking Geomagics.

We have seen that the set of 16 pieces derived from the template can be
used to create 144 distinct geomagic squares. It was in exploring this
interesting collection that a remarkable property of the Type V and VI
squares came to light. As the examples in Figure 15.4 will show, the four
pieces in each quadrant (e.g., p + q, – p + s, p – q, – p – s) can be squeezed
together so as to form the target. These four target squares can in turn be
squeezed together so as to make a larger square combining every piece. The
entire set of sixteen pieces can thus be imploded without any change in their
orientation so as to form a single larger square. But this means that this
larger square is itself a geomagic square of Type V or Type VI, the
constituent pieces of which happen to abut each other so as to form a
regular quadrilateral, as seen in Figure 16.1.



Fig. 15.3 Every quad consists of two complementary pairs having no variable in common.

Fig. 15.4 Rearranging the pieces in Figure 15.2 to produce squares of Types I - VI.



Fig. 16.1 Two self-interlocking geomagic squares.

Thus far we have always thought of a geomagic square as an array of
separate pieces, each occupying a distinct cell. Here we have an array of
shapes whose edges virtually coincide with, and thus define, their own cell
boundaries. That there exist many different sets of pieces that can be placed
in a 4×4 array so as to yield a geomagic square is perhaps a surprising thing
in itself. It would be counted a bonus if such a set of pieces could be
rearranged in some way so as to tile a square. In Figure 16.1, we are
looking at a structure that achieves both of these things at once. For this
reason, I call these geomagic squares “self-interlocking,” and there are 64
of them in all, 32 of Type V and 32 of Type VI, rotations and reflections not
counted.

To put the above in perspective, recall that the algebraic template of
Figure 13.3 is merely an alternative expression of Figure 10.3, itself used as
a template to construct the nasik square of Figure 10.4. So here we have
two isomorphic templates, the one leading to a nasik, and the other to a
non-nasik geomagic square. This again illustrates the peculiar property of
the template technique already encountered, namely, that the geomagic
square it yields is determined as much by the algebraic structure described
by the formula, as it is by the particular set of expressions in which the
formula happens to be couched. It is perhaps thus no coincidence that the
“most elegant” formula has given rise to these aesthetically pleasing self-
interlocking squares.

The keys and keyholes used to modify the pieces in Figure 16.1 are
entirely arbitrary in shape, which means that alternatives can be used.
“Magic Jigsaw Puzzle” in Figure 16.2 shows a re-expression of the Type V
square in Figure 16.1 using shapes more appropriate to its title. Twenty of
the 44 possible targets surround the square to complete a pleasing
symmetrical ensemble. Note that the central square really does make a



jigsaw puzzle, in that viewers can be invited to reassemble the 16 pieces so
as to form a new square. There are 64 solutions, every one of them forming
a distinct self-interlocking geomagic square. They are listed in Table 4. One
simple solution is to switch diametrically opposed quadrants.

Curiously, the key and keyhole shapes used in ‘Magic Jigsaw Puzzle’ are
more obviously ‘arbitrary’ than their originals, making both squares equally
suitable as a blue print for designing alternative versions of the same
structure. Figure 16.3 shows another interpretation of the Type V square in
which the keys and keyholes are monominoes and dominoes, to result in
pieces, here slightly separated from each other, that are polyominoes. In this
case, all 44 targets are shown. Below we shall take a closer look at exactly
how the shapes of the polyominoes are arrived at.

Note that symmetries in the key/keyhole interlocks mean that the four
column targets can each be tiled in three different ways. In the left-hand
column target, for example, the top half of the target square formed by
pieces A and E could be flipped about its vertical midline and still marry
with M and I, as required.

There is an alternative way to represent polyominoes, which is by tracing
paths that link the centres of their constituent square cells, as in the example
using piece A, shown in Figure 16.4.

Such paths can often be drawn in different ways. Depending on the
polyomino, forks in the path may be demanded, as in the example shown.
Applying a similar approach to every piece in Figure 16.3 results, for
example, in Figure 16.5, which is reminiscent of so-called ‘space-filling
curves’ as well as designs to be found in Arabic art.



Fig. 16.2 Magic Jigsaw Puzzle.



Table 4. The 64 magic rearrangements of ‘Magic Jigsaw Puzzle.’



Fig. 16.3 An alternative interpretation of the Type-V formula.

Fig. 16.4 Representing polyominoes by tracing paths.

Figure 16.6 shows the same square but now using 4 different colors
distributed as in a diagonal Latin square. The central square is surrounded
by 20 of its 44 targets. Here the title, ‘Spatial Fugue,’ was suggested by
analogies with the fugal music of J.S. Bach. Harmonic alignments, both
‘horizontal’ and ‘vertical’ are the chief characteristic of counterpoint, the
resultant pattern of sounds forming a temporal sequence that, in the case of
the composer Bach, can truly be described as ‘magic,’ both in its figurative,
as well as its literal sense.



Fig. 16.5 An alternative representation of Figure 16.3.

Spatial Fugue would make a nice design for a carpet, perhaps. Speaking
of which, Figure 16.7 shows ‘Magic Carpet V’ (the fifth in a series of
experiments), a square that is both pandiagonal and compact, in which the
polyomino pieces are again represented by paths. The 36 targets
surrounding the central geomagic square (8 for the rows and columns, 8 for
the diagonals, 16 for the 2×2 subsquares, and 4 for the corners of the 4
embedded 3×3 sub-squares) are 4×6 rectangles minus two adjacent cells on
one corner. Their symmetrical layout is intended to suggest a carpet design.

‘Magical Alphabet,’ another nasik square seen in Figure 16.8, is in fact a
re-expression of Figure 10.7 in the medium of paths rather than
polyominoes. The result struck me as suggestive of an exotic script.



Fig. 16.6 ‘Spatial Fugue,’ a study in counterpoint.

Fig. 16.7 ‘Magic Carpet V,’ a nasik and compact square.



Fig. 16.8 ‘Magical Alphabet,’ a secret message in an exotic script?

17 Form and Emptiness

Consider Figure 17.1, which is perhaps the most remarkable geomagic
square we have looked at thus far.

The peculiar properties of this specimen will repay careful scrutiny.
Some readers may think there is a mistake. But no, be assured that this is
indeed the most extraordinary geometric magic square we have yet seen. If
you have looked really attentively you may have noticed that the figure is,
in fact, built up from 4 slightly overlapping sub-squares, shown slightly
separated in Figure 17.2.



Fig. 17.1 The most remarkable geomagic square thus far seen?

Fig. 17.2 Separating the 4 slightly overlapping sub-squares.

Moreover, these 4 component squares are themselves composed of 4
separate pieces placed immediately adjacent to each other, as a further
exploded view makes plain; see Figure 17.3.

There are 16 separate pieces here. It will be easier to understand their
properties by giving each one its own color and by indicating their sizes;
see Figure 17.4:

Note how every piece can be associated with a unique cell in the 4×4
array that formed our starting point. But this means that the 4 pieces
belonging to any given row, column, or diagonal can be identified without
ambiguity. Figure 17.5 reveals why we might wish to do so.

The 16 pieces form a self-interlocking geomagic square. The 20 targets
shown look like window frames. Hence, not only can the entire set of pieces
be squeezed together to produce a single square, the peculiar shape of the
pieces then results in an empty framework of size 4×4. Figure 17.6 shows
another view of the same structure in which a labelled card is attached to
each piece.



Fig. 17.3 An exploded view brings the 16 components into view.

Fig. 17.4 Adding colour and size details illuminates still further.

An imploded version of the same square is seen in Figure 17.7. In the
centre square the labels have been removed and the 4 quadrants overlapped
to reduce the thickened central cross. The removal of the black piece
outlines returns us to our starting point: an empty 4×4 array that is really a
geomagic square, however difficult to recognize as such at first sight.



Fig. 17.5 A self-interlocking square of 4×4.

Fig. 17.6 An alternative view using 16 labelled cards.



Fig. 17.7 Back to our starting point: a geomagic square lurks unseen in every 4×4 array.

18 Further Variations

Excepting Figures 16.7 and 16.8, every geomagic square looked at in the
preceeding two sections has been an alternative expression of the Type V
template in Figure 16.1. It makes little difference which of these we may
like to think of as the ‘basic’ square, but Figure 16.1 is a convenient choice
in that its keys and keyholes are clearly distinguishable as such, which is
not the case in most of the other examples. Continuing in the same vein,
‘Mozaic Law’ in Figure 18.1 shows a further variation. Again, 20 of the 44
possible targets are shown.

Here the lengths of the L-shapes forming the right-angled corners of each
piece will be found to match the corners of the pieces in Figure 17.4. But
whereas Figure 17.4 displays pieces whose corners are composed of
segments belonging to the periphery of the target square, here we are
looking at their corresponding radial segments.

Figure 18.2 shows another version of Figure 16.1, again using
polyominoes, but now different in shape to those of Figure 16.3. The
addition of white paths to the pieces is purely for artistic effect.



Fig. 18.1 ‘Mozaic Law’ or the rules governing quasi-paving.

Figure 18.3 explains the design of piece shapes in Figures 16.3 and 18.2.
Recall that in both cases, the substrate from which we start is simply an
identical square-shaped piece in every cell. Those used in Figure 16.3 are of
size 4×4, those in Figure 18.2 of size 3×3; both of which are shown shaded
in Figure 18.3. Keys and keyholes are then appended to or excised from
each piece as dictated by the Type V template in Figure 16.1. The key
corresponding to both p and q is a monomino that is appended to the square
in two distinct positions. Similarly, the key corresponding to both r and s is
a domino, again affixed in two distinct positions. The 4 pieces shown in
Figure 18.3 are those corresponding to p + q, – p – q, r + s and – r – s in the
Type V template.



Fig. 18.2 Yet another interpretation of the Type V square in Figure 16.1.

Fig. 18.3 Piece shape design in Figure 16.3 (left) and Figure 18.2 (right).



Fig. 18.4 Another Type V square. Note the absence of forked paths.

The choice of initial square size, as well as the shape, size, and position
of keys and keyholes has to be carefully considered if repeated piece shapes
are to be avoided. Trial and error aided by experience were my guides in
arriving at the shapes here seen. The pieces used in Figure 18.3 are, in fact,
the smallest useable polyominoes, a property that is reflected in the absence
of forks when the same pieces are represented by paths, as in Figure 18.4.
Here the design of the targets has affinities with maker’s seals found on
Chinese silk paintings, as well as Turkish Kufic calligraphy.

In the foregoing I described how a computer program that examined in
turn every possible quad of 4 terms occurring in the Type I formula (the
Class 1 entries) finds 52 that sum to zero (or 4A when A is added to each
cell). Fifty-two is thus the maximum possible number of target-tiling quads
that are possible in a 4×4 geomagic square of Type I. In the nasik geomagic
square of Figure 10.4, every one of these 52 quads corresponds to a target-
tiling piece set. Eight ‘forbidden’ sets reduce this total to 44 for the squares
of Figure 15.4 that use an entirely different set of keys and keyholes. Now
in the latter cases the variables p, q, r, and s are represented by distinct key
and keyhole shapes, such that p can marry only with –p, q only with –q, and
so on. But as Figure 18.3 shows, this need not always be the case.
Identically shaped keys can yet be distinct in virtue of their different
positions on the piece they modify. The argument that 44 is necessarily the



maximum number of target-tiling piece sets possible is thus not
automatically applicable to other cases. In point of fact the pieces in Figure
16.3 do indeed yield 44 targets, while those in Figure 18.2 yield 47. Once
again, I am indebted to a computer program of Pat Hamlyn’s for
ascertaining these results.

Forty-seven targets can be formed with the pieces in Figure 18.2, but
only 20 of them are shown in the Figure. The explanation is artistic: 20
targets fit nicely around the central square; 47 would not. Only one more
however will make 48, which is exactly the right number to complete a
double border, a goal that is realized in Figure 18.5, which is a geomagic
square arrived at through experimenting with piece shapes derived from a
different template.

The self-interlocking squares seen above have all been of Type V. Figure
18.5 is of Type VI, based on the template in Figure 18.6. Letters added to
the pieces make it easy to identify the composition of each target. Forty-
four of the 48 targets correspond to the same quads of zero-totalling
algebraic terms found in previous squares. For example, the 4 pieces in the
top row are a, b, c, and d.

The sum of their areas is thus (A + p + q) + (A -p + q) + (A + p – q) + (A
– p – q) = 4A, the target area; see Figure 18.6. The 4 extra or abberent
targets (over and above the usual 44) occupy the outer corners of the
border: defm. fgmp, ehmp, and acik. The area of the first is thus (A – p – q)
+ (A – q –r) + (A – q + r) + (A + r + s) = 4A –p – 3q + r + s. The
key/keyhole sizes in Figure 18.5 are however the same as in Figure 18.3 in
which p = q = 1 and r = s 2, so that (– p – 3q + r + s) = 0, as required.

In the section to follow we shall take a closer look at the special topic of
normal squares, but for now I conclude this discussion of 4×4 geomagics
with an alternative rendering of the previous example. Figure 18.7 shows
the same 16 pieces together with their 48 targets, but here drawn together
into a single seamless square ‘carpet.’ Astrological signs, appropriate in
view of their magical connotations, have replaced letters. I like to think that
such a carpet would indeed fly, given only a carpet maker with the skill to
weave it. In any case, many hours went into the creation of this design.
Perhaps those who can decipher the heiroglyphics will be able to discern
here my personal offering to the god of magic squares.



Fig. 18.5 A Type VI yielding 48 targets, enough for a double border.

Fig. 18.6 A Type VI template.



Fig. 18.7 A magic carpet that would really fly?

5 Due to author. The formula can be shown to be mininal in the sence of generalizing all 4×4
magic squares more economically than any other.

6 “Magic Formulae“ can be found as Appendix II.
7 This formula is of special interest in bringing to light an archetypal 4×4 magic square, hetw =x =

y = z = l, with k = 0. Now interpret entries as 4-vectors; e.g., the bottom right hand entry becomes the
vector [1,1,–1,–1]. The result is a canonical 4×4 nasik square whose entries are the 16 vertices
ofa2×2×2×2 tesseract centered on the origin of 4-space!



Part III

Special Categories
An act of magic consists in doing what others believe is impossible.

19 2×2 Squares

If this were a book on numerical magic squares then the fact that we started
with squares of size 3×3 would make sense because they are the smallest
possible. For a 2×2 numagic square to be magic its four numbers must all
be the same, as a moment’s reflection will show. But what about 2-D
geometric magic squares; can an example be produced? I was so inured to
the notion of 3×3 squares as smallest that it was some time before this
question so much as ocurred to mind. When it did, however, I found myself
confronting a problem that, for all its seeming simplicity, would resist every
attempt at solution, even following some years of thought. Indeed, to this
day, the question of whether or not there exists such a square using
connected pieces remains unanswered. Moreover, it wasn’t until quite
recently - during the writing of this book -that Frank Tinkelenberg, a Dutch
software developer in Leyden, came up with the very first specimen. It is
one among four examples that employ disconnected pieces.

Before coming to Tinkelenberg’s solution, we may note that 2×2 ‘semi-
magic’ or ‘orthomagic’ squares using connected pieces do indeed exist.
These are squares that are magic on rows and columns only. Figure 19.1
shows an example using polyominoes of two sizes, 11 and 12.

Clearly a fully magic specimen would have to exhibit four pieces of
equal size. Semi-magics with this latter property can be found. Figure 19.2
shows a second semi-magic square, the rows and columns of which remain
magic whatever the width of rectangle R. Note that the areas of the two
green pieces are both 24, while the areas of the remaining two pieces are 14
added to the area of R. Hence the areas of all 4 pieces will be equal when
the area of R is 10, which is to say, when its width is 5/3. However, this
brings us no nearer to our goal of a fully magic specimen.

More impressive is an almost-magic 2×2 square due to Michael Reid that
he produced (without quite realizing it) in response to a question I posted on
an Internet forum devoted to polyforms: “Can a set of four distinct planar



forms be found such that any two of them will tile the same region?” Reid’s
outlandish target shape and complicated 12-polyhex pieces seen in Figure
19.3 are a tribute to his mastery in the field of polyforms.

Fig. 19.1 An orthomagic square of order-2.

Fig. 19.2 The areas of the pieces are equal when R = 6 ×5/3.



Fig. 19.3 Michael Reid’s almost-magic square of order-2.

After some study, I was interested to note that the pieces in this square
can be ‘deflated’ by performing the replacement shown in Figure 19.4.

Fig. 19.4

Fig. 19.5 Reid’s square simplified, but one piece repeats.



The result, seen in Figure 19.5, is a simpler almost-magic square with a
bilaterally symmetrical target, but unfortunately trivial, because one piece
has become the reflection of another. On the other hand, regarded as a set of
three distinct pieces, any two of which will tile the target, the same 4
polyhexes can be used to construct a peculiarly simple geomagic triangle,
as demonstrated in Figure 19.6. Two similar magic triangles can be
constructed using three of Reid’s original pieces.

Yet a further example of Reid’s inventive mind is his discovery of a non-
trivial 2×2 geomagic square using three-dimensional pieces. The idea can
be pictured as follows. Imagine four identical hollow hemispheres each
pierced by a small circular hole in a different position. These are the four
distinct pieces to be used in the geomagic square. Now take any two
hemispheres from this set of four. They can be brought together and rotated
with respect to each other so as to form the target, which is a hollow sphere
having two holes separated by a certain fixed distance. That is all. It doesn’t
matter which pair of hemispheres we begin with because a suitable rotation
will always be able to adjust the hole-to-hole distance to that required,
whereas the lack of any reference point on the spherical surface makes it
impossible to speak meaningfully about the ‘position’ of any such pair.
(This is one of those ideas that is so simple that it has to be thought through
three times before it can be understood). There are some limits to the
minimum and maximum possible distances between the two holes, both of
which are functions of the angles between the radii to the centre of the holes
and the plane of the ‘equator’ joining the hemispheres.

It is interesting to note that, as with any fully magic 2×2 geomagic
square, the pieces used in Reid’s 3-D solution can be rearranged to yield
three distinct 2×2 squares, all of them nasik, as shown in Figure 19.7.



Fig. 19.6 A geomagic triangle.

Fig. 19.7 Three distinct nasik squares.

The latter feature is borne out by the fact that on tiling the plane with any
of these squares, we discover a (nasik) geomagic square in every 2×2
subsquare.

These were interesting advances, but it seemed to me that Reid’s almost-
magic square only sharpened the question: does a 2×2 geomagic square
using four distinct planar pieces exist or not? At length, the appearance of
Frank Tinkelenberg’s solution using disconnected pieces was to settle the
matter for good. His result, using four pieces composed of six distinct 24º
segments belonging to a regular 15-gon, is shown in Figure 19.8. It is one
of four variations that can be worked on the same principle. Note the two
gaps in each of the targets, all six of which are drawn in the same
orientation, leading to slightly rotated versions of their constituent pieces as
compared with the positions of the latter in their cells. Figure 19.9 shows an
alternative illustration that is possibly slightly easier to follow. In the main
diagonal (\) target, the red piece appears reflected, the only such case to be
found.



For me, a striking feature of this solution is the use of both disconnected
pieces as well as disconnected target. As we saw in the case of 3×3 nasik
squares, solutions using disconnected pieces can often be found when
whole piece solutions are lacking. This is because solid pieces tile only by
abutting, whereas disconnected pieces are also able to overlap each other
and thus offer a larger range of tiling combinations. It is a tribute to Frank’s
ingenuity that he extended this flexibility-winning principle to the target
itself and thus finally put to rest what had become a major open question.
But of course, the Great Unanswered Question that remains is still: Does
there exist a 2-D geomagic square of order-2 using connected pieces?

Fig. 19.8 Frank Tinkelenberg’s 2×2 square.



Fig. 19.9 An alternative version of Tinkelenberg’s square.

20 Picture-Preserving Geomagics

A remarkable new development that took me completely by surprise was
the discovery of what I now call ‘picture-preserving’ geomagic squares, a
wonderful idea due to Robert Fathauer, presently living in Arizona. Robert,
who introduced himself to me following a talk I gave on geometric magic
squares at the 2006 Gathering for Gardner 7 conference in Atlanta, Georgia,
runs a firm specializing in the design and manufacture of educational aids
used in teaching mathematics. As such, geomagic squares held for him a
peculiar interest, his idea being to produce physical models using real
pieces that might be used to illustrate elementary theorems or other aspects
of number theory. Initially I was a little unclear about these proposals until
he sent me the square shown in Figure 20.1. It is a modified version of
Figure 6.1 on page 12, which I had sent him previously, being one of the
1,411 normal geomagic squares tiling a 3×5 rectangular target. The square
can be seen again in Figure 20.3 (left).



Fig. 20.1 Robert Fathauer’s picture-preserving geomagic square.

At first sight it may seem that there are two pieces occupying each cell in
Figure 20.1. This, however, is not really the case, the intention being rather
to show what is printed on the front and back faces of the single piece
occupying each cell. The two shapes in each cell are thus reflections of each
other, although in several cases the flipped twin has been rotated so as to
bring the numbers printed on both sides right side up. Simply flipping a
piece about a vertical or horizontal axis, without rotation, will often reveal
numbers that are printed either upside down or sideways. To avoid this, the
orientation of each piece shown in the cells has been chosen so as to show
the digits right side up, which is the same as that in the targets in which they
appear.

Two distinct shades of blue distinguish fronts from backs, making it
easier to see how targets are composed of flipped and/or unflipped pieces.
In a physical realization using real pieces this would be unnecessary. Using
the same tint on both sides would then make for targets of uniform color. As
in the square on which it is based (i.e. Figure 20.3), the target is again a
rectangle, but now bearing the numbers from 1 to 15 in serial order. The
idea was to use this as a didactic device in combination with a worksheet
discussing how to sum the first n natural numbers. It took me a few minutes



to figure out the extraordinary implication of what Fathauer had achieved in
his modified version of my square.

Every piece bears numbers, front and back, such that the target is not
merely a rectangle, but one in which these numbers appear in serial order
from left to right. The individual numbered cells thus appear in exactly the
same position in every target, and the same would be true whether or not
these cells bore numbers or some other graphical device. In particular, that
device might be a square fragment belonging to a given position within any
3×5 field or ‘picture.’ But in that case the pieces in the cells would
themselves correspond to larger picture fragments that assemble in the
targets so as to reproduce the entire 3×5 field. Targets will then not only
share the same outline shape, their surface detail will also be identical, point
for point, or if you will, pixel for pixel. Hence the appellation ‘picture-
preserving’ (or ‘pp’) for a geomagic square of this kind, although in the
case of Fathauer’s square the ‘picture’ is less a tableau or view than it is an
austere table of numbers. Figure 20.2 exploits the pp-property to better
effect, the target here being the Five of Hearts playing card. To avoid
overcrowding, the reverse sides of the pieces are not shown in the cells, but
can be inferred from the targets. For instance, from the left-hand-column
target can be seen that the square piece that is blank (seen in the left-hand
column centre cell) bears two half-hearts on its reverse side.



Fig. 20.2 A picture-preserving square.

What is the essential property that distinguishes picture-preserving
geomagics from others? It is that wherever any given piece occurs in
different targets, it always occupies exactly the same position within each of
them. For only thus will every picture fragment always find itself in its
appropriate place within the assembled picture. Yet, since the flip side of a
reflected piece may bear distinct markings, in this respect a reversed piece
may be treated as a separate case. These points will becime clearer on
examining the differences between Fathauer’s square and the square from
which it was derived, shown in Figure 20.3. For example, the grey
octomino in the top left hand cell of the latter does indeed occupy the same
position in all three targets in which it appears. But the blue hexomino in
the top right hand cell occupies distinct positions in different targets, a
feature that will disrupt picture preservation. A reflected version of this
same piece occurs just once, in the top row target only, which is
unproblematical, because the image depicted on its back side can be
adjusted to suit that distinct region of the picture it occupies. Observe also
that the domino in the bottom right hand cell may or may not be said to
appear in three different targets, depending upon whether one or more of



these is regarded as flipped or not. In any case, it was Fathauer’s insight to
see that with a few judicious adjustments to the orientation of certain
targets, these problems could all be overcome, as witnessed in his modified
version of the same geomagic square seen in Figure 20.3 (right).

Here the previously troublesome hexomino now occupies the same
position within two targets, as does the domino, whose seeming third
appearance in the diagonal target can now be interpreted as a reflected
domino, occurring but once. Similar comments apply to the tetromino in the
bottom left-hand cell, which, like the monomino, domino, and triomino, is
another case of a piece whose flipped and unflipped forms are congruent.
Figure 20.3 (right) is thus suitable for use as a pp-geomagic square, as
indeed it has been in providing the basis for Figure 20.1.

Fig. 20.3 Converting an ordinary square into a picture-preserver.

Having grasped the principle underlying Fathauer’s square, it was natural
to start re-examining existing geomagics in the hope of discovering still
more picture-preservers. Was it significant that his square is derived from a
specimen using polyominoes of consecutive sizes? Figure 20.2, an early
find, which is also among the 1,411 geomagics using consecutively sized
polyominoes, suggested it might be, although subsequent examples lent no
support to this idea.

The picture-preserving property is perhaps easier to follow in Figure
20.4, in which the ‘picture’ is no more than a yellow circle centred on a
green square. Seen to right and below are reflected versions of the eight



targets (flipped about a vertical axis), revealing the jumbled patterns
incidentally created on their reversed sides. This specimen is based on
Figure 20.5, an earlier discovered (symmetric) geometric square. Interested
readers may like to examine the small, yet subtle, changes to the targets that
converted this initial find into a picture-preserver. Note that use of a circle
as a target picture makes for a special case that forms an exception to the
general rule enunciated previously. That the same piece must occupy the
same position within different targets is no longer necessarily true, since the
symmetry of the circle means that it can be repeatedly rotated through 90º
without any change to the ‘picture.’

Fig. 20.4 The ‘picture’ is a yellow circle on a green square.

The square target in Figure 20.5 is of size 6×6. An obvious idea
suggested by this was to replace the circle motif with a picture showing a
6×6 numagic square as target. Piece edges would then correspond with grid
lines on the 6×6 array, much as in Fathauer’s numbered 3×5 target. An
experiment showed this to be quite feasible, although the swarms of
numbered cells involved make for a pictorially inelegant result. In view of
this, a better idea seemed to be a target using a visually simpler square such
as the Lo shu. Grid lines in the square will then no longer correspond with



piece edges, and in fact some numerals end up becoming bisected, an
outcome that, in retrospect, seems less than satisfactory. Figure 20.6 shows
the resulting square. Light and dark shading distinguish piece fronts from
backs.

Fig. 20.5 A potentially pp-square.



Fig. 20.6 The target is a picture of the Lo shu.

It was subsequent to these early experiments with picture preservers that
investigations in another direction brought to light a 3×3 geomagic square
with some remarkable properties. Among these was the potential to be used
as a picture preserver, the target being a 4×4 square with a missing cell or
hole; see Figure 20.7. The hole might seem a nuisance, but with a little
ingenuity could be turned to advantage in creating a kind of mathematical
joke. Again, my idea was to use a traditional magic square as target picture,
while the trick employed was to take a numerical magic square in which the
number zero occupies the same position as the hole. In this way zero will
not appear, a disappearance that leaves the arithmetic unaffected. The result
can be seen in Figure 20.7. With a little patience the numbers appearing on
the backs of the pieces are easily deduced from a careful examination of the
targets.

I have mentioned that Figure 20.7 has remarkable properties. That it is a
picture-preserving square with square target, has already been seen. That it
is also a normal square may already have been noticed. Before resuming
our discussion of pp-geomagics, a brief glance at a further characteristic of
this square will prove of interest.



Different as it may appear, Figure 20.8 is in fact an alternative
presentation of the square pictured in Figure 20.7. It is an alternative
rendering that seeks to highlight a further peculiar attribute of the square.
Here again I have used dots and lines to represent pieces, a detail of no
further significance beyond indicating the square’s link with the Lo shu.
However, taking a closer look at the targets shows that they are of two
kinds. To right and below are the usual row, column and diagonal targets
corresponding to a 4×4 square with inner hole, exactly as in Figure 20.7.
But to left and above are found eight slightly different targets in the form of
a 4×4 square without hole. Admittedly, the eight triads of pieces that
compose the latter targets are not harmoniously disposed within the square,
as are those forming the rows, columns and diagonals. However, the fact
that in each case they fit together to pave the same 4×4 square target is a
feature that required some effort to achieve. In fact, the construction of this
square arose in the wake of a simple observation concerning the numbers in
the Lo shu. This was that in addition to eight sets of three numbers
summing to 15, there exist a further eight sets of three numbers summing to
16. The notion of a geomagic square that might echo these repeated totals
with repeated targets then suggested itself, with the culmination seen in
Figure 20.8.



Fig. 20.7 A 3×3 geomagic square with a 4×4 numagic square as target.

Returning now to the topic of picture-preserving squares, it is amusing to
ponder that if the target picture employed can itself be a magic square, then
it could even be a picture of the geomagic square that is itself. The result
would then be a specimen in which the so-called ‘Droste effect’ would be
prominent. Pieces would show fragments of the complete array, upon which
would be seen smaller pieces nestling within their cells, upon which could
be seen still smaller pieces cradled within their cells, and so on, in endless
regression. However, I suspect the result would be too visually confusing to
make it worth the effort of trying to execute.



Fig. 20.8 Different as it seems, this is the same square as in Figure 20.7.

Fig. 20.9 A chequered target reveals the picture-preserving property of Figure 9.7.

The pp-geomagics looked at thus far have all been of size 3×3. It is easy
to see than no 2×2 examples will be found. Given that each piece would



need to occupy an identical position in at least two different targets, the
shape of the remaining target area, which is to say, the shape of the second
piece, would then have to be the same in each case. A non-trivial 2×2 pp-
geomagic square is thus impossible.

On the other hand, picture-preserving 4×4 squares can indeed be found.
Figure 20.9 revisits a Latin-based square first met with in Figure 9.7. The
repetitive target structure that then seemed unsatisfying is now put to use in
creating a pp-geomagic square showing a square target with a simple
chequered pattern. The reverse sides of the pieces can be viewed in the row
targets, where they appear slightly reduced in size.

A more decorous specimen is ‘The Joker’ of Figure 20.10, which bears
many characteristics in common with Figure 20.9 yet is distinct in design.
Its template is shown in Figure 20.11, while that of Figure 20.9 appears in
Figure 9.6 . As the joker’s flamboyant headgear suggests, the outline of the
target need not be fixed as shown, but could assume a great variety of
different shapes. But at a price, to be sure, for although all four quadrants
are magic, the two main diagonals are in fact not.

Fig. 20.10 ‘The Joker’ that could take many guises.

One more example of a square that can be used to create a pp-geomagic
square of order-4 is Figure 10.4 on page 30, a latin-based example that is



nasik. Piece-ordering in the targets must be changed first however, although
the resulting picture-preserver will not be nasik.

There remains a further interesting property of pp-geomagics that is
worth mentioning. Readers may already have noted that the picture-
preserving capability extends beyond the plane to embrace the third
dimension. By this, I refer to the fact that the targets in a pp-square can
include pictures carved in relief, so long as we are prepared to ignore that
part of the target structure on its reverse side, protruding backwards behind
the plane that is its floor. To grasp this, imagine the picture in Figure 20.4 is
not a circle but a solid cone, seen from above, the pointed end. The various
pieces thus bear complicated dissections of this cone, which has been sliced
by planes that are perpendicular to its base. On the reverse sides of pieces
are similar dissections that extend away from the viewer rather than toward.
In the targets we view the reconstructed solid cones, although behind them
is an unholy chaos, equally three-dimensional, corresponding to the
jumbled patterns seen in the reversed targets of the same figure. Granted
that this feature would not seem to be of any particular ‘use,’ I find it
intriguing. My own belief is that the last word on pp-geomagics has yet to
be said.

Fig. 20.11 The Joker’s template.



Fig. 20.12 Is this a trivial square, or not?

A final point of interest is to see how the introduction of the pp-geomagic
square brings with it the need for a clarification in our definition of ‘trivial’.
Figure 20.12, a supposedly trival square, illustrates the point, its square
target, again a picture of the Lo shu, being formed from pieces of repeated
shape, which are nevertheless distinct in virtue of their unique marking. So,
we may ask, is Figure 20.12 really trivial or not? The answer is of little
import, of course, but the point is worth bearing in mind.

I can hardly conclude this section on picture-preservers without showing
an unusual find of order-3 that lent itself to a playful elaboration. There
exists a special kind of picture-preserver that requires no markings on the
back sides of its pieces because every target can be assembled without
reversing any piece. Such a square is seen in ‘The Archaeologist’s
Nightmare’ of Figure 20.13, where the implied concavity of the plate would
make flipped pieces inappropriate. Given suitable marking on the hidden
sides of the present pieces, the potter’s trademark could be made to appear
on the underside of each reassembled plate. Although not shown, the three
shards on each diagonal can also be glued together to form the plate.



It may interest readers to learn that I submitted this picture to the British
Journal of Archaeology, confident of its being enthusiastically received as a
humorous filler item for the journal. However, I was wrong. They were not
amused.

Fig. 20.13 ‘The Archaeologist’s Nightmare.’

21 3-Dimensional Geomagics

The allusion to solid targets in the previous section brings us nicely to the
topic of 3-dimensional geomagic squares. As indicated at the outset of this
essay, geomagics may use pieces of any dimension, although for practical
reasons 2-D types are bound to exert the greater appeal, since they are both
easier to produce, as well as simple to present on the page and to think
about and discuss. 3-D squares are not merely less ubiquitous, and thus
more difficult to track down, they do not lend themselves to presentation on
paper, being best appreciated in the form of solid objects that can be picked
up and handled. And of course, the manufacture of such material objects is
a demanding enough hobby in its own right, without adding the exigencies
of writing a computer program for discovering the geometrical forms that



are to be constructed. Indeed, bearing in mind the sheer work involved in
exploring planar types, in retrospect it seems surprising I ever started in
pursuit of the far more demanding 3-D specimens. But the truth is that I was
spurred on by the attractions of one particular solid target that caught my
fancy.

If the aim was to construct a geomagic square using solid pieces that fit
together so as to complete a solid target then a square of order-3 was the
obvious case to consider. Being unable to think up any alternative approach,
a computer program performing a brute-force search offered the only
possibility of discovering a specimen. The nine pieces used in the square
would thus be polycubes, which is to say, the 3-D equivalent of
polyominoes, or shapes that can be formed by sticking together unit cubes,
face-to-face. As previously, the number of unit cubes in the target would
therefore be a multiple of 3, but it must not be so large as to make piece
numbers prohibitive. The larger the piece size, the more of them there are,
with their numbers growing explosively as size increases. Pieces of size 10,
or decacubes, were the biggest my software could handle. After weighing
things up, it became clear that the ideal target, both in practical and
aesthetic terms, would be a 3×3×3 cube. It was the irresistable simplicity
and symmetry of this cubic target that encouraged me to start work.

Twenty-seven cubelets in the target mean that the centre piece in the
geomagic square will be of size 9, a nonacube. Given 10 as the largest
permissible piece, there exist but two possibilities in terms of the
distribution of remaining piece volumes, uniform and latin, as shown in
Figure 21.1.

A square using nine nonacubes seemed to me the most desirable, not
merely for the sake of balance, but because the chance of finding a solution
yielding even more than the necessary eight magic triads, one for each row,
column and diagonal, would be greater. As in the program discussed earlier,
the search for a solution relies on a list L showing every triad of distinct
nonacubes than will ‘tile’, or pack, the target. In the present case this
entailed 159,177 entries in L, a figure that called for a more efficient
algorithm than the simplistic example previously described, if running time
was not to become excessive. Even then, it took well over a week for the
program to examine all possibilities, none of them, as it turned out, yielding
the geomagic square sought. It was a near thing though. The program found
some half dozen cases of squares in which all rows and columns, plus three



diagonals (one main, two broken) were magic. But no case in which both
main diagonals were satisfied. It was odd to be frustrated by specimens that
embodied even more than was asked of them, and yet had to be disqualified
for not doing so in exactly the way required.

Fig. 21.1 The two possible piece volume distributions

Attention thus turned to the second alternative, the new list L now
detailing 916,008 triads of 8, 9, and 10-sized target-packing polycubes,
which is almost six times longer than the previous list. As it happens, latin-
type piece distributions can be tested a good deal faster than uniform types,
so that running time could remain within practical limits. And sure enough,
before long a bleep from the PC indicated a solution had popped up. In
concrete terms, that meant that a 3×3 array containing piece numbers had
been dumped to a text file. All that was now required was to open the file,
decode the numbers back into the polycubes they represented, and then
check that they fitted together in the ways required. How does one do that?

Fig. 21.2 A 3-D geomagic square with 3×3×3 cubic target.



Fig. 21.3 A cube that cannot be dismantled.

My answer was already waiting in a cigar box containing a roll of
double-sided sticky tape, along with dozens of pre-sawn wooden cubes
measuring around half an inch on a side. This may not sound like a
sophisticated method, but it is effective. A couple of hours later saw a
servicable, if delicate, set of nine polycubes lined up for the crucial test.
Taking up three pieces at a time, I tried fitting them together. Surprisingly, it
was often far from easy. In each case it was quite a puzzle, a contingency
that had not previously occurred to mind. But with a little patience the right
configuration would soon be found, whereupon the three pieces slid snugly
together to form the cube.

Except in one case, which defied every effort. At first this was worrying.
Was there a bug in the program? But careful examination soon explained
the cause, which was instructive. As in the example shown in Figure 21.3,
even though they pack the cube, the peculiar structure of the three pieces
makes their assembly into a cube impossible. Here the red and green pieces
can be put together as required, but the blue one, which can never marry
with the red, is still unable to slide into place. Or the blue and green can be
put together, but the red will be left outside. In similar fashion, the fact that
a cube is formed of three polycubes is no guarantee that it can then be
dismantled simply by pulling and pushing. The solution discovered by the
program was thus a genuine 3-D geomagic square, but one with a fatal flaw
from the demonstrator’s point of view. Here was another contingency that
had not been anticipated.



Fig. 21.4 Aad van de Wetering’s elegant 3-D geomagic square.

Happily, the program went on to discover a wealth of further solutions,
many of them unmarred by this feature, and some of them even including
extra magic triads (although no demi- or semi-nasiks among them). Figure
21.2 shows a favourite specimen, wooden and metal models of which adorn
my work table, even as I type. This particular instance is pleasing in
realizing eight non-trivial assembly puzzles in one. I’m afraid that few
visitors to the house have escaped an obligatory trial of their solving skills.
To assist the viewer, the cubic targets flanking each row, column, and
diagonal, are pictured as if seen from two diametrically opposed
viewpoints. Nevertheless, such pictures of 3-D geomagics are too intricate
for comfort, for which reason I suffice with this single example.

I began above by admitting being unable to see any alternative to that of
a brute-force search by computer in seeking for a 3-D geomagic square.
Happily however, there exist less myopic individuals. Such a one is Aad
van de Wetering of Drieburgen, a recognized name in recreational math
circles in Holland. Figure 21.4 shows the marvellous 3-D square with
3×3×3 cubic target he has produced without recourse to a computer. Note



that piece sizes form the consecutive series of odd numbers 1, 3, 5, . . . ,
while the piece shapes reflect a textbook application of Lucas’s formula,
shown alongside. Let his achievement be an encouragement to others.

22 Alpha-Geomagic Squares

Some readers may be familiar with the the so-called alphamagic square, a
playful variant on the numagic theme that is really two magic squares
combined in one. These are squares that use number-words rather than
numbers, for which reason they are language-specific, English specimens
being distinct from their foreign counterparts. The idea is illustrated in
Figure 22.1, which is a French alphamagic square.

On the left is a square showing the value of the French number-words in
numerals. On the right is one showing the number of letters they contain: 5
in Douze, 6 in Quinze, 7 in Dix-huit, and so on consecutively up to 13 in
Deux cent douze. The two smaller squares are of course both magic,
showing constant sums of 336 and 27, respectively. It is this property that is
meant by decribing the centre square as alphamagic. Note that alphamagics
need not always exhibit consecutive letter-counts, a special feature of this
French example not shared by alphamagics in general.

Fig. 22.1 A French alphamagic square.

The idea of combining an alphamagic square with a geomagic square
may seem far-fetched, but can arise naturally after long gazing at targets
built up from polyominoes. The desire to inscribe characters in the little
squares can become overpowering. Figure 22.2 shows a 3×3 alpha-



geomagic square based on a much publicized English exemplar, again
showing consecutive letter-counts. Piece sizes in the geomagic square
sought were thus determined by letter-counts in the alphamagic square. The
7 letters in the centre number-word, fifteen, meant that the target must be of
size 3×7 = 21. I was lucky enough to find a solution using this pleasing
cross shape. Any three shapes in a straight line tile the cross, their
associated numbers adding to 45.

Fig 22.2 A 3×3 alpha-geomagic square.



Fig. 22.3 A 4×4 alpha-geomagic square.

Figure 22.3 shows an example of size 4×4. Once more fortune smiled on
the search for a 5×5 square target to accommodate a constant sum of 25
letters contributed by the alphamagic square from which I started. Figure
22.4 shows an alternative version of the same square.



Fig. 22.4 An alternative version of Figure 22.3.

23 Normal Squares of Order 4

In Part II we looked at various aspects of 4×4 squares but without paying
any special regard to their corresponding area squares. The latter are, of
course, numerical magic squares in their own right, albeit ones in which the
appearance of repeated values tends to discourage interest. An exceptional
case that attracts special notice is thus that of the normal square in which
the areas of the pieces form the arithmetic progression 1, 2, . . , 16.

How do we go about constructing a normal 2-D square? Since the area
square is itself normal, it can only belong to one of Dudeney’s twelve
Types. This suggested the idea of starting with a numerical magic square,
the formula for which is then consulted in order to arrive at the key and
keyhole areas that will be required to construct a 2-D version of the same
square. An example will clarify this process.

Figure 23.1 shows ‘Melencolia I,’ a well-known engraving by the
German Renaissance artist Albrecht Dürer. An allegorical composition, it
has been the subject of many interpretations. Among other symbols, it



includes a 4×4 magic square using the numbers 1 to 16, with constant sum
34. A point of interest is that the date of the engraving, 1514, is given by the
two centre numbers in the bottom row. Here then is a normal numerical
magic square that will serve to illlustrate the creation of a normal 2-D
square. Figure 23.2 shows a modern version of Durer’s square that is easier
to read.

Fig. 23.1 ‘Melencolia’ by Albrecht Diirer.

Fig. 23.2 A clearer view of Diirer’s square.

A look at the distribution of the complementary pairs in Figure 23.2
shows them balanced about the centre in a pattern corresponding to the
Dudeney Type III diagram. Figure 23.3 reproduces the generalization of



Type III squares, seen earlier in Figure 13.2 on page 38. The values taken
by the variables in the case of Durer’s numerical square are then easily
derived:

From (A + p + q) – (A – p + q) = 2p, we find 16 – 10 = 6, or p =3,
From (A + p + q) – (A + p – q) = 2q, we find 16 – 7 = 9, or q = 4-1/2,
From (A + r + s) – (A – r + s) = 2r, we find 13 – 11 = 2, or r = 1,
From (A + r + s) – (A + r – s) = 2s, we find 13 – 6 = 7, or s = 3-1/2.
Similarly, from the magic sum 4A = 34, we find A = 34 ÷ 4 = 8-1/2.

Fig. 23.3 A generalization of Dudeney Type III squares.

In constructing any 2-D square, the first thing to be decided upon is the
target shape. Now the target area in this case is 34, which is not a square
number. A straightfoward square target is thus ruled out. My own liking
being strongly for square targets, the idea of excising two cells from a 6×6
square outline was then an obvious next best choice: 6×6 – 2 = 34. The
latter target with its two holes can be seen in Figure 23.4, which is central to
the discussion to follow.

Returning now to the template in Figure 23.3, we see that the array to be
detrivialised is a uniform square of As, with magic sum 4A. This implies an
initial 2-D substrate showing 16 identical pieces, four of which must
assemble to form the target. Can the chosen target be dissected into 4
congruent pieces showing areas of 8-1/2, as required? The 4 red ‘notched’
triangles labelled ‘A,’ drawn as if on squared paper, at the top of Figure
23.4, show that it can. Accordingly, we begin with a 4×4 array consisting of
16 of these notched triangles, one in each cell. In Figure 23.4, the latter are
drawn in red, their notches coinciding with a small darker square showing
the position of the neighbouring hole within the target. Shapes outlined in
black indicate the finished pieces resulting from additions to and/or
excisions from the initial notched triangles. These same piece shapes, all of
them polyominoes, reappear in the targets (slightly reduced in size) to right
and below.



This brings us to the ticklish matter of determining the key and keyhole
shapes to be used. Take for example the top left hand entry, corresponding
to A + p + q in the template, or the number 16 in Durer’s square. The areas
of A, p and q, have already been established. They are 8-1/2, 3 and 4-1/2,
respectively. The shape of A is the notched triangle, but what shapes should
p and q take? Assuming rectilinear shapes, and given the constraint on their
areas, there are not very many possibilities. In appending them to the
notched triangle, they must form a piece with an area of 16. But p and q
also play a part in the formation of several other pieces in the square under
construction. For example, consider the piece corresponding to A – p – q in
the bottom right-hand cell. Here, the same p and q shapes that augmented A
in the top left-hand cell must now be excised from A to leave an area of unit
value: the number 1 in Dürer’s square. Continuing in the same vein,
different candidate shapes for p and q can be tried out in these and still
other pieces until success in all cases is achieved. Or not, of course,
depending upon whether the target chosen does or does not admit of
solutions. In any case, it is a matter of patient trial and error. Similar
remarks apply to the selection of shapes for the variables r and s.



Fig. 23.4 Construction of a normal 2-D square based on Durer’s square.

An important personal insight that is incorporated in the example of
Figure 23.4 lies in its use of both weakly-connected and disconnected key
shapes. For a long time, I suffered from an unconcious assumption that keys
and keyholes must necessarily be formed of connected areas. The effect of
this blind spot was to thwart every attempt to produce a normal square, so
that the awakening from this illusion, when it came, was a sudden release
into sunshine followed by a spate of new discoveries. The latter can be seen
in Figures 23.5 – 23.11, all of which are normal squares of a distinct
Dudeney Type. The increasingly flamboyant target shapes that emerge are a
reflection of the author’s improving grasp of the sometimes intricate
techniques involved.

There may be readers who would like to create normal 2-D squares of
their own. If so, I can only encourage them to avoid the kind of pitfall just
described, through a careful examination of Figure 23.4, in which I have
done my best to elucidate the method of construction. At top, above the
main geomagic square, are seen the 4 shapes used for the keys



corresponding to variables p, q, r, and s. The square grid on which they are
drawn makes it easy to verify their respective areas. Squared paper, I might
add, along with a pencil and eraser (as well of course, as a magic wand) are
the indispensible tools of the practicing geomagician. For ease of
comparison, each key is shown in those two orientations in which it appears
within the geomagic square beneath. Careful scrutiny of the individual
pieces in the latter will then reveal how the final piece shapes are derived
from the notched triangle modified by the addition and/or subtraction of the
p, q, r, s shapes. The algebraic terms above each piece indicate the
operation to be performed on the triangle, as dictated by the formula in
Figure 23.3. For example, in the third row from top, left-hand column, we
find –p + s, which means, excise p and append s, to result in the nonomino
or piece built from 9 squares shown. Note that the orientation of each piece
has been chosen with a view to clarity, but is not otherwise of special
significance.



Fig 23.5 A Type I square again using a 6×6 square target with two symmetrically disposed cut-
outs. As with the squares in the Figures to follow, with a little patience, dedicated readers ought
to be able to deduce the initial substrate shape used, along with the keys and keyholes that give

rise to the individual piece shapes.

I can hardly conclude this discussion of normal order-4 squares without
mentioning a discovery of some interest.

As already mentioned, among the more familiar landmarks dotting the
long history of magic squares is Frénicle’s exhaustive enumeration of the
880 normal numagic squares of order-4, first published in 1693. This total
of 880 excludes those seven trivial variants of each square resulting from
rotations and/or reflections. Frénicle’s result has often been verified, so that
the figure of 880 squares using the natural numbers from 1 to 16 is a well-
known result in the literature of the subject. At the same time, there seems
to have grown up a widespread belief or assumption – not always conscious
perhaps – that 880 is the therefore the maximum number of different magic
squares that could be formed by any set of 16 distinct numbers. Given the
regularity of 1, 2, . . . , 16, forming as they do a simple arithmetic
progression, such an assumption will have seemed natural enough to many.



Fig 23.6 A square that takes the formula for Dudeney Type X squares in Figure 13.2 as its
starting point. Recall that the target area in a normal square must be 34, a restriction that

leaves the designer with little freedom of choice. I was therefore especially pleased to arrive at
the solution seen here, using a square target with a rotated square hole at its centre.



Fig 23.7 Experimenting with different Types, I took Dudeney’s formula for Type IX as the
template for this square. ‘The Mazarin Stone’ is the name of a famous yellow diamond that

becomes the subject of a Sherlock Holmes investigation in an Arthur Conan Doyle story of the
same name. The gem-like target shape of area 34 that has been arrived at is celebrated in the

picture title.



Fig 23.8 Important as is the choice of template used, one can hardly get far in designing a
geomagic square before deciding on the target shape. Here, the template used is the formula for
Type II in Figure 13.2, which implies a substrate of 16 identical pieces. This in turn calls for a
target that can be dissected into 4 congruent pieces, a goal easiest to achieve when the shape

chosen has four-fold rotational symmetry.



Fig 23.9 Four-fold rotational symmetry again underlies the choice of target shape in this square
that is based on the Type III formula in Figure 13.2. As in the analysis of Figure 23.4, the

substrate square consists of 16 identical pieces each with a area of 34 ÷ 4 = 8½. Having decided
not to clutter the cells with numerals, the title ‘Opus 34’ is a sly pointer to the target’s area, and

with it to the fact that piece sizes again form the progresssion 1, 2, 3, . . . .



Fig 23.10 In Figure 23.4 we looked at the construction of a 2-D square based upon Dürer’s
numerical square. Here we see an alternative geometrical version discovered by computer. An
ambitious project I am saving for my old age is to produce a further 2- D version of Dürer’s

square in which the entries for 15 and 14 would be (disconnected) pieces bearing a close
resemblance to these very same numerals. 1514 is, of course, the date of Dürer’s original

engraving.



Fig 23.11 In the realm of numerical magic squares, any 4×4 panmagic square is necessarily
compact and any compact square necessarily panmagic. But not so the world of 2-D magic
squares. The 4×4 square here is compact but it is not panmagic. Similarly, there exist 2-D

squares that are panmagic without being compact; see, for example, Figure 16.8.

Fig 23.12 A key to Figure 23.11.



Fig 23.13 One of 1040 numagic squares using 1 – 17, but no 9.

However, in 1996, I wrote a computer program able to generate every
possible 4×4 magic square constructable from any given set of 16 distinct
integers. An early outcome of this enterprise showed the above assumption
to be untrue. Extensive trials have revealed the existence of one particular
set that yields 1040 rather than 880 squares. It is a balanced or
‘palindromic’ set of integers that do not form an arithmetic progression: – 8,
– 7, . . . , –1, 1, 2, . . . 8. Note the absence of zero. The value of the new
magic sum is also zero. Being built up from 8 complementary pairs (each of
which again sum to zero), these 1,040 squares can again be classified in
terms of Dudeney Types, the number of squares of each Type being as seen
in Table 5.

Table 5 A breakdown of the 1040 squares into Dudeney’s 12 Types.

Adding a constant to each number so as to yield a similar set, but now
using 16 positive integers, will have no effect on the number of magic
squares produced. Figure 23.13 shows such a square in which the smallest
number is 1. Its magic sum is 36.

The previous finding is not without ramifications in the realm of 2-D
magic squares. Recall that the formulae we have been using as templates
are derived from Dudeney’s twelve Types, which are themselves based on
the distribution of complementary pairs of numbers. Now complementary
pairs have already been encountered in the section on 3×3 squares, where
several examples were shown of piece pairs that are the geometric
complement of each other. By which I mean pairs that will fit together so as
to complete an identical shape in each case. Figure 6.7 on page 14, for
example, was produced with the purpose of illustrating this property. Thus



far, however, we have not met with a single instance of a 4×4 square
composed of piece pairs that are able to perform the same trick.

Fig. 23.14 4×4 square composed of complementary piece pairs.



Fig. 23.15 A square similar to Figure 23.14 but now with circular targets.

I have to admit that, for reasons as yet obscure, attempts to produce a
normal square with this property have not met with success. However, in
Figures 23.14 and 23.15 can be seen two such examples based not upon
normal numagics but on Fig 23.13, which is one among the 1040 squares
that can be formed using the numbers 1 to 17, excepting 9. The two figures
are exact analogues, their only differences lying in the choice of piece and
target shapes. In both, the 16 pieces are composed of 8 complementary
pairs. Every pair tiles an identical shape that is one-half of the target. The
pairs can be seen in the bottom row of figures, any two of which will
combine to complete the target. In all, there are 52 groups of four target-
tiling pieces, only 48 of which are shown. The remaining four can be
assembled using the four corner pieces belonging to each of the four
embedded 3×3 sub-squares. It can be shown that these same sets of 16
pieces admit of rearrangements yielding a total of 528 distinct 2-D squares,
rotations and reflections not counted. A key to both Figures can be seen in
Figure 23.16.

Four distinct 4×4 geomagic squares occupy the corners of ‘Art of Fugue’
in Figure 23.17: one yellow, one blue, one orange, and one brown. All four
squares are both nasik and compact. The set of sixteen pieces used is the



same in each case. Although not immediately apparent, they comprise eight
pairs, each of which will again combine to tile an identical shape that is half
the target. At the centre of the picture, slightly enlarged copies of the four
corner squares (minus their targets) are shown superimposed, their pieces
now revealed as exactly coinciding with each other so as to pave the 16
four-colored cross shapes. For example, the top left-hand cross in the
central 4×4 array is formed by the four pieces belonging to the top left-hand
cell of each corner square. Similarly shaped targets surround this ensemble.
Figure 23.18 provides a key to the composition of targets.

Fig. 23.16 Key to Figures 23.14 and 23.15.



Fig. 23.17 ‘Art of Fugue’.

24 Eccentric Squares

If there is one thing that has emerged during our journey through the
geomagic jungle it is that the local fauna is far more variegated than that
met with in the realm of numerical magic squares. It is not just that the lions
and tigers hereabouts are more colorful and roar louder; there exist
creatures in Flatland that have no counterpart in a one-dimensional world.
As a result, 2-D magic squares are not always easy to classify in terms of
established categories. This can create problems for the author bent on
presenting a coherent account, whose only remaining course is to set out his
stall and hope for the best. To this end, in the following I present a selection
of special finds that are obviously worthy of attention, if difficult to place
within in a logical scheme.

A good title for Figure 24.1 might be ‘Binary Star’, because the starry
blue structure at the centre of the square can be interpreted as a 3×3 array in
two different ways:

As the targets show, both are 3×3 geomagic squares. Note that this
ambitious goal has been achieved at a price. The pieces used are all



pentominoes, some connected, but mostly weakly-connected or completely
disconnected. Naturally, I would have preferred them all to be connected,
but no such solution could be found. Likewise, the target shape is not all
that desire would wish. Nevertheless, the square is a nice instance of the
more potent magic structures that can be found in the world of two
dimensions.



Fig. 23.18 Key to ‘Art of Fugue



Fig. 24.1 ‘Binary Star:’ two geomagic squares in one.

Previously I mentioned lions and tigers, but these are not the only
animals roaming the forest. Figure 24.2, ‘Genetic Engineering,’ shows a
swarm of butterflies collected amid the same woodland glades. Together
with the picture to follow, this square celebrates a breakthrough. In creating
a geomagic square, the choice of admissible target shapes is usually tightly
constrained. Scrutiny will show that the target here is essentially a simple
chain of four pieces. But two of the pieces, both yellow, always occur at the
ends of the chain, which means they can be extended so as to take on
almost any shape, without introducing deleterious side effects. Here they
have been extended so as to meet, and so completely envelope the chain
itself, the shape of their combined outline then being entirely up to the
constructor. The choice of a butterfly struck me as an improvement over
that of the triangle used in Figure 11.8 (‘Indian Reservation’) on page 38,
which embodies the same principle of construction.



Fig. 24.2 ‘Genetic Engineering.’ The target is essentially a chain of 4 pieces.

Fig. 24.3 The target is a again a chain, but now closed.

The envelopment principle used to create butterflies soon gave rise to a
related notion, which was that of a chain of pieces nested within a single



piece, rather than enveloped by two. That the choice of target shape remains
arbitrary then becomes still more obvious to the viewer, as the school of
fishes in Figure 24.3 attests.

In contemplating a new geomagic square, it was often the idea of
achieving some particular target that formed the starting point of
investigations. Figure 24.4 shows the most memorable instance of this
process.

The target here is a variation on the first ever impossible figure that
depicted a similar object, but one using nine rather than fifteen cubes. The
latter was invented by the Swedish artist Oscar Reutersvärd in 1934. In
1980 three of his designs were depicted on Swedish postage stamps, a
signal honour to their discoverer. Later, in 1958, Lionel Penrose and his
son, the now famous Sir Roger Penrose, unaware of Reutersvärd’s work,
published an equivalent figure composed of three solid beams, nowadays
known as the Penrose tribar. It appeared in the British Journal of
Psychology [14]. A reflected version of the original tribar is seen in Figure
24.6. The result pictured in Figure 24.4 is one of two solutions using the
same target and similar pieces composed of consecutive numbers of cubes.
The idea of such a target had ocurred to me long before, but lived up to its
name in proving impossible to achieve. At length, following countless
failed attempts, I finally found a way to do it, eight years later.

An idea of the hidden subtleties confronting the would-be designer can
be gathered from the following consideration. It might seem that an
equivalent version of Figure 24.4 could be drawn simply by exchanging the
pieces-formed-of-cubes by their solid equivalents sawn out from the solid
tribar of Figure 24.6. Indeed, this would seem to be so obvious as to hardly
require stating. Nevertheless, such an exchange is in fact impossible.
Consider, for example, the pair of red cubes in the bottom right-hand cell.
From the bottom row target we can see that the length of the equivalent
solid beam would be two cubes plus two inter-cube spaces (the latter
comprising one whole space between the cubes plus two half-spaces at their
ends). The same conclusion is reached on looking at the diagonal target. But
now look at the same two cubes in the right-hand-column target. Here, the
equivalent length of solid beam will be two cubes plus one and a half
spaces, so that our previously sawn solid section will prove too long! The
paradox is illustrated in Figure 24.7.



Fig. 24.4 An interesting case. But is it a geomagic square?

Fig. 24.5 A geomagic square. But is it an interesting case?



Fig. 24.6 Penrose Tribar, but can it replace the cubes in Figure 24.4?

Some might say that Figure 24.4 is not really a geomagic square at all,
because the target does not really exist. Nor will it help if the pieces are
viewed as two-dimensional, rather than as the 3-D objects they suggest.
Scrutiny will show that piece outlines in targets often differ slightly from
the outline of the same piece in its cell, so that we are not even dealing with
a legitimate 2-D case. Nevertheless, that a true geomagic square does
indeed underlie the tribar square is made evident in Figure 24.5, in which
polyhexes replace cubes. Here the title ‘Truth and Beauty’ was suggested
by the compelling logic and simple elegance of the solution.

Fig. 24.7 The dots work but the strips don’t. Why?

As described previously in this account, among other enticing prospects
competing for attention during the early days of research was the notion of
a geomagic square able to tile two different targets. A fond dream in a



golden mist, as it then seemed. Thereafter we looked at the work of Thoen,
de Meulenmeester and Postl, with their amazing 3×3 specimen that
surpasses every expectation in achieving the same goal with as many as
twelve distinct targets. Surely here was a record it would be naïve to try to
improve upon. Nevertheless, the square shown in Figure 24.7 not only
succeeds in this, it even does so by a comfortable margin.

Figure 24.8 is in fact a 4×4 semimagic square, which is to say, a square
that is magic along rows and columns only. However, the square has a
redeeming factor in that its target may take an infinite range of different
forms. Each of the four quadrants is a 2×2 semimagic square showing
identical ‘half-targets.’ The four pieces in each row and column can thus
tile any region, connected or disconnected, that is a union of two such half-
targets, irrespective of their spatial relation to each other. In this way, the
possible target shapes are simply unlimited in variety.

For all that, there is no getting around the fact that Figure 24.8 is not fully
magic. Moreover, there is not a single piece that is not either weakly-
connected or disjoint. Spurred on by these blemishes, the pursuit for
perfection was rejoined and eventually crowned with success. The 6×6
square in Figure 24.9 surmounts both shortcomings while again enabling an
infinite variety of possible target shapes. The latter are again formed by the
union of two identical halves. Here, each of the four quadrants is a 3×3
almost-magic square (only one magic diagonal), all sharing a common half-
target shape.



Fig. 24.8 A semi-magic square, but with a redeeming factor.

No discussion of remarkable specimens in this field can overlook two
further contributions from the discoverer of the very first order-2 geomagic
square, Frank Tinkelenberg. In the first place is his beautiful geomagic star
seen in Figure 24.10. Frank ought to change his name to Twinkelenberg. It
was a prize-winning entry in a competion held by Matthijs Coster in the
Dutch periodical Pythagoras [15][16]. Note the thought that has gone into
his choice of target. Assuming consecutively-sized pieces, its area had to be
33, a number that rules out shapes showing six-fold rotational symmetry.
Even so, the hexagonal symmetry of the star is strikingly re-echoed by the
hole at the target’s centre. Secondly, wielding anew his novel construction
principle, originally applied to order-2, Frank then turned to order-3. Figure
24.11 shows his extraordinary find that breaks all previous records for 3×3
magic squares. To begin with, it is a 3×3 panmagic square, which accounts
for 12 of the 28 targets shown. The remaining 16 targets are formed by
every 4 triads of pieces that can be chosen from any 2×2 subsquare. One
seeing is worth a thousand words. Frank tells me that the same nine pieces
tile the target in 62 different ways. These nine pieces are a subset chosen
from among twelve pieces, using which the target can be formed in 148



different ways. My guess is that records will again be shattered once this
same technique is applied to 4×4 squares. Hats off to a great achievement!

Fig. 24.9 A 6×6 square able to tile an infinite number of distinct targets.

Fig. 24.10 A geomagic star.



Fig. 24.11 A record-breaking 3×3 geomagic square.

25 Collinear Collations

The geomagic construction I would like to discuss last is so peculiar as to
require a digression.

Martin Gardner once introduced the Lo shu with the words, “To
appreciate the gem-like beauty of this most ancient of all combinatorial
curiosities, consider all the ways that its constant, 15, can be partitioned into
a triplet of distinct positive integers. There are exactly eight:

I can almost hear his subsequent groan. I guess more than one reader
must have written to point out his mistake: not “positive integers” but
decimal digits. However, this doesn’t affect the point he was making, which
was that these are the self-same set of eight triplets to be found making up
the rows, columns, and diagonals of the Lo shu. Or, as we might
alternatively describe them, every set of three entries lying in a straight
line. However, the property of 15 he highlighted is not unique. As we saw



earlier in connection with Figure 20.8 on page 61, the number 16 can also
be partitioned into eight triplets using the same set of distinct digits:

Of course, this doesn’t mean that these nine digits can be placed in a 3×3
array so as to yield a magic square with a constant sum of 14 or 16. The
centre digit must always belong to four distinct triplets: one occupying the
central row, one the central column, and two lying along the diagonals. But
neither of the above lists contains such a digit. However, with a little
ingenuity the same numbers can be placed differently so that eight distinct
triplets again lie along straight line paths. In what I call the ‘Egyptian’ Lo
shu seen in Figure 25.1, these triplets again sum to 15:

Fig 25.1 The ‘Egyptian’ Lo shu. Every 3 numbers in a straight line sum to 15.

There are three other ways in which the nine digits can be inscribed in
the circles so as to yield a distinct magic pyramid of this kind. Of course, as
in the Lo shu, the digit 5 again finds itself at the intersection of four straight
lines. But can an arrangement be found such that the magic sum is 14 or 16,
rather than 15? Figure 25.2, the ‘Venusian’ Lo shu, arrived at after some
trial and error, supplies an answer; its magic sum is 16. Replacing each digit
d with 10–d, results in a similar solution showing a magic sum of 14. It is
not difficult to show that for the eight triplets to share the same total then
the nine numbers must always form an arithmetic progression.



Fig 25.2 The ‘Venusian’ Lo shu. Every 3 numbers in a straight line sum to 16.

It was while exploring such systems of collinear triads that I noticed how
the nine points could be chosen so as to coincide with the centres of the
cells in a 7×7 square array. Soon after, I turned up a similar specimen in
which the array was 5×5. Could a yet smaller example be found? A decisive
step was to drop the requirement that points need coincide with cell centres,
so long as they fell within cells. In this way, by degrees I arrived at the
specimen of 4×4 seen in Figure 25.3, a result that finally jolted me into the
realization of what one further step down in size would entail. For the nine
points would then occupy all nine cells of a 3×3 array, a result with
mischievous potential. With this goal in sight, I thus spared no effort in a
diligent search for a solution. On succeeding, the latter then formed the
basis for a new puzzle that has been described as ‘devilish’ [18]. It can be
seen in Figure 25.4.

Fig 25.3 right collinear triads, the numbered points now falling within the cells of a 4×4 array.

In the diagram below, nine numbered counters occupy the cells of a 3x3 checkerboard so as to
form a magic square. Any 3 counters lying in a straight line add up to 15. There are 8 of these
collinear triads.

Reposition the counters (again, one to each cell) to yield 8 new collinear triads, but now showing a
common sum of 16 rather than 15.



Fig 25.4 A seemingly impossibe challenge?

Fig 25.5 One solution among others.



Fig 25.6 ‘Hieroglyphs’, a symmetrical pattern including 9 collinear triads.

A solution (there are at least four) is shown in Figure 25.5. Alas, the
foregoing discussion has already given the game away, so that the challenge
posed will seem less impossible here than it would to anyone unfamiliar
with collinear structures of the kind discussed beforehand. Among the latter
were some readers of Nieuw Archief voor Wiskunde, a Dutch mathematical
journal in which the puzzle appeared [19], a few of whom submitted
‘proofs’ of its unsolvability. The latter were, of course, based on their
unconscious assumption that counters must occupy the exact centre of each
cell. I enjoyed that, naturally.

A point to note is that even the size of the counters shown may not
exceed a certain limit if they are to remain within their cells. An alternative
puzzle that presents a similar picture of numbered counters poses the
different challenge of rearranging them so as to form 8 new collinear triads,
again each summing to 15, but with 1 now occupying a corner cell. Readers
who may like to seek a solution will find that it can be done using counters
that are a good bit bigger than those that appear in the above puzzle.

The collinear point clusters we have been looking at may have their
attractions, but can hardly be said to have visual appeal. The examples here
shown are but a few among a large variety of solutions discovered, but none



of them especially pleasing to the eye in being symmetrical or elegant, save
in one outstanding case. It is also the sole instance known to me of a set of
nine points that include nine rather than eight collinear triads. It is
‘Hieroglyphs,’ seen in Figure 25.6, a diagram showing three-fold rotational
symmetry, but in which pentominoes appear rather than numbers. There are
two reasons for this replacement. In the first place, it is not difficult to show
that an equivalent structure using nine distinct numbers is impossible to
construct. In the second, a switch to planar forms brings with it the usual
increase in the number of targets that can be tiled. Thus it is that besides the
nine collinear triads, all six triads of cells arranged in an equilateral triangle
formation are magic also. These fifteen targets can be seen at the base of the
pyramid. Note the recourse to nocturnal photography in capturing this
specimen.

26 Concluding Remarks

If it strikes the reader that, in the previous section, we have strayed
somewhat from the path of magic squares and begun to explore too far
afield, I can only own up. It is a sign that the end is in sight. Much like the
traveller returned from a journey in foreign lands, in the foregoing pages I
have illustrated the tale of my explorations with souvenirs and specimens
brought back from the expedition. But such specimens are not unlimited in
supply. At least, not if repetition is to be avoided. Time thus to bring this
account to a close before such an accusation can be levelled. I conclude
with a few parting observations.

It may have been noticed that, with a single exception, magic squares
larger than 4×4 have escaped attention in the foregoing account. The reason
is simply that larger squares have seldom struck me as attractive. How
many readers are going to be tempted to add up swarms of numbers in order
to verify that a square is magic? A dedicated few only, I cannot help
thinking. And what then of the elegance that is the very hallmark of the
(small) magic square? Similar reservations apply to non-numerical squares.
Moreover, it is a common fallacy that the bigger the square, the greater the
achievement it represents, because of the supposed difficulty of getting so
many numbers to comply with the magic conditions. But this idea is quite
simply mistaken. It is easily shown that the constraints imposed in fact
diminish with increasing size of square. For, as Chernick [20] was the first



to prove, an algebraic generalization of an N × N numerical magic square
can always be written so that N2 – 2N of its cells are each occupied by a
single independent variable. Or in layman’s terms: in creating a magic
square of order-N, the proportion of cells that can be assigned any desired
number is 1 – 2/N, a proportion that increases with N, and is already as
much as two-thirds of the cells for a square of size 6×6.

These ruminations are a reminder of a related question. I refer to the
problem of how the ‘magicality’ of a square is to be assessed. The question
receives next to no consideration in the literature, and yet the matter of what
makes one magic square more magic, and hence more praiseworthy than
another, is really of central importance to the whole topic. Magic-square
buffs are at heart trophy-hunters, the essence of the game being to track
down new specimens that outclass the opponent’s bag. But how, in the
absence of yardsticks or scales, are meaningful comparisons to be made
among different exhibits? That there is no easy answer to the question is to
be seen by considering the case of that most famous square of all, the
universally acclaimed Lo shu.

What do we find when we look at the numbers appearing in the Lo shu
when pictured as a collection of points distributed along the real number
line? The answer is shown in Figure 26.1. It is a set of nine equidistant
points positioned slightly to the right of zero, which is at the origin, or
centre of the line.

But what kind of an aesthetically insensitive soul, I wonder, has left this
peerless string of pearls lying carelessly in such an asymmetrical position?
And why has the right- hand side of the line been chosen over the left? Is
this not blatant signism, a form of discrimination against negative numbers?

Oh come now, I hear a critic rejoin, what possible difference can the
position of the nine points make? Their key property is that they form an
arithmetic progression, which is to say, they form a chain of equidistant
links. Placing them where they are yields us a magic square that contains
the first nine counting numbers, which are simple, pleasing, and
immediately recognized by all. Lay them anywhere else and the result will
be an essentially identical magic square but one lacking in these desirable
qualities. And in any case, can any better position on the line be found?



Fig. 26.1 A string of pearls.

Fig. 26.2 The balanced square and its close relative the LO shu.

It can. When it comes to magic squares, symmetry and magicality are the
two sides of a single coin. Increase one and the other will be augmented.
Decrease one and the other will diminish. As we shall see, the asymmetrical
position of the points used in the Lo shu exacts a price that is paid for
through a relative reduction in its magical properties.

To see this, let us slide our set of equidistant points leftwards along the
line to the only position of true balance or symmetry, which is in the exact
centre. The central number of the progression now coincides with zero, and
the result is the ‘balanced’ magic square of Figure 26.2 (left), whose
simplicity may belie its enhanced magicality. For comparison, the Lo shu
appears at right.

To begin with, consider the sum of the four corner numbers in the Lo shu.
It is 2 + 4 + 6 + 8 = 20. In our new square it is -3 + -1 + 1 + 3 = 0, the same
value as the centre number. Or in other words, the centre number is equal to
the sum of its four immediate diagonal neighbours. But now consider both
squares as if toroidally-connected. The four diagonal neighbours of any cell
are then the same as they would be were the square used as a tile with
which to cover the plane. This brings to light an arresting fact. For, unlike
the Lo shu, every entry in the left-hand square is now found to be equal to
the sum of its four diagonal neighbours.

Now is that not a ‘magical’ property to celebrate? Had the same thing
been true of the Lo shu, would it not have been trumpeted abroad at every
opportunity? However, there is more to come.



Call the product of the numbers in any row or column of a magic square,
the row-product or column-product. Now Hahn[21] has shown that a
property enjoyed by every 3×3 magic square is that the sum of its three row
products is equal to the sum of its three column products8. In the Lo shu, for
example, this sum of products is 225.

It would be pleasing were a similar property to be shared by the three \-
diagonals or ‘slopes,’ and the three /-diagonals or ‘slants,’ but in fact it is
not. Not in every case, that is. Not in the Lo shu, in particular. But it is true
in the balanced square, where the sum of the 3 row-products is equal to the
sum of the 3 column-products and the sum of the 3 slope-products is equal
to the sum of the 3 slant-products:

Moreover, the sums of the row-products, column-products, slope-
products and slant products are all the same; they are all equal to the magic
sum, zero.

Here then is another ‘magical’ property of the balanced square that is
lacking in the Lo shu. How come it is absent from the latter? A glance at
any generalization of order-3 squares is sufficient to explain all. From this
will be seen that the sum of the four corner entries in any 3×3 magic square
is always equal to four times the centre number. But 4x = x only when x = 0.
That is, the four corner entries will sum to the centre entry only if the nine
numbers employed are centered on the origin of the real number line. It is
as foretold: enhanced magicality goes hand in hand with enhanced
symmetry.

It is a paradoxical fact that although much of the Lo shu’s appeal lies
exactly in its use of the natural numbers, these are now seen to be the
source of its lesser magicality when compared with the square above. Not
that I suppose these assaults on the Lo shu will do its reputation any lasting
harm. However, if my example has helped to illuminate the difficulties
involved in comparing the magicality of different squares then it will have
served its purpose.



The generalization of order-3 squares just mentioned brings me nicely to
a final remark. It will come as no surprise to anyone who has read this book
that I had a particular generalization in mind.

Édouard Lucas’s formula has been a source of fascination to me since the
day I first beheld it and saw he had improved on a similar square I had
arrived at on my own. Admittedly there is not much to choose between the
two (seen in Figure 26.3), which are merely alternative expressions of
exactly the same algebraic generalization.

Fig. 26.3

But Lucas’s formula uses 33 symbols, whereas mine requires 35. And
while his does it without requiring numbers, mine employs two 2’s. I guess
many mathematicians will have little patience with such pernickety
attachment to appearances, a standpoint I can understand and respect, but
which is simply not my style, who feel more of a poet than mathematician.
And on grounds of economy of expression there is no denying that of the
two ‘poems’ in Figure 26.3, Lucas’s is the better. By way of comparison,
Figures 26.4 and 26.5 show further versions of the same generalization, the
first taken from an article by Martin Gardner, the second, which is unusual
in showing that the three numbers in the top row may be chosen at will,
again due to the author.

As related earlier in this volume, it was the desire to come up with a
pictorial representation of Lucas’s formula that first lead to the idea of
geometric magic squares. Even before that, however, the feeling that
something could be “done” with Lucas’s square had haunted me for years.
In my own mind it was not merely a kind of poem, but an almost mystical
object that enshrouded some potent secret, like the green jewel in the
forehead of a golden idol. At the back of my mind was always a vague idea
that its algebraic symbols could be translated into some sort of graphical
equivalent that would make this secret manifest. A kind of vindication of
this intuition came in 1997, when I tried substituting Gaussian integers for
variables and thus produced magic squares whose nine entries could be



plotted as points on the complex plane. The discovery that these nine points
always lay on the periphery of a parallelogram could be formulated as a
new theorem, elementary, yet previously unknown. If there was one area of
magic square theory in which one would least expect to make such an
interesting find it was surely that of 3×3 squares, the smallest, and hence
most thoroughly investigated type of all, with a history going back over
some 2,000 years. The finding appeared as “The Lost Theorem” published
in The Mathematical Intelligencer. Its appearance engendered warm
compliments from a couple of readers, but I’m afraid the truth is that it has
since passed into oblivion, so that the Parallelogram Theorem of 3×3 magic
squares remains as unknown today as it was before I discovered it. The
piece has been included here as Appendix 5 in the hope of reviving its
memory. In similar fashion, it is a mystery to me why Lucas’s square is not
celebrated as the greatest of all 3×3 magic squares, embracing as it does all
the myriads of its particular numerical instances, whilst enshrining the
timeless symmetries that govern the structure of them all.

Fig. 26.4

Fig. 26.5



8 Curiously, Hahn failed to notice an important point. The property he identified belongs, in fact,
to every 3×3 semimagic square. It is only because fully magic squares are a particular instance of the
latter that they inherit the same property.



Appendix I

A Formal Definition of Geomagic Squares

An informal definition of geomagic squares has been given elsewhere in
this book. From the mathematical point of view, however, loose talk about
‘pieces fitting together as in a jigsaw’ is clearly inadequate. The purpose of
this addendum is thus to provide a formal definition of geomagic squares.
To this end, we begin by defining a ‘generic’ magic square, by which is
intended a generalized magic square in its widest possible sense. That is, a
canonical magic square is described, but without stipulating the kind of
‘objects’ that occupy its cells, and without specifying how these combine so
as to form a constant target (‘target’ again in the broadest sense possible).

Although the presentation has been kept as informal as possible, a degree
of formality is necessary. No doubt some mathematicians will find the
treatment too lax; for laymen it may prove too demanding. At the same
time, certain details have inevitably escaped mention, just as some of the
mathematical concepts involved could have been explained more fully

Properties of the Generic Magic Square

Fundamental to any conceivable magic square (of order n ≥ 2) is an n × n
matrix M over a domain D, in which we discern 2n + 2 (potentially ‘magic’)
lines: the n rows, the n columns, the main diagonal (\) and the co-diagonal
(/).

All essential properties of the generic square of order n ≥ 2 can now be
specified in a list of 5 components:

i)   A domain D, which is a set of ‘objects’ that will occupy the cells of M. In the case of numerical
magic squares, this domain would be simply the ring of integers Z.

ii)   A binary operation + on D. Since the n objects in every line must be able to merge so as to form
the same ‘sum’ in each case, we require that D be equipped with a rule of combination. Our
requirements will be met by a binary operation + that is:

commutative (d1, + d2 = d2 + d1), associative d1 + (d2 + d3) = (d1 + d2) + d3, and has an
identity element ‘0,’ such that 0 + d = d + 0 = d for all d  D.



We shall use the term ‘sum’ for the operation +. For D = Z the binary
operation is ordinary addition and the identity element is zero.

iii)   An equivalence relation ~ on D. For D = Z this equivalence relation is equality (‘=’). Note that
compatibility of the equivalence relation with the binary operation is not required. This means
that for a, b, a´, b´  D with a ~ a´ and b ~ b´, it is not necessarily true that a + b ~ a´ + b´ .

iv)   An element T  D, called the ‘target’ or ‘magic sum’. For D = Z, T is thus an integer - the magic
sum.

v)   Two rules that the matrix M must obey. These are:

1. For each line L, the following Line-Sum Condition holds:

LSC :
Suppose L = {d1 . . . , dn}. Then there exist elements d1´, . . . , dn´  D such that di ~ di´ for all 1 ≤
i ≤ n and d1´ + . . . , + dn´ = T.

This means that the sum of d1, . . . , dn is not necessarily equal to the target but that there exist
elements d1´,..., dn´ which do sum to the target and are equivalent to d1, . . . , dn, respectively.

2. The n2 elements in the matrix M are mutually non-equivalent.

Rule 1 guarantees that the square will be magic, which is to say, that the
n elements in each line combine to produce the same outcome (the target).
Rule 2 ensures that the square is not trivial, which is a term used to describe
squares showing repeated entries. An n × n matrix M over a domain D
satisfying rules 1 and 2 is thus a non-trivial magic square of order n.

Remark

It is important to understand that the content of a cell of the matrix M (i.e an
element of the domain D) is a representative of an equivalence class (as
defined by ‘ ~ ’), which is to say, a set of equivalent objects. For example, a
cell may contain a planar piece of a certain shape, whereas that particular
piece is merely one member of an equivalence class consisting of the
‘same’ piece in all its myriad possible alternative positions and orientations.
Note that this makes no difference in the case of numerical magic squares
because equivalence is then simply equality, so that each equivalence class
consists of a single number. But for geometric magic squares an
equivalence relation is essential because although two identically shaped



pieces in the plane, say, are not equal, they are congruent, which for our
purpose means equivalent.

With the generic square now described, we can turn to the definition of
geomagic squares, which are a particular instance of the generic square.
Accordingly, our goal will be achieved by providing a suitably precise
specification of each of the five components.

The Domain (i)

By way of introduction to the domain to be used, consider closed, bounded
subsets of the Euclidean space of dimension d (d ≥ 1). A subset C is
‘closed’ if and only if all boundary points of C belong to C. An example is
the unit disk, which consists of all points of the plane having distance ≤ 1
from the origin. It is a closed set because its boundary, the unit circle,
belongs entirely to it. If we remove any number of points from the
boundary (the unit circle) then the resulting set is no longer closed.

Further, a subset B is ‘bounded’ if and only if there exists a sphere of
sufficiently large radius such that B is completely surrounded by it. In other
words, B does not ‘extend to infinity’ in any direction. Subsets of Euclidean
spaces, which are both closed and bounded are known as ‘compact’ subsets.
In fact, in general topology, the definition of ‘compact’ is different, but in
the special case of Euclidean spaces the two definitions are equivalent, so
that ‘compact = closed + bounded’, as shown by the Heine-Borel theorem.
In light of these remarks, our domain D will be the set of all compact
subsets of Euclidean space of dimension d (d ≥ 1). Hence, by a geomagic
square of dimension d will be meant one in which every entry is a compact
subset of the Euclidean space of dimension d.

The remaining 4 components can now be identified as follows:

The Binary Operation (ii)

For two compact subsets A and B of the space, let A + B := A ∪ B (set
union). The identity element 0 is then the empty set Ø.

The Equivalence Relation (iii)



For two compact subsets A and B of the space, let A ~ B if and only if A and
B are congruent, that is, there exists an invertible, affine linear distance-
preserving transformation h of the space such that h(A) = B.

This means that the set B can be obtained from the set A by a
displacement of A through space, involving rotations and/or translations,
together with a possible reflection.

The Target (iv)

The target T is any compact subset of the space, that is, a member of D.

The Line-Sum Condition (v)

The two rules to be obeyed by the matrix M remain unchanged for
geomagic squares, although the latter do impose an additional requirement
on the Line-Sum Condition:

The elements d1´,..., dn´ (see LSC) are allowed to touch each other, but
not to overlap. This means that for all i ≠ j the intersection of di’ with dj’ is
empty, or consists of common boundary points of di’ and dj’ only. That is,
the intersection contains no interior points.

Expressed informally, the Line-Sum Condition for geomagics thus
demands that the elements of any line L can be arranged so as to pave the
target, without overlaps.

This completes the definition of geomagic squares.

A Note on Numerical Vs Geomagic Squares

In the case of dimension 1, the compact, connected subsets are the closed,
bounded intervals of the real number line, such as the interval [0,1],
meaning real numbers in the range 0…1. Numerical magic squares using
real numbers can then be viewed as geomagic squares for which (i) the
domain D is the set of all bounded, closed intervals of the real number line,
and (ii) the target is again an interval. The binary operation + and the
equivalence relation ~ are then set union and congruence, and since two
bounded, closed intervals are congruent if and only if they are of the same
length, numerical magic squares over the reals are revealed as a special case



of geometric magic squares of dimension one. They are that case in which
the compact subsets are all connected.

A further point of interest is that numerical magic squares operate under
constraints that do not apply to geomagic squares when d > 1. For example,
no numerical 3×3 panmagic squares exist, whereas for d = 2, an example
can be found on page 17. Moreover, this same square even exhibits a further
four symmetrically arranged magic triads that enhance its magicality even
beyond that of a panmagic square. Whence comes this greater potency
enjoyed by geomagic squares?

Suppose we have a + b = c, where a, b and c are real numbers. From this,
we know that b is the only number, that can be added to a so as to yield c.
And the same obtains if a, b and c are three closed, bounded intervals of the
real number line, rather than numbers.

Fig. 1

But suppose now that a, b, c (and d) are compact subsets of the Euclidean
space of dimension 2 corresponding to the planar pieces seen in Figure 1.
Note that a´ ~ a and c´ ~ c. But here b is no longer the only piece that can
be appended to a so as to yield c. An alternative is the different piece d,
because a + b ~ a´ + d ~ c´ ~ c. In short, the behaviour of compact subsets
is inherently more flexible than is that of numbers.

Geomagics enjoy more freedom than numerical squares because their
targets can be assembled from members of their domain in many more ways
than magic sums can be formed with numbers.

We have seen that numerical magic squares are a subset of geomagic
squares. Could it be that geomagic squares are themselves a subset of some
wider genus of magic square? The question remains unanswered. In any
case, the plethora of new challenges thrown up by 2-D geomagic squares
ought to prove sufficient to keep investigators occupied for some time to
come.

Grateful thanks are due to my friend Michael Schweitzer who provided
the mathematical basis of the above definition.



Appendix II

Magic Formulae

Introductory Note

Penned in 1980, but never published, ‘Magic Formulae’ was my first ever
attempt at writing up a new result in the form of an essay. Knowing little at
that time of the world of professional journals, the style adopted is unusual,
my imaginary audience being composed of laymen possessed of a
smattering of mathematics, such as myself. Thoughts of publication not
having been seriously entertained, I saw myself as my own publisher, and
thus took a good deal of trouble over the presentation, the completed article
taking shape as an A5 booklet sandwiched between card covers. We didn’t
have word-processors in those days, so the whole thing was bashed out on
my old Adler typewriter, matrices and all. For the front and back covers, I
made drawings of algebraic magic squares in which the variables were
represented by ‘magical’ symbols: runes and astrological signs. The letters
used for the title ‘Magic Formulae’ were copied from the Book of Kells. In
retrospect I can see that this concern with symbology marked the beginning
of a train of thought that would chug along for some thirty years until its
eventual arrival at geometric magic squares. Should anyone be interested in
how the author’s mind works, here then is a good place to start. With the
present volume in mind, in the interests of clarity I recently returned to the
piece and improved it in various respects.



Algebraic generalizations using runic characters and astrological signs embellished the front
and back covers of Magic Formulae. Red symbols stand for positive variables, black symbols
for negative variables. The square at left generalizes panmagics, while the other covers all 4×4

magic squares.

Magic Formulae

“Runes and charms are very practical formulae designed to procude
definite results, such as getting a cow out of a bog.”

—T.S. Eliot, The Music of Poetry

In the year 1910, Ernest Bergholt, a familiar name in the British literature
on recreational mathematics of the time, published a new generalization of
4×4 magic squares [1]. He gives us no clue as to how he arrived at it, but
simply presents it with the claim that “. . . it is the completely general
formula . . .”



Fig. 1 Bergholt’s generalization.

Bergholt uses the word ‘formula’ in the sense of a recipe, and by a
completely general formula he means one that generalizes all possible 4×4
magic squares, rather than some restricted family of special types. Below
we shall sometimes use the term universal generalization to indicate the
same thing. Note how the formula neatly encapsulates many intrinsic
properties of every 4×4 magic square, such as that the four corner numbers,
the four central numbers, the four central numbers in the outer rows, and the
four central numbers in the outer columns all sum to the same total as do
the rows, columns and diagonals: A+B+C+D. Alternative proofs of these
properties, often tedious and space-consuming, nevertheless clutter the
literature, showing that the advantages of such algebraic formulae remain
anything but widely recognized.

H. E. Dudeney, the famous British puzzlist, was the first to acknowledge
significance in Bergholt’s square. It is “. . . of the greatest importance to
students of this subject,” he says in Amusements in Mathematics [2]. Much
later, H. S. M. Coxeter found it sufficiently interesting to include in the
eleventh edition of Mathematical Recreations and Essays [3]. Only three
years after this, however, even Maurice Kraitchik, who devoted several
pages of his Mathematical Recreations to algebraic formulae, makes no
mention of it. Since then Bergholt’s contribution seems to have been all but
forgotten.



Fig. 2 Lucas’ 3×3 formula.

Only for a brief moment in 1938 did Bergholt’s square surface from
obscurity and threaten to claim a permanent place for itself in the theory of
magic squares. In that year, Jack Chernick published a method for
constructing generalizations of any order in a standard normal form [4]. But
through a circumstantial quirk, Chernick’s technique was applicable only to
5×5 and larger squares, so that for the sake of completeness he was obliged
to include non-standard generalizations for orders 3 and 4. For the former,
he used the widely known formula due to Édouard Lucas [5] seen in Figure
2.

When it came to order-4 however, Chernick departed from his most
obvious course, which was to use a nonstandard, but still Chernick-like
formula such as that seen in Figure 3, and reproduced instead Bergholt’s
square. This suggests that he appreciated which of the two was the better.
Bergholt’s square is not only more economical in expression, it reveals that
a Latin square is concealed within every 4×4 magic square, something we
may never have guessed from Figure 3. [By a Latin square of order n is
meant one showing n2 entries of n different elements, none of them
occurring twice within any row or column, as seen in the arrangement of
upper-case letters in Bergholt’s formula]. I suspect that this may have
secretly irritated Chernick, because, instead of enthusing over Bergholt’s
gem, he went on to quibble over a trifling point in the proof of its
generality. What is amusing is that even after Chernick had finished
tinkering and had satisfied himself that all was well, Bergholt’s square
remained unproven.

The criteria of proof implied by Bergholt’s paper in support of the
complete generality of his square were threefold:

1) the square is magic
2) every cell is occupied by a distinct entry
3) it is a function of 8 independent variables.



Following an interlude of twenty-eight years (research in this area
proceeds at a leisurely pace), Chernick protested that the formulation of the
third criterion had been “stated without proof.” Nevertheless, he went on to
show that Bergholt’s figure of 8 had indeed been correct, and advanced
even further by proving that any universal generalization of order-n magic
squares is necessarily a function of n2 – 2n independent variables. In the
case of order-4, this figure is of course 42 – (2 × 4) = 8. So, not only had
Chernick vindicated Bergolt’s formula, his inclusion of it in his own paper
ought to have lent it a degree of prestige. Nevertheless, during the ensuing
forty years Bergholt’s work has gradually settled further into oblivion, and
here the matter has rested until now.

Fig. 3 A Chernick-type generalization of order-4.



Chernick’s elementary procedure for arriving at Figure 3 is detailed in the
box below. It is important to realize that, in contrast to Bergholt’s approach,
it is this very process by which Chernick formulae are arrived at that is a
guarantee of their validity. This remains the case whether the formula
derived be universal in scope or otherwise.

Returning now to Bergholt’s work, Figure 4 shows a matrix which,
although satisfying all three of his conditions, still fails to be a universal
generalization. Figure 4 is in fact a Graeco-Latin square, which is to say,
one formed by the addition of two Latin squares so as to yield a distinct
entry in each cell. Moreover, the latter are diagonal Latins, or ones whose 4



distinct elements also appear in the two main diagonals. But were Figure 4
also a generalization of all magic squares of order-4, the four cells forming
each quadrant would not sum to the magic constant, A + B + C+D + a + b
+ c + d, as they do here. This is a property of some 4×4 magic squares, but
certainly not of all. Bergholt’s criteria are, therefore, revealed as flawed,
since they fail to distinguish been universal and non-universal
generalizations. But then Bergholt’s generalization itself becomes open to
suspicion, the question of its true generality once again coming into
question.

Fig. 4 A diagonal Graeco-Latin square.

Not surprisingly, these doubts were far from obvious to me on my first
encounter with Bergholt’s formula. Like others before, I accepted his square
without question. Yet the simplicity and almost palindromic symmetry of
his result intrigued me so much that I began to speculate about how he had
found it, as well as whether he had extended his approach to higher orders.
A search of the literature turned up no references however, so that I began
in earnest on an attempt to create a similar generalization for order 5.
Eventually my efforts were rewarded, and I am pleased to present here the
hoped-for order-5 square; see Figure 6. However, a very surprising
development has been the discovery of a further simplification of Bergholt’s
square, as shown in Figure 5. Proofs that Figures 5 and 6 are indeed
universal generalizations can be found in the boxes below.



Fig. 5 A minimal formula for order-4.

Admittedly, the simplification of Bergholt’s square is modest, an
application of Occam’s razor resulting in little more than a close shave. On
the other hand, it is easy to see that the eight variables occurring in any
order-4 formula must each appear at least four times: one for each
row/column when the variable appears in the magic constant; twice positive
and twice negative when not. The minimum number of variable
appearances is thus 8 × 4 = 32, as in Figure 5, for which reason we may call
this a minimal formula.



Fig. 6

Figure 6 is in fact not a minimal formula, the very first example of which
being due (to the best of my knowledge) to Prof. Don Knuth, with whom I
corresponded on this topic. Later, a puzzle based on the problem of
distinguishing universal from non-universal formulae appeared under our
names in the Journal of Recreational Mathematics1. Knuth’s minimal
formula which featured in the puzzle presentation is shown in Figure 7.

The foundation of Bergholt’s approach rests in the observation that a
numerical diagonal Latin square is simultaneously a trivial type of magic
square in which only n of the n2 entries are distinct; whereas a literal
diagonal Latin square (i.e., one using letters) can be interpreted as an
algebraic generalization of such trivial squares. He then had the ingenious
idea of introducing modifications to the literal Latin square in a way that
would preserve its magic properties while ensuring that each cell becomes
occupied by a distinct entry. This is effected by the arrangement of lower-
case letters in his matrix. Similarly, both of my own generalizations above
are elaborations upon Graeco-Latin squares. But Bergholt was still up
against the problem of deciding whether a matrix so produced is a
generalization of all 4×4 magic squares or not. For there is no guarantee
that the relations established among the cells are not restrictive beyond the
point dictated by the definition of a magic square. Having grasped his



principle, it was not difficult to dream up candidate squares for order-5, but
the question remained of how they were to be tested. The solution to this
problem is of course pivotal in identifying genuinely universal formulae
from among likely contenders.

Fig. 7

Following a lot of thought, eventually I came to see that if Chernick’s
generalization was by definition universal (see first box above), any
alternative formula could only be a re-expression of that same
generalization in different form. The test of a putative formula, in short,
stood or fell by a demonstration of its isomorphism with the Chernick-type
square. Two of the above boxes provide demonstrations of isomorphism
between Figures 5 and 6 and their corresponding Chernick equivalents. It is
ironic and fitting that Chernick held the key to Bergholt’s vindication all
along: for Bergholt’s formula is indeed a “completely general formula” as
may easily be verified in the same way as shown for Figure 5.

Reducing Formulae to Essentials

The formulae looked at above have all been generalizations of traditional or
additive magic squares, which is to say, those in which the sums of the
numbers in every row, column, and diagonal are alike. Analogous formulae
for multiplicaitive squares, showing constant products, can equally be
created. On refelection, however, we see that, all other things being equal,
the only change required in any such matrix would be the replacement of ×
for +, and 1/a for –a; where a may be any variable. This realization quite
naturally expands to the unspecified binary operation,~, and the concept of
a generalization of “~-itive” magic squares, similar in other respects to
additive types, save that ~ replaces +, and the inverse a-1 replaces –a. Still
further compression can be achieved by writing ab for a ~ b, and a for –a.



These points find expression in Figure 8, a square that subsumes additive
and multiplicative magic squares in a single formula. By discarding
redundant operator signs, we not only increase the sweep of generalizations,
but expose the essential structure with starker clarity.

Fig. 8 Another minimal formula for order-4.

This reduced form will be adopted in what follows, although in the
discussion it will be convenient to retain the familiar terminology of
additive magic squares. Bear in mind though that justaposition (ab) will
represent any binary operation, and ā the inverse of a, so that the scope of
variables is not restricted to numbers only, but embraces the elements of
any abelian group. Figure 8, incidentally, is a second example of a minimal
formula based on a diagonal Graeco-Latin square.

There is a further step that may be taken toward streamlining
generalizations. Until now, the constant sum in each case has been
represented by an expression that is an accidental outcome of the matrix
design. For instance, in the isomorphic squares of Figures 3 and 5 it is p + q
+ r + s and A + B + C +D + a + b + c, respectively. To standardize this
magic constant, all that is needed is to stipulate its value at the outset, say k,
and then to complete the generalization so as to comply with this new
condition. In the Chernick square of Figure 3, for example, every
appearance of s would then be changed to k – (p + q + r). However, if the
magic constant is set to zero (or group identity element), k may be
eliminated from the matrix and the number of distinct variables reduced by
one. This is illustrated in Figure 9, where twin generalizations of
orthogonally-magic (i.e., magic on rows and columns only) and diagonally-
magic (i.e., magic on all, including broken, diagonals) squares of order-3
are shown; k = 0. All subsequent formulae will appear in this zero-sum
form, and of course isomorphism with zero-sum Chernick equivalents is
easily demonstrated just as before.



Fig. 9

If it seems odd that the matrix can surrender a variable without detriment
to its information content, observe that there is indeed a loss. Universality is
sacrificed because the reduced matrix now generalizes zero-sum magic
squares only. However, the real significance of generalizations lies in their
ability to express intercellular relations, in which respect nothing has been
lost. A nice illustration of this is Lucas’s formula of Figure 2, in which a
zero-sum square similar to those of Figure 9 is superimposed on a uniform
matrix of c ’s. The latter contributes nothing to the essential structure, but
merely represents the mean value (k/n = c) of each cell, where n is the size
of the square.

Looked at in this way, an interesting similarity emerges in the
construction principle underlying both Lucas’s formula (Figure 2) and
Bergholt’s square. For in both cases, an initial trivial magic matrix becomes
detrivialized through superposition of magic-preserving zero-sum variable
patterns. In Bergholt’s case the initial matrix is a Latin square, in Figures 5,
6, 7, and 8 it is a Graeco-Latin square, and in Lucas’s formula it is the
uniform matrix.

Once this has been glimpsed, it is natural to contemplate the possibility
of a uniform matrix-based formula for order-4. My own exploration in this
direction has yielded the square seen in Figure 10. Although less
economical than other squares, here at last we recover that symmetry in the
distribution of variables that intuition tends to anticipate. The elegance of
such structures makes it difficult to see them as mere algebraic abstractions;
to the receptive eye they become rather, acrostic, palindromic poems
written in the language of mathematics. More prosaically, Figure 10
represents a 4×4 counterpart to the 3×3 formula of Figure 2.

Seen from the present perspective, Bergholt’s square may now be located
roughly halfway along a spectrum of possible formulae, extending from
those based on the uniform matrix, to those based on a Graeco-Latin square.
Besides these, there are the Chernick-type squares, but of course all these



different matrices are mathematicallly identical, being only alternative
expressions of the same underlying algebriac form. Even so, the
construction and classification of such algebraic squares opens as an
attractive field of enquiry. Among the more obvious goals of research is a
uniform matrix-based version of order-5, while at the other extreme there
opens the possibility of 5×5 formula based upon three superimposed Latin
squares. Incidentally, no 3×3 diagonal Latin square exists, but a Chernick
square for this order is readily constructed.

Fig. 10

The concept of the magic square may of course be extended to matrices
of various shapes or dimension, and similarly, the cell entries together with
the operation(s) performed upon specific constellations of these in order to
yield the magic constant need not be confined to familiar forms. In all such
constructions the matrix functions as a purely mnemonic device for
indicating a certain set of equations. A study of the algebraic
generalizations of such higher forms promises to be rewarding, but, in
conclusion, I turn rather in the opposite direction, toward the use of these
elementary algebraic techniques in elucidating a peculiar subset of 4×4
squares.

Dudeney’s 12 Graphic Types

In the same year that witnessed the appearance of Bergholt’s square, H. E.
Dudeney published an article including a classification of the 880 ‘normal’
or consecutive-integer magic squares of order 4. This was in The Queen,
published on January 15th, 1910. The same material was later incorporated
into his book Amusements in Mathematics. According to this scheme, every
normal square belongs to one of twelve “Graphic Types,” depending upon
the distribution of its eight pairs of so-called complementary numbers, 1



and 16, 2 and 15, . . . , 8 and 9. Figure 11 reproduces the twelve diagrams,
where the lines indicate those cell couples occupied by complementary
pairs. As a matter of fact, an identical categorization appears in W. S.
Andrews’ Magic Squares and Cubes, which predates Dudeney’s article by
two years. But although Andrews’ has the priority, he blotted his copybook
by completely overlooking one of the twelve Types, a slip that obliged him
to add a sentence to the 1917 edition of his book acknowledging Dudeney’s
more thorough analysis.

Fig. 11

In a table accompanying his diagrams, Dudeney gave an exhaustive
enumeration of all 880 normals under his twelve Types, together with their
grouping under the traditional headings of Nasik, semi-Nasik, and Simple;
see Table 1. Nasik (or pan-diagonal’, ‘panmagic’ or ‘diabolic’) magic
squares are those in which the entries belonging to each of the so-called
broken diagonals again sum to the magic constant. In a 4×4 square these are
the four long’ broken diagonals ahkn, dejo, bglm, and cfip, as well as the
two ‘short’ broken diagonals, belo and chin; as in Figure 12. Semi-Nasiks
are those in which only the latter pair are magic. Simple squares are
ordinary magic squares: magic on rows, columns, and two main diagonals,
only.

My encounter with Dudeney’s work occurred while I was still wrestling
with the order-5 square described above but after that was solved I quickly
saw that the Dudeney diagrams created a basis for twelve special algebraic
squares. Each Dudeney Type expresses a set of relations that taken in



combination with the usual magic conditions define a restricted or non-
universal generalization. In normal magic squares, the sum of the
complementary pairs is half the magic constant, so that when the latter is
zero the complements c1 and c2 are c1 and –c1 To construct a zero-sum
Chernick square corresponding to each Type, we proceed exactly as
outlined in the box on page 102, but for every entry a, write ā in the
complementary cell indicated by the Dudeney diagram. Figure 13 shows an
example for Type I, which is therefore a generalization covering at least all
normal Nasik magic squares of order-4, among others.

Table 1

Fig. 12



Fig. 13 A Chernik-type formula for Type I squares.

It was the work of a single evening to write out all of the twelve
generalizations, and exciting to examine the newly disclosed algebraic
structures concealed within the Dudeney diagrams for so many years. But at
that stage, I had not yet awoken to the advantages of zero-sum notation,
with the result that arbitrary magic constants rendered meaningful
comparison of different squares impossible. Besides, these matrices
suffered from the redundancy and imperspicuity common to the Chernick
type, so that revision into reduced form became the obvious next step. This
turned out to be a formidable task. The Chernick squares play the part of
Ariadne s thread, but trial-and-error guided by experience and intuition
remains the only method of advance. Every square is capable of expression
in a more or less unlimited variety of forms, so that each underwent several
stages of refinement before reaching completion. Finally, in order to
maximize comparability of squares, careful consideration had to be given to
the allocation of letter symbols. In Figure 14 can be seen the “fruit of
pensive nights and laborious days.” Here, it will be found, lie answers to
some of the intriguing questions concerning those 880 squares first brought
to light by the labours of Frénicle de Bessy in 1693.

Reading the Runes

In the same way that certain properties common to every 4×4 magic square
can be read off from a universal formula, so it is with the twelve Dudeney
Types. Here I confine myself to three main observations.



1 As already noted, not only are Type-I squares Nasik (as Dudeney was
well aware), the sum of the entries in any 2×2 block of cells is again equal
to the magic constant, or zero in this case. This applies equally when the
square is viewed as toroidally-connected, which is to say, when the top and
bottom rows, as well as the left-and right-hand columns are treated as
adjacent to each other. Counting up, we find 16 of these zero-totalling 2×2
blocks, corresponding to the letters in Figure 12 as follows: abef, bcfg,
cdgh, adeh, efij, fgjk, ghkl, ehil, ijmn, jkno, klop, ilmp, abmn, bcno, cdop,
admp. Magic squares that exhibit this property are said to be compact.
Hence, among other things, the message contained in Figure 14 (I) is that
every Type-I square (i.e., every normal square whose complementary pairs
are distributed as shown) is both Nasik and compact. However, we can go
somewhat further than this.



Fig. 14

In the same way that the twelve squares in Figure 14 are non-universal
formulae based upon Dudeney’s Graphic Types, so can Chernick
generalizations describing the structure of other special kinds of square be
constructed. For example, such a formula can be made to describe Nasik
squares only, which is to say, Nasik squares that are not necessarily normal.
As before, the procedure followed is the same as that shown in the box on



page 4, except that, in addition to the usual magic properties, now every
broken diagonal is assumed to be magic also. The result is identical to
Figure 13. This is of interest because, as the reader can check, Figure 13
turns out to be isomorphic with the Type-I formula of Figure 14. But this
shows us that every 4×4 Nasik square, normal or otherwise, is always
comprised of 8 complementary pairs of entries, and is always compact, a
finding that can alternatively be validated by constructing a Chernick
generalization of all 4×4 compact magic squares. The result is again
identical to Figure 13, which again shows that the three characterizations,
Type I, Nasik, and compact, define exactly the same entity.

2 It will not have escaped readers that the set of 16 algebraic terms
appearing in the twelve formulae are in several cases the same. As already
pointed out, “careful consideration had to be given to the allocation of letter
symbols.” Specifically, the twelve squares fall into four classes sharing
identical cell entries:

Class 1 : Types I, II, III, I V, V, (and that subset of Type-VI when t = s or -s)
Class 2 : Type VI (excluding the above subset members)
Class 3 : Types VII, VIII, IX, X
Class 4 : Types XI, XII

Clearly, the entries of a magic square belonging to a given Class may
always be transposed to form a new square of different Type in the same
Class. Hence, the entries in a Type-XI square, say, can always be rearranged
to yield a Type-XII square, and vice versa, while the entries in a Type-V
square, for example, can always be rearranged so as to form a Nasik, or
Type-I square, and vice versa. This is no trivial finding, since it draws
together and explains the entire family of all such magic rearrangements, as
has never before been possible. Moreover, it obviates the necessity of
having to prove any particular case, such as that found in [6], for example,
in which the author devotes two pages to proving that Type-I squares are
always transposable into Type III, and vice versa. Figure 14 subsumes all
such demonstrations, and more besides, in a single diagram.

Closer examination of the 16 algebraic terms comprising Class 1 reveal
them as the entries of an addition table, such as that in Figure 15 left. This
is of interest because the entries in Lucas’s 3×3 formula of Figure 2 also
belong to an addition table (Figure 15 right), a fact that finds explanation in



the Parallelogram Theorem that is introduced in The Lost Theorem, here
reproduced in Appendix V.

Less obvious is that the entries of Types XI and XII are really that special
case of Class 1 when s = pr. Class 4 magic squares are thus always
transposable into Class 1 Types, so that the entries in a Type-XI or XII
square can also be rearranged to yield a Type-I, or Nasik square, say.

3Dudeney’s table in Figure 11 shows that some normal squares of Type-
VI are semi-Nasik (96) and some Simple (208). But if now in Figure 14
(VI) we look at the special cases when t = s, or t = –s, respectively, the
resulting matrix becomes as in Figure 16.

The 16 entries occurrring in these Type-VI algebraic squares are now
identical to those that appear in the formulae for Types I – V. Moreover, the
square on the right is semi-Nasik, while the square on the left is what I call
“skewed semi-Nasik,” a new category I introduce here that will prove
helpful. Using Chernick equivalents, it is not difficult to prove that these
squares are indeed general formulae for Type-VI semi-Nasiks and skewed
semi-Nasiks, respectively. Every one of Dudeney’s 96 normal semi-Nasiks
must, therefore, be an instance of the right-hand formula in Figure 16.

Fig. 15



Fig. 16

Figure 17 indicates the two extra zero-totalling sets of four entries that
characterize these squares.

Fig. 17

A semi-Nasik square is one in which the 4 numbers in each of the two
short broken diagonals sum to the magic constant. We define a skewed
semi-Nasik as a Type VI magic square in which the 4 cells marked X, and
the 4 marked Y, again sum to the magic constant.

A computer program that checked to see how many distinct magic
squares can be formed using the 16 algebraic terms of Class 1, finds 528,
rotations and reflections not counted. But this is 96 greater than the sum of
Dudeney’s totals for Types I–V, plus his 96 Type VI semi-Nasiks: 48(I) +
48(II) + 48(III) + 96(IV) + 96(V) + 96(VI semi-Nasik) = 432. This reveals
that Dudeney’s 208 ‘Simple’ normals must include 96 skewed semi-Nasiks,
a deduction that fits nicely with the fact that every Type-VI semi-Nasik can
be rearranged to yield a Type-VI skewed semi-Nasik square.

Conclusion



The year of writing marks the fiftieth anniversary of Henry Ernest
Dudeney’s death, exactly seventy years following the joint appearance of
his and Ernest Bergholt’s work discussed above. Whether they had any
inkling of the eventual importance of being Ernest is unknown, but
Dudeney’s earnestness in describing Bergholt’s work as “of the greatest
importance” has already been noted. In any case, the combination of their
techniques as exemplified in the squares of Figure 14 appropriately
commemorates their oft neglected contribution to the theory of 4×4 magic
squares.

Every algebraic square, universal or otherwise, corresponds to an x-ray
photograph exposing the skeletal structure underlying, yet concealed, by the
arithmetical exterior of numerical magic squares. The differing approaches
of Bergholt and Chernick toward identifying this structure afford perfect
illustrations of the two methods of science as depicted in the epistemology
of the contemporary philosopher Karl Popper [7]. On the one hand,
Chernick comes up with an algorithm by means of which the sub-surface
contours may be deduced. On the other, Bergholt relies upon intuition aided
by experience in leaping to a bold conjecture as to the hidden form. His
mistake lay in believing his result verified, when, in fact, at that stage, it
had not yet superceded the status of a falsifiable hypothesis; see Figure 18.
My own contribution to this muddle has been to show how the logic of the
former may be used to acquit the guesswork of the latter.

My essay will have served its purpose if it succeeds in drawing the
reader’s attention to a hitherto neglected area in the theory of magic
squares. The matter is recondite, curious and exciting, rich in problems and
possibilities, and very largely unexplored. In the past, although more
fundamental, algebraic generalizations have been almost totally eclipsed by
their arithmetic instances. This is regrettable, for some of these matrices
possess a prismatic quality whose transparency uniquely illumines and
magnifies the crystalline structure of magic squares.



Fig. 18 Karl Popper’s tri-partite epistemology
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Appendix III

New Advances with 4×4 Magic Squares

Introductory Note

The article to follow, New Advances with 4×4 Magic Squares presents the
results of two strands of research carried out at various periods during the
1990s. This work has never before appeared in print, nor indeed ever been
submitted for publication, although in recent years Harvey Heinz was kind
enough to make it available on his excellent website: http://www.magic-
squares.net. To the best of my knowledge, the matter of fertility here
examined has never previously been explored. It would be nice to think that
some of the intriguing questions thrown up by the findings here recorded
will stimulate others to pursue these matters more deeply. In my own view,
the most obvious goal of future research would be to discover a non-brute-
force algorithm whereby the fertility of a set of 16 randomly chosen
integers can be determined immediately, without need of a computer.

New Advances with 4×4 Magic Squares

Introduction

One of the best known results in the magic square canon is Bernard Frénicle
de Bessy’s enumeration of the 880 ‘normal’ 4×4 squares that can be formed
using the arithmetic progression 1, 2 , . . . , 16. A natural question this
suggests concerns non-normal squares: Is 880 the largest total attainable if
any 16 distinct numbers are allowed?

The answer is no. A computer program that will generate every square
constructable from any given set of integers has identified 1,040 distinct
squares using the almost arithmetic progression: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11,
12, 13, 14, 15, 16, 17. Note the doubled step from 8 to 10. The constant
row-sum now becomes 36. Extensive trials with alternative sets make it
virtually certain that 1,040 is the maximum attainable (or 8 × 1,040 = 8,320,

http://www.magic-squares.net/


if rotations and reflections are included), although an analytic proof of this
assumption is lacking. A listing of the 1,040 squares can be had on request
via email at lee.sal@inter.nl.net.

But if 1,040 is the maximum, what of lower totals? Can a set of numbers
be found that will yield any desired total under 1,040? If not, what totals are
possible? In the absence of mathematical insight, trial-and-error was the
only way to find out. The results of computer trials on thousands of
different sets of small integers are presented below. Again, although proof
is lacking, there exist empirical grounds for supposing that every possible
total has been identified. Conceivably, one or two may have escaped the
net. In any case, the wealth of new data represented by these findings ought
to provide a starting point for further researches in the field for years to
come. Some preliminary comments will be helpful in understanding these
results.

Fertility and Set Structure

We define the fertility, f, of a set of 16 distinct elements, usually integers, as
the total number of 4×4 magic squares it can produce, rotations and
reflections included, divided by 32. This is because there are magic-
preserving rearrangements besides rotations and reflections that are
applicable to any square such that it always has 31 variants that we may
count as equivalent. For example, the two transformations shown in Figure
1 can be combined with rotations and reflections to produce all 32 squares.

Fig. 1

Thus, for the above-mentioned set, f = 8,320÷32 = 260, the putative
maximum, while for a set of 16 consecutive integers, f = 880 × 8 ÷ 32 =
220. Besides these two cases, integer sets exhibiting around one hundred
different fertility values have been found, as listed in Tables 1 and 3.

http://lee.sal@inter.nl.net/


Curiously, among these new finds is a second set yielding f = 220, but not
using consecutive integers. In other words, for every one of the 880 normal
squares, there exists a unique counterpart square using 16 numbers that do
not form an arithmetic progression. An example is shown in Figure 2. The
constant row sum is now 38.

Fig. 2

It is interesting to note that whereas 4 distinct numbers adding to 34 can
be chosen from {1, 2, . . . , 16} in 86 different ways, there are but 76 ways
to choose 4 numbers adding to 38 from the above set. Still more surprising
is the outcome for the set yielding 1,040 squares: 4 numbers adding to 36
can be chosen in just 80 ways. The relation between the number of
available magic 4-partitions and the number of squares produced would
thus seem to be a lot looser than might have been supposed.

In comparing different sets it is useful to look at their structure rather
than the numbers occurring. This is because the fertility of a set is
unaffected by adding a constant to each member, or by multiplying each
member by a constant, so that different numbers need not imply different
fertilities. Sets are thus better described by the sequence of 15 differences
reduced to lowest terms occurring between adjacent members when ordered
by magnitude. And since differences in the sets considered here are always
less than ten, a single digit suffices for each. Thus, the two sets:

and 

are both counted as particular instances of the structure: 111111121111111,
which is our canonical representation of all sets for which f = 260. The two
set structures yielding f = 220 are then 111111111111111, representing
arithmetic series, and 111211111112111, as exampled in the magic square of
Figure 2.



The foregoing were all examples of palindromic or symmetric sets, which
are those composed of 8 conjugate pairs of numbers having equal sums,
such as 1 + 16, 2 + 15, . . . 8 + 9 in normal squares. If we think of the
numbers as points along the real number line, then conjugate pairs are
points equidistant about a common centre, which is half their sum.
Asymmetric sets are non-palindromic, but since the fertility of a set is
unchanged by multiplying each member by –1, the fertility of an
asymmetric set is the same as that of a set of same structure but reversed in
order.

These remarks are sufficient to explain Table 1, which lists 66
asymmetric sets yielding fertility values in the range 1 to 71. No
asymmetric set with a fertility outside this range was discovered; the five
gaps indicate cases for which no asymmetric sets were found. Asterisks
indicate fertility values for which symmetric sets also exist. Table 1 extends
beyond f = 71 to include the asterisk at f = 76, beyond which no further
symmetric set is found until f = 132, as seen in Table 3. These are among
many findings that have as yet no theoretical explanation.

The set listed in each case is usually the smallest, in the sense that the
sum of its differences is least; but not always. For instance,
111112111212111 also yields f = 1, the sum of its differences being the
same as the set structure listed for f = 1 in Table 1. In general, the lower the
value, the more asymmetric sets with the same fertility exist. For instance,
among all possible sets with structures in the range 111111111111111 to
222222222222222, we find 455 yielding f = 1, the totals for succeeding f-
values thereafter diminishing as shown in Table 2.



Table 1

Table 2

Fig. 3

This is not difficult to understand. Figure 3 shows a general formula that
describes the structure of every 4×4 magic square:



The number of magic squares that can be formed using the 16 algebraic
terms in the formula is clearly the same as the number of magic-preserving
rearrangements applicable to any numerical magic square, and no more: 32.
The fertility of this algebraic set is thus 1, but sets of greater fertility must
represent particular instances of the above, satisfying still more stringent
conditions, and to that extent will be scarcer. Hence the tapering off in totals
as fertilities increase.

Turning now to Table 3, we find a total of 63 symmetric set structures, all
of them yielding even fertility values in the range 4 to 260. No set with an
odd-valued fertility was found. Why is it that the fertility of symmetric sets
is always even?

A tempting answer might seem to lie in the fact that symmetric squares
come in complementary pairs, such as the two shown in Figure 4.

Fig. 4

Switch the conjugate number pairs in one square to get the other, its so-
called complement. The trouble is that in this example the complement of
each square is the same thing as its rotation by 180 degrees. But this means
that if one square is among those in a set of f distinct specimens, then its
complement (i.e., its rotation) will not be, so that this attempt to answer the
original question fails. However, a proof that the fertility of symmetric sets
is always even is derivable, although too space-consuming to be included
here.

Returning to Table 3, note that sets having fertilities in the range 1 to 76
have been found, with about 10 gaps, those appearing in the right hand
column all being multiples of 4. Beyond these there is a wide gap up to 132,
followed by most even values from 132 to 220, again with about 10 gaps.
No sets with 220 < f < 260 have been found. Both sets for f = 220 are
recorded in the list.

The criteria used in selecting the particular set structure shown for each
fertility value in the Tables differs from case to case. Frequently, there exist
many alternative structures with the same fertility that could have been



shown instead. Many of the results are due to Saleem al-Ashhab, a
Jordanian email correspondent. Saleem was excited by my 1,040 squares
find, and soon had his PC running night and day in search of sets with new f
values. In such cases I received only his results, but without details of the
search procedure used. Still other results are due to programs of my own,
one of which checked blocks of sets in systematic order, counting the
number of squares produced by each in turn and recording any new values
found. I might mention that, thanks to insights due to Saleem, the fertility of
a chosen set of 16 integers took the final version of our computer program
less than 2 seconds to compute on a Pentium II machine. In another
approach, sets composed of 16 random integers were generated one after
the other, their fertility determined and the result stored. Haphazard as this
may seem, following an initial flood, with the passage of time the number
of fresh fertility values found slowed to a dribble and then finally dried up
completely, even following whole days of running time. Hence my
confidence in the probable completeness of the results here presented. It is
worth mentioning that trials on sets using non-integral numbers produced
no fertility values different to those recorded here.



Table 3

Non-Normal Graphic Types

A further familiar landmark in the lore of 4×4 squares is H. E. Dudeney’s
classification of the 880 normals into 12 “graphic types,” depending upon
the different possible positions of the eight conjugate (or complementary)
pairs, 1–16, 2–15, . . . , 8–9 [Amusements in Mathematics, p. 120]. The
twelve Types are seen in Figure 5.

W. S. Andrews gives the same classification in the 1908 edition of his
Magic Squares and Cubes, p.180, but overlooked one type, admitting in
later editions that Dudeney had supplied the twelfth. I suspect Andrews
may have felt disgruntled by this because he went on to say that Dudeney’s
12 types “probably cover all types of 4×4 magic squares.” There is no
“probably” about it. Dudeney’s exhaustive enumeration of every possible
type is detailed in The Queen for January 1910.



A second natural question prompted by the above concerns non-normal
squares: Do Dudeney’s 12 types account for every possible pattern if
squares using any 8 conjugate pairs (i.e., pairs of equal sum) are allowed?

The answer has been known in Japan for more than 40 years. If the
question were ever posed, I can find no trace of it in the magic square
literature of the West.

The first non-Dudeney type square was discovered by Gakuho Abe in
1957. Abe was investigating a special kind of 7×7 square containing
embedded 3×3 and 4×4 magic squares in opposite corners. An example is
shown in Figure 6.

The 4×4 squares were thus constructed using numbers in the range 1 to
49, and although non-normal, could yet include 8 conjugate pairs (1, 49; 2,
48; 3, 47; 4, 46; 6, 44; 7, 43; 8, 42; 9, 41, here). Abe noticed that in a few
cases their distribution was non-Dudeney, as above. He went on to discover
six non-Dudeney types that later appeared in his article “Yon Ho jin no
taiikei no zensaku,” or “Complete Complementary Pair Models of Order
Four Magic Squares.”

Fig. 5



Fig. 6

Nineteen years later an interesting response appeared. In 1976 Tomiya
Yokose published a systematic study of all possible graphic types in which
he identified 30 in all, Dudeney’s 12 included [Sugei no pazuru (=
“Mathematical Puzzles”), No.92, Sept-Oct., Showa 51, pp 17-25]. In my
humble opinion Yokose’s work is a milestone in the development of the
theory of 4×4 squares. As before, however, news of it seems never to have
reached the West.

I am in debt to Nyr Indictor of New York State, and Guido de Mey of
Brussels for translations of Abe’s and Yokose’s articles.

Still later I looked afresh at this question and, with a lot of help from
Michael Schweitzer, discovered four types that Yokose had missed. A
computer search was employed; it would be tedious to describe the method
here. Following on from Dudeney’s 12, I numbered the new types 13 to 34,
as seen in Figure 7.

The ordering of Types 13 – 34 is partially random, partially systematic. It
can be shown that whatever numbers appear in a Type-13 square, they can
always be rearranged so as to yield a Type-14 square, and vice versa. The
same is true for any four Types appearing in the same horizontal row in the
above diagram. Specifically, Types occupying the 2nd, 3rd and 4th columns
can be derived from that in the 1st column by means of the transforms T1,
T2, and T1×T2, respectively, shown at the beginning of this article.



Fig. 7

A general formula for magic squares of order 4 has already been shown.
Each of the above Types represents a subset of magic squares whose
properties can be described by a more restricted formula. Since Types in the
same row above are merely rearrangements of each other, a single formula
for one square taken from each row suffices to cover all cases, as provided
in Figure 8.



Fig. 8

The magic constant in the formulae is zero. Add k to every cell to in
other to generalize squares having any magic constant, 4k.

Formulae describing the structure of Dudeneys original twelve Types can
be found in my 1980 article “Magic Formulae.”

Finally, it may be of interest to know that examination of the 1,040
squares discussed above shows them all to belong to Types 1 through 12, an
example of each being as shown in Figure 9.



Fig. 9



Appendix IV

The Dual of the Lo shu

Introductory Note

A couple of blows have already been aimed at the iconic reputation of the
Lo shu magic square in the course of Concluding Remarks. In The Dual of
the Lo shu which started life as the first part of a longer, unfinished article
on ambimagic squares, I seek to deliver the coup de grâce. The Lo shu, it
emerges, is not the unicorn we have always taken it to be, but merely one
half of a pantomime horse. Ah, but is it the back half or the front? In any
case, it will be no use locking the stable door after the horse has bolted it.
Because a horse that bolts doors can only be a pantomime horse, which is
what I set out to prove. The essay, not previously published, was written in
1999.

The Dual of the Lo shu

“Various .. authors .. have asserted that the earliest magic square known
[outside China] was given by Theon of Smyrna, a Neo-Pythagorean, about
130 A.D. However, if they had looked up this so-called ‘magic square’ of
Theon’s, they would have seen that it was not a magic square in any sense
of the term.”

Schuyler Cammann [1]

“This array of numbers [Theon’s square] has therefore not the slightest
thing to do with magic squares and deserves no place in the history of
magic squares.”

W. Ahrens [2] [author’s translation]

Duality Denied



Cammann and Ahrens, the two authors quoted above, ought to know what
they are talking about. The first has written several oft-cited monographs on
ancient Chinese magic squares, while the second is the author of a
celebrated German two volume classic of recreational mathematics,
Mathematische Unterhaltungen Und Spiele. So what exactly is this thing,
‘Theon’s square’, against which they are united in their contempt?

Imagine a text on Taoist philosophy that expounds the Yin principle but
without mentioning the Yang. Or an abridgment of Lewis Caroll’s Through
the Looking Glass that introduces Tweedledee yet omits any reference to
Tweedledum. An unlikely scenario perhaps, and yet something equivalent
to it is exactly the state of affairs in the realm of 3×3 magic squares.

“The literature on magic squares is vast,” wrote Martin Gardner. An
exaggeration perhaps, but as I have said myself in The Lost Theorem,
innumerable books and articles on magic squares begin with a discussion of
3×3 types, the properties of which have long been regarded as completely
understood [3]. And in almost all of those books and articles will be found
the oldest and most famous magic square of all. It is the 3×3 square of
Chinese origin known as the Lo shu, a prototype so revered among
aficionados that it enjoys the status of an iconic emblem; see Figure 1. The
weird thing about all these writings on the Lo shu, however, lies in what
they don’t say. I refer to the total absence of any mention of the Lo shu’s
twin or duplicate square, or as we should say in mathematical language, its
dual.

Fig. 1 The Lo shu.

I can imagine that this reference to the dual of the Lo shu, innocuous
enough to the lay reader, will be greeted with incredulity on the part of
more seasoned students, none of whom will have heard of it for exactly the
reason just outlined. That is, to the best of my knowledge, there exists not a
single reference to the existence of this dual anywhere in the ‘vast’
literature on magic squares. On the contrary, there are even experts on the
subject who will deny the contingency outright. I have already quoted two
of them. They are our two learned savants, Cammann and Ahrens, the



authors for whom Theon’s square is such a pain in the neck. So what (to
return to our starting point) is this object, Theon’s square?

Theon’s Square

The definition of a magic square means that it occupies a halfway house
between orthomagic squares and panmagic squares. In the former,
sometimes called simple, or semimagic squares, the diagonal requirement is
dropped, with the the rows and columns, or orthogonals alone needing to
show equal sums. In the latter, also known as panmagic, pandiagonal or
Nasik squares, the totals in every diagonal, including the so-called ‘broken’
diagonals, are the same as those in all of the orthogonals. In Figure 2, the
broken diagonals are occupied by afh, cdh, ibd, and gbf.

Fig. 2

In fact, although panmagic squares exist for all higher orders, a 3×3
panmagic square using nine distinct numbers is impossible to construct.

Broken diagonals can however be mended by bringing together the top
and bottom edges of the square to make a cylinder which is then stretched
and bent smoothly in a circle until its ends meet to form a closed tube or
torus. In a square array of 3×3 thus ‘toroidally connected,’ the left and right
hand edges coincide, as do those at top and bottom, with the result that
every diagonal, like every orthogonal, becomes a closed loop of 3 cells. The
eight immediate neighbors of each cell are then the same as if the square
were surrounded with copies of itself, as in using it as a tile to cover the
plane. The closed loops are then reflected in repeated cycles of 3 elements
along horizontal, vertical, and inclined paths as seen in Figure 3.



Fig. 3

This same wallpaper pattern can be viewed as if built up from repeated
copies of any of its constituent 3×3 areas, of which there are nine, each
corresponding to one of the nine possible permutations of the 3 rows and/or
3 columns. All nine are shown in Figure 4.

Fig. 4

Figure 2 is thus one among nine squares that are indistinguishable when
viewed as toroidally connected. That is, there are nine different ways in
which the torus can be cut along two axes perpendicular to each other,
unfolded, and then flattened into a square. Or in other words, any particular
3×3 square is but one among nine alternative planar projections of the torus
it represents.

Viewed thus, any idea of broken diagonals as the poor cousins in the
family disappears, and we discover a simple parity between orthogonals and
diagonals, the relations among the 3 rows and 3 columns finding matching
counterparts in the relations among the 3 ‘\’– diagonals, or slopes and 3 ‘/’–
diagonals or slants. Note however, that the same does not hold of even-



order arrays such as 4×4, in which rows and columns intersect on one cell,
while slopes (a) and slants (b) may intersect on two; see Figure 5.

Fig. 5

A notable consequence of this symmetry in the case of 3×3 arrays is that
orthogonal elements can be switched with diagonal elements to create a
twin or dual of the original square as shown in Figure 6.

Fig. 6

The 3 entries found in each orthogonal/diagonal of the left-hand square
are the same as the 3 entries found in each diagonal/orthogonal of the right-
hand square. It is easy to verify that the squares above are each the unique
dual of the other, a property not shared by larger odd-order arrays such as
5×5, which admit of alternative possibilities. The transform linking these
two squares can then be diagrammed as in Figure 7.

Fig. 7

Elementary as it is, to the best of my knowledge, not a solitary reference
to the existence of this duality is to be found in all the literature on magic
squares. This is still more amazing in view of its obvious implication,
which is that every 3×3 magic square is but one member of a dyad of



complementary squares sharing identical entries, the one magic on all
orthogonals and both central diagonals, the other magic on all diagonals
and both central orthogonals.

An immediate question thus prompted is: What then is the complement
of the famous Lo shu? The answer is Theon’s square, also known as the
natural square’.

Little is known about Theon of Smryna, mathematician and astronomer,
circa 70 -135 BC, whose writings include, TΩN KATA TO
MAΦHMATIKON XPHΣIMΩN EΣ THN ΠΛAATΩNOΣ ANΓMΩΣIN or
“Mathematics Useful For Understanding Plato.” An 1892 work by J.
Dupuis [4] reproduces Theon’s original Greek text along with a French
translation. The square in question is a 3×3 array showing the first nine
letters of the Greek alphabet, one in each cell. It was Greek practice of the
period to use letters to stand for numbers. Dupuis’ translation of this into
arabic numerals is seen in Figure 8 to the right of its dual, the Lo shu.

Fig. 8

It is the square refered to in the opening quotations. Cammann and
Ahrens, the authors cited, were of course right to dismiss claims that
Theon’s square is a magic square. But the fact that there were people who
asserted it was, or who saw in it a first attempt at a magic square makes it
all the stranger that nobody seems ever to have noticed that all six
diagonals, as well as both central orthogonals, sum to 15. Least of all,
Theon himself, I suspect, who probably knew nothing of magic squares,
and who introduces his diagram as a purely didactic device in discussing 5
as the arithmetic mean of pairs summing to 10, the latter a number that
looms large in Pythagorean philosophy. In any case, the two statements
made about Theon’s square, that it is “not a magic square in any sense of
the term” and that it has “not the slightest thing to do with magic squares
and deserves no place in the history of magic squares” betrays a lack of



understanding on the part of these two supposed experts in the field that is
simply breathtaking.

Admittedly, from the point of view of the magic square connoisseur, two
blemishes mar Theon’s square. First, a single glance is enough to grasp its
pattern. The serial order of the numbers in the columns makes for a
transparent structure that lacks all mystique, and hence charm, and without
which it attracts scant interest. Second, unlike the Lo shu, in which every
straight line of numbers adds to 15, no equivalent elegance is enjoyed by
the same-sum triads in Theon’s square. However, both blemishes disappear
when the two squares are compared as toroids, on the surface of which
diagonals are no more broken than orthogonals. The dual of a 3×3 magic
square is thus not another magic square, but a square of equivalent magic.’

There exists a considerable literature devoted to the Lo shu, much of it
infected with the kind of crypto-mystic twaddle met with in Feng Shui. It
would be nice to think that once news of the dual gets out things will
change. The discovery that ‘the’ Lo shu is only one-half of a double act is
surely going to come as quite a revelation. But of course such a big change
will take time to absorb. So the message should be kept simple. How about:
“Hey guys, snap out of it: it’s not a lone shu, it is a pair of shus.”
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Appendix V

The Lost Theorem

Introductory Note

It seems that open season has been declared on the Lo shu, because here
again in The Lost Theorem, I am to be found bemoaning a blemish in its
structure. “Why don’t you leave that wretched square alone?” I can hear my
critics say. But my motive is of course merely practical, for it is only
through identifying flaws in existing magic squares that we can hope to
produce improved specimens. And the more revered the square in question,
then the more searching must be our critical examination. The ‘atomic’
square here described is a pearl born of the grit at its heart–a particle of grit
that is the Lo shu itself. Had it not been for defects in the latter, a path to the
former might never have been found. The essay appeared in The
Mathematical Intelligencer in 1997. I am also indebted to Christian Boyer,
who has been kind enough to include it on his scholarly and extremely
impressive website http://www.multimage.com/indexengl.htm.

The Lost Theorem

“Almost the last word has been said on this subject”
—H. E. Dudeney on magic squares [1]

A magic square, as all the world knows, is a square array of numbers whose
sum in any row, column, or main diagonal is the same. So-called “normal”
squares are ones in which the numbers used are 1,2,3, and so on, but other
numbers may be used. Squares using repeated entries are deemed trivial.
We say that a square of size N × N is of order-N. Clearly, magic squares of
order-1 lack glamour, while a moment’s thought shows that a square of
order-2 cannot be realized using distinct entries. The smallest magic squares
of any interest are thus of order-3.

http://www.multimage.com/indexengl.htm


Writing in Quantum recently [2], Martin Gardner offered $100 to anyone
able to produce a 3×3 magic square composed of any nine distinct square
numbers. So far nobody has produced a solution, or proof of its
impossibility, although a near miss I discovered is seen in Figure 1, a
specimen whose rows, columns, and just one of the two main diagonals
sum to the same number, itself a square: 1,472. It was while tinkering in
connection with this problem that I was startled to discover an elementary
correspondence between 3×3 magic squares and parallelograms. The
reason for my surprise is worth explaining.

Fig. 1

Magic squares have been a special hobby of mine for over twenty years;
the literature on the topic, much of which I have collected, is extensive. As
already noted, 3×3 magic squares are the smallest and, hence, simplest
types, for which reason they are the earliest to appear in history, as well as
being the most thoroughly investigated squares of all. Innumerable books
and articles on magic squares begin with a discussion of 3×3 types, the
properties of which have long been regarded as completely understood.
Writing in the well known Mathematical Recreations published in 1930, for
instance, Maurice Kraitchik begins by saying that, “The theory of the
squares of the third order is simple and complete . . .”, and then goes on to
present that theory in just two pages of text.

Yet for all its extreme simplicity, the elementary correspondence with
parallelograms that I had stumbled upon while working on Gardner’s
problem, has, to the best of my knowledge, never previously been
identified. I feel sure that many readers will share my incredulity on
inspecting the theorem below. They may agree with me that the correlation
with parallelograms it describes is so basic that it deserves to be regarded as
the fundamental theorem of order-3 magic squares, and the very first thing
that any newcomer to the subject should learn. How then could such a
theorem escape the attention of every researcher in the field from ancient
times down to the present day?



An explanation lies in the orthodox focus on magic squares using natural
numbers. Once our attention broadens to include squares that use complex
numbers, the familiar integer types become only a special case,
preoccupation with which has obscured the wider picture. Moving beyond
this narrow view, we step into a realm of greater clarity and harmony. And
at the very center of that realm, we shall find an undiscovered prize, the
atomic magic square.

Standard Theory

What makes a 3×3 square magic?
Figure 2 shows the well-known algebraic formula due to Édouard Lucas

that describes the structure of every magic square of order 3:

Fig. 2

Lucas’s formula conveys much of the essential information in a single
swoop. In particular, we can see at a glance that the constant total, which is
3c, is equal to three times the center number, while a closer look shows that
whatever the nine numbers used in the square, they must always include
eight 3-term arithmetic progressions, namely:

The identification of these arithmetic triads is a recurrent feature in
discussions of order-3 theory, a point we shall return to later, although it is
rare to find an explicit list of all eight.



Of course, just as any magic square can be rotated and reflected to result
in 8 trivially distinct squares that are deemed equivalent, so there are 8
trivially distinct rotations and reflections of the formula, all of them
isomorphic to each other, and again comprising one equivalence class.

So much for a bird’s eye view of the theory of order-3 magic squares as it
is met within the literature. Let us now turn our attention elsewhere.

Complex Squares

Consider Figure 3, which depicts an arbitrary parallellogram, PQRS,
centered at some arbitrary point, M, on the Euclidean plane, with axes x and
y. Point O is the origin of the plane. The corner points, P Q, R, and S,
together with T, U, V, and W, the midpoints of the sides of the
parallelogram, as well as the center, M, can thus each be identified with
vectors or complex numbers of form x + yi, in which x and y are the real
number coordinates of each point, and 

Equally, the lines connecting these points may themselves be interpreted
as vectors, three of which are identified in the Figure as: 

. Note that given any three particular complex
values for a, b,and c, we could immediately proceed to construct the
corresponding parallelogram.

Now, by the law for the addition of vectors, the point or complex number,
T (which is the vector ), is the resultant of the two vectors cand a, or c+
a. And likewise, it takes but a glance to identify the remaining points on
PQRS in terms of the vectors, a, b, and c, as indicated in the Figure: P = c+
a – b, Q = c+ a+ b, R = c – a + b, S = c – a – b, U = c+ b, V = c – a, W = c
– b. and M = c.

Looking next at the 3×3 square shown below left in Figure 3 observe
what happens when a new square is created by replacing P, Q, . . . with their
corresponding expressions in terms of a b and c as shown in Figure 4.

The outcome is nothing less than a reappearance of Lucas’s formula for
3×3 magic squares.



Fig. 3

Fig. 4

The implication is as obvious as it is surprising: given any particular
parallelogram on the Euclidean plane, and then transcribing the complex
numbers corresponding to its four corners, four edge midpoints, and center,
into a 3×3 matrix, in the same way as above, the resulting square will
always be magic. Or alternatively, starting with any 3×3 magic square that
uses complex number entries, we will find that they define nine points on
the Euclidean plane that coincide with the four corners, four edge
midpoints, and center of a parallelogram.

In summary, we have:

Parallelogram Theorem To every parallelogram drawn on the plane there corresponds a unique
equivalence class of 8 complex 3×3 magic squares, and for every equivalence class of 8 complex 3×3
magic squares there corresponds a unique parallellogram on the plane.



Or in a nutshell: rotations and reflections disregarded, every
parallelogram defines a unique 3×3 magic square, and vice versa.

In this light, it is interesting to recall the eight arithmetic progressions
previously identified in every 3×3 magic square. For just as arithmetic
progressions of real numbers correspond to equidistant points along the real
number line, so arithmetic progressions of complex numbers correspond to
equidistant collinear points on the plane. See then how the eight
progressions listed earlier precisely correlate with the eight sets of 3
collinear points lying along the four edges and four bisectors of the
parallelogram in Figure 3:

In the magic square literature to date, discussion of theory never gets
further than identifying these progressions; now at last we can see how the
geometry of the parallellogram explains their presence.

From our new perspective we can see also how the corellation with
parallelograms has escaped previous notice. Tradition ally magic squares
have used integers, which are entries without imaginary component. The
parallelograms corresponding to these squares are thus collapsed, or
degenerate, specimens of zero area, making their presence undetectable. In
fact, a closer look at one such parallelogram will prove instructive, as well
as preparing us for an unexpected development: the discovery of a lost
archetype, the primordial magic square.

A Flaw in the Crystal

I suppose that, until now, the most obvious candidate for the title of
archetypal magic square would have been the Chinese Lo shu, the simplest,
oldest, and most well known square of all. It is seen in Figure 5.



Fig. 5

Legend has it that the Lo shu was first espied by King Yü on the back of
a sacred turtle that emerged from the river Lo in the 23rd century BC. In
fact, historical references to the square date from the 4th century BC, while
Cammann has argued that it played a major part in Chinese philosophical
and religious thought for centuries afterward [3]. In the West, the Lo shu
has long been held up as a paradigm, or “one of the most elegant patterns in
the history of com binatorial number theory,” as Martin Gardner has
written. Nevertheless, taking a lens to this ancient gem, we can discover an
interesting irregularity in its crystal lattice.

Consider the Lo shu’s flattened parallelogram, which is that segment of
the real number line between 1 and 9, along which lie its four corners, four
edge midpoints, and center, occupying nine equidistant points. Recalling
Figure 3, the relation between these points and their position in the magic
square can be diagrammed as in Figure 6.

The distance between the parallelogram s corners at points 1 and 3 (or 7
and 9) is thus 2 units, while the distance between those at points 3 and 9 (or
1 and 7) is 6 units; a ratio in side lengths of 1:3. The remarkable fact is thus
that the Lo shu parallelogram is not equilateral, which is a bit disappointing
for a pattern whose famous symmetry has won acclaim down the ages, from
the banks of the river Lo to the pages of Scientific American. It is beginning
to look as if that turtle was not quite as sacred as King Yü had imagined.

Fig. 6



Fig. 7

However, as a prisoner in Flatland, the Lo shu is doomed to this
imbalance: squash any equilateral parallelogram, and two pairs of edge
midpoints and two corners will coincide, forcing repeated entries in the
associated magic square. In other words, unless it is trivial, an asymmetrical
parallelogram must accompany every non-complex magic square, the one
on the (mock?) turtle included.

Where then is the magic square with the symmetrical parallelogram that
King Yü was denied?

The Atomic Square

Of course, the most symmetrical case of all is an equilateral parallelogram
that is equiangular as well: the square.

A magic square whose associated parallelogram is again a square; the
idea is at once compelling. But what kind of a magic square would that be?
To find out, all we have to do is draw a square on the plane, read off the
complex values of its four corners, etc, and then write these into a 3×3



matrix in the usual way. Simplest of all is the canonical or atomic case seen
in Figure 7.

It is a square centered on the origin of the plane, such that its four corners
and four edge midpoints coincide with the 8 complex integers immediately
surrounding the origin. The magic square corresponding to this geometric
square is consequently an atomic paradigm of its kind too: it is the smallest,
most perfectly symmetrical magic square, composed of the nine smallest
Gaussian integers:

Fig. 8

The elegance of this flawless prism is beyond compare. The two main
diagonals and two central orthogonals are like four balanced beams pivoted
on the center number, the integer at the end of each beam offset by its
opposing negative image, an equipoise reflected in the magic sum of zero.
Rewriting the square in the form of vectors as ordered pairs, [a, b], its
structural harmony reappears in the shape of palindromic rows and
antipalindromic columns, a quality that is better highlighted when 1
replaces -1, and the commas and brackets are discarded: see Figure 9.

Analysing the square in terms of Lucas’s formula, we find that the
variables a and b have here taken on the values of 1 and i, the real and
imaginary forms of unity, while c is equal to zero. Could anything be more
natural, or poetic?



Fig. 9

My interest in magic squares began a couple of decades ago when I first
encountered the Lo shu. I recall my delight in exploring its symmetries, but
I also recall my disquiet in detecting a strange lopsidedness. In Lucas’s
formula, the variables a and b appear in two patterns that are perfect mirror
images. In the Lo shu, however, a = 1, while b = 3, a numerical imbalance
that clashed with the symmetry of the patterns. Attempts to construct a
square in which a = b, or a = – b, wouldn’t work either, because the result is
then trivial. Yet a craving for symmetry is what makes the mathemagical
mind tick. Down the years this unease has continued to quietly smoulder,
until recent events brought the parallelogram theorem to light, and, with it,
a sudden resolution of the mystery in the shape of the atomic square, whose
symmetry is without flaw. It is a relief; I look forward to sleeping at nights
once again.

The above article first appeared in The Mathematical Intelligencer Vol 19, No. 4, pp 51-4, 1997. It
is reprinted here with the kind permission of Springer Science + Business Media.
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Glossary

alphamagic square A special kind of numerical magic square, the numbers
of which can be represented by their word equivalents (‘one,’ ‘two,’ etc.) so
that the total number of letters then occurring in each row, column and
diagonal, is the same.

algebraic generalization An array in which algebraic terms consisting of
variables and operators describe the necessary relations among numbers
occupying the cells of a corresponding magic square.

almost-magic square A square in which every row and column, as well as
just one of the two main diagonals is magic.

ambimagic square A novel kind of magic square (due to the author) in
which the sum of the numbers in every orthogonal (row and column) is the
same, while the product of the numbers in every diagonal (including
‘broken’ diagonals) is also constant. It can be shown that the magic sum in
an ambimagic square of order-3 is necessarily zero. The converse of an
ambimagic square (constant orthogonal products, constant diagonal sums)
is a ‘mabimagic’ square.

area square The numerical magic square that is formed by the piece areas
in a corresponding 2-D square. Since differently shaped pieces may be of
same area, area squares are frequently trivial.

bi-magic square In the realm of numerical magic squares a bi-magic
specimen is one in which the squares of the numbers appearing also form a
magic square. In the present account, the term has been borrowed to
indicate a geomagic square in which the pieces are able to tile two distinct
targets.

co-diagonal In any square, the diagonal running from top right to bottom
left (/).



compact A (geo)magic square of 4×4 in which the four elements in each of
its sixteen 2×2 sub-squares will combine to produce the constant total or
target. Every nasik numagic square of order 4 is compact, and every
compact numagic square of order 4 is nasik. 2-D squares can however be
nasik without being compact, or compact without being nasik.

complementary pairs A numerical magic square of order N is composed of
N2/2 complementary pairs when the latter all sum to half the magic
constant. Similarly, a geometrical magic square of order N is composed of
N2/2 geometrically complementary pairs when the latter will combine to
produce an identical shape. See geometric complement.

degenerate square A square containing repeated entries, also known as a
trivial square.

demi-nasik A geomagic square in which, besides the two main diagonals,
there exist at least two non-parallel broken diagonals that are also magic
(i.e., contain target-tiling piece sets). See semi-nasik.

detrivialize In the case of algebraic squares, the process of adding variables
so as to produce a unique expression in every cell. In the case of geometric
squares, the process of appending/excising keys and keyholes so as to yield
a distinctly shaped piece in every cell.

dimension The dimension of a geomagic square is simply the same as that
of the pieces of which it is comprised.

disconnected piece A compound piece consisting of two or more separated
islands considered as a single structure whose components are joined
rigidly, if invisibly, to each other; also, a disjoint piece.

disjoint piece See disconnected piece.

disjoint arcs A particular case of a disconnected piece in which the
separated components are all segments belonging to the same circular arc.

empty piece The invisible man among pieces. A piece consisting of an
empty set of points.



Eulerian square A square formed by ‘superimposing’ two suitable Latin
squares such that every cell becomes occupied by a distinct entry. Also
known as a Graeco-Latin square.

diagonal Latin square A latin square in which the set of entries occupying
each of the two main diagonals is the same as it is for each row and column.

Dudeney’s graphic types A classification of the 880 normal order-4 magic
squares into twelve distinct Types, according to the distribution of their
constituent complementary pairs.

fertilityThe number of different magic squares that can be produced using a
given set of N2 distinct numbers.

five types of area square The five possible algebraic structures underlying
numerical magic squares, whether containing repeated entries or not.

formula An alternative expression for an algebraic generalization.

geo-alphamagic square A cross-breed between a geomagic square that
uses polyominoes and an alphamagic square. Distinct number-words adorn
the polyominopieces, a single letter appearing in each cell. The numbers are
so chosen that their sum is the same in every line, just as the piece shapes
are chosen so as to tile the target in every line.

geo-Eulerian Square A geometrical interpretation of a Graeco-Latin or
Eulerian square.

geomagic square A square array of N-dimensional figures that will
combine in every line so as to form an identical compound figure. See the
formal definition in Appendix 1.

geometric complemen t A set of pieces is said to comprise so many
complementary pairs when the two members of each pair will combine so
as to form an identical shape. The piece pairs are then said to be the
geometric complement of each other.



geometric variable On analogy with algebraic variables, a certain shape
may be regarded as a ‘geometric variable’, in that it can be seen as standing
for a range of contingent shapes.

geolatin square A Latin square of N×N using geometrical shapes as
elements, and such that the N shapes in each line tile a common target.
Alternatively, a trivial geomagic square derived from a Latin template.

Graeco-Latin square See eulerian square.

graphic types See Dudeney’s graphic types.

isometric grid A regular grid like a rectangular grid that is seen on tiling
the plane with unit equilateral triangles joined edge to edge.

key A shape that is appended to an existing piece

keyhole An indentation or region that is excised from an existing piece

Latin square An N×N array containing N distinct entries, each of them
occurring exactly once in every row and column.

Lo shu A famous 3×3 magic square of early Chinese origin.

lug-type key A shape that is appended toa piece so as to form a distinct
projection, in contrast to the result of appending a size-altering key.

mabimagic square See ambimagic square.

magic line Short for a row, column, diagonal or other group of cells, the
entries of which will combine to produce the required constant outcome
(add to required sum or tile required target).

main diagonal In any square, the diagonal running from top left to bottom
right (\).

nasik A magic square in which every diagonal, including the so-called
‘broken’ diagonals, is magic. Nasik squares are also known as panmagic,
pandiagonal, diabolic and satanic.



normal square A numerical magic square of size N×N that uses the
numbers 1, 2, . . . , N2. A 2-D geomagic square whose area square is a
normal numagic square.

numagic square An abbreviation for ‘numerical magic square.’

order The size of a magic square. A square of size N×N is said to be of
order-N.

orthogonals The rows and columns of a square.

pentomino A polyomino composed of five unit squares.

picture-preserving square A geomagic square in which the surface
composition of each target is the same.

polycube A three-dimensional shape formed of unit cubes that are joined
face-to-face.

polyform A figure, shape, or structure composed of repeated atoms. The
latter may be of any dimension, provided all are the same.

polymagic square A geomagic square in which the pieces used are all
polyforms.

polyomino A shape composed of unit squares joined edge -to-edge.

polyiamond A shape composed of unit equilateral triangles joined edge-to-
edge.

polyhex A shape composed of unit regular hexagons joined edge-to-edge.

toroidally-connected A square regarded as if inscribed on a torus. That is,
the square is imagined to be rolled into a cylinder which is then bent
smoothly in a circle until its two ends meet. The top row thus becomes
adjacent to the bottom row, and the left-hand column adjacent to the right-
hand column. What appear as broken diagonals in the original square now
become fully-fledged diagonals.



self-interlocking square A special kind of geomagic square using
essentially square pieces that can be made to coincide with the square-cell
boundaries of the array that contains them. The effect produced is
spectacular. Thus far, the only known specimens are of order-4. Whether or
not there exist self-interlocking squares of higher orders is unknown.

semimagic square A square in which only rows and columns are magic.
An orthogonally magic square.

semi-nasik A (geo)magic square in which, besides the two main diagonals,
there exist at least two parallel broken diagonals that are also magic (i.e.,
contain target-tiling piece sets). See demi-nasik.

size-alterning key A shape that can be appended to an existing piece so as
to produce an apparent enlargement or elongation of the piece, rather than
the suggestion of a distinct appendage.

substrate A trivial geomagic square showing repeated piece shapes that is
used as a starting point for further elaboration into a non-trivial square.

target The common shape, region, or structure that is formed or tiled by
assembling its component pieces that are found occupying every row,
column, and main diagonal in a geomagic square.

template An algebraic square that is used as a guide in constructing a
geomagic square. In doing so, distinct variables are translated into distinct
geometric shapes. Where variables occur in both positive and negative
form, the former are interpreted as shapes to be appended, the latter as
shapes to be removed or cut out.

three-dimensional square A geomagic square using solid rather than
planar pieces. In general, geomagic square may employ pieces of any
dimension.

trivial square A square in which one or more entries occur more than once.

uniform array A square in which every entry is the same.



weakly-connected Pieces which are almost disconnected but in which
some component regions are not wholly separate but meet in a single point.
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