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FOREWORD

One of the most compelling instincts that human beings have is the
irresistible urge to look for patterns: this is apparent from the earli-
est attempts of our ancestors to understand the world around them.

Mathematics has often been described as the science of patterns, and perhaps
more than any other mathematical field, this represents the heart and soul of
combinatorics.

In this masterful volume, the editors have brought together a wonderful
and far-ranging collection of chapters by distinguished authors.These accounts
survey the subject of combinatorics, beginning with the earliest written results
in the subject, continuing with its development in a variety of cultures, such
as Indian, Chinese, Islamic, and Jewish, and progressing to the emergence of
what we now think of asmodern combinatorics. From the introductory chapter,
‘Two thousand years of combinatorics’, by Donald Knuth to Peter Cameron’s
‘A personal view of combinatorics’, the book covers a wide range of topics
and offers to both the novice in the subject and to the experts a full plate of
interesting facts and viewpoints. This is the first time that such a compilation
has been attempted and, in the opinion of this reader, it succeeds brilliantly.

Ronald Graham
Former President of the American Mathematical Society

and the Mathematical Association of America
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PREFACE

Who first presented Pascal’s triangle? (It was not Pascal.)
Who first presented Hamiltonian graphs? (It was not Hamilton.)
Who first presented Steiner triple systems? (It was not Steiner.)
Misattributions appear throughout the history of mathematics, and combina-
torics has its share. Frequent errors in historical accuracy are perpetrated by
those who would be ashamed to allow such errors in their mathematical writ-
ings: notable examples are the common assertions that Euler drew a four-vertex
graph to solve the Königsberg bridges problem and that Descartes discovered
Euler’s polyhedron formula (they didn’t).

Today the history of mathematics is a well-studied and vibrant area of
research, with books and scholarly articles published on various aspects of the
subject. Yet, the history of combinatorics seems to have been largely overlooked:
many combinatorialists seem uninterested in the history of their subject, while
historians of mathematics have tended to bypass the fascinations of combina-
torics. It is our hope that this book, written by noteworthy experts in the area,
will go some way to redress this.

This book serves two purposes:

• It constitutes what is perhaps the first book-length survey of the history of

combinatorics.

• It assembles, for the first time in a single source, research on the history of

combinatorics that would otherwise be inaccessible to the general reader.

The chapters have been contributed by sixteen experts, with topics correspond-
ing to their particular areas of research. Some of this research receives its first
airing here, while other chapters are based on work that has appeared elsewhere
but is largely unavailable to those without access to research journals or large
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university libraries. In order to make the book easier to read, we have endeav-
oured to standardize the style throughout the book, and we are grateful to the
authors for their forbearance with us as we proposed changes to their drafts and
imposed our stylistic conventions.

The opening section is an introduction to two thousand years of combi-
natorics, adapted with permission from a section of Volume 4 of Donald E.
Knuth’s celebrated multi-volume workThe Art of Computer Programming. This
is followed by seven chapters on early combinatorics, leading from Indian
and Chinese writings on permutations to late-Renaissance publications on the
arithmetical triangle. The next seven chapters trace the subsequent story, from
Euler’s contributions to such wide-ranging topics as partitions, polyhedra, and
latin squares to the 20th-century advances in combinatorial set theory, enumer-
ation, and graph theory. The book concludes with some combinatorial reflec-
tions by the distinguished combinatorialist Peter J. Cameron.

Naturally, as the first book of this kind, this volume cannot hope to be com-
prehensive, and you will notice topics that are missing or only minimally dis-
cussed: these include combinatorial optimization, combinatorial identities, and
recreational combinatorics. While these subjects (and others) were considered
for inclusion we felt that the necessary constraints of a volume of manageable
scope and size left too little room. Such omissions notwithstanding, we hope
that as an overview of recent and ongoing historical work this book provides
useful background information and inspiration for future research.

As with many edited volumes, this book is not intended to be read from
cover to cover, although it can be. Rather, it is intended to serve as a valuable
resource to a variety of audiences. We hope that combinatorialists with little
or no knowledge about the development of their subject will find the historical
treatment stimulating, and that the specialist historian ofmathematics will view
its assorted surveys as an encouragement for further research in combinatorics.
For the more general reader, we hope that it provides an introduction to a
fascinating and too little known subject that continues to stimulate and inspire
the work of scholars today.

Finally, we’d like to express our thanks to Keith Mansfield, Viki Mortimer,
and Clare Charles at Oxford University Press, and also to our host institu-
tions, Pembroke College, Oxford University; The Open University, UK; and
The Colorado College, USA.

The Editors
April 2013
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PART I

Introduction



The complete bipartite graph K18,18 showing the divine attributes,as presented by Athana-
sius Kircher in his Ars Magna Sciendi Sive Combinatoria of 1669.



TWO THOUSAND YEARS
OF COMBINATORICS

donald e. knuth

[This subject] has a relation

to almost every species of useful knowledge

that the mind of man can be employed upon.

Jacob Bernoulli, Ars Conjectandi (1713)

E arly work on the generation of combinatorial patterns began as
civilization itself was taking shape. The story is quite fascinating,
and we will see that it spans many cultures in many parts of the

world, with ties to poetry, music, and religion. There is space here to
discuss only some of the principal highlights; but perhaps a few glimpses
into the past will stimulate us to dig deeper into the roots of the subject,
as the world gets ever smaller and as global scholarship continues to
advance.

The I Ching

Lists of binary n-tuples can be traced back thousands of years to ancient China,
India, and Greece. As we see in Chapter 2, the most notable source – because
it still is a best-selling book in modern translations – is the Chinese I Ching
or Yijing (Book of Change). This book, which is one of the five classics of
Confucian wisdom, consists essentially of 26 = 64 chapters; and each chapter
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is symbolized by a hexagram formed from six lines, each of which is either
– – (yin) or — (yang). For example, the first hexagram is pure yang , the
second is pure yin , and the last two hexagrams intermix yin and yang with
yin on top in one , and yang on top in the other . The standard arrange-
ment of the sixty-four possibilities, shown below, is called the King Wen order,
because the basic text of the I Ching has traditionally been ascribed to KingWen
(c.1100 bc), the legendary progenitor of the Chou dynasty. Ancient texts are,
however, notoriously difficult to date reliably, and modern historians have
found no solid evidence that anyone actually compiled such a list of hexagrams
before the 3rd century bc.

Notice that the hexagrams of the King Wen order occur in pairs. Each dia-
gram is immediately followed by its top-to-bottom reflection – for example,
is followed by – except when reflectionwouldmake no change; and the eight
symmetrical diagrams are paired with their complements

(
and , and

, and , and
)
. Hexagrams that are composed from two trigrams,

representing the four basic elements of heaven ( ), earth ( ), fire ( ),
and water ( ), have also been placed judiciously. Otherwise, the arrangement
appears to be essentially random, as if a person untrained in mathematics kept
listing different possibilities until being unable to come upwith anymore. A few
intriguing patterns do exist between the pairs, but no more than are present by
coincidence in the digits of π .

Yin and yang represent complementary aspects of the elementary forces of
nature, always in tension, always changing. The I Ching is somewhat analogous
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to a thesaurus inwhich the hexagrams serve as an index to accumulatedwisdom
about fundamental concepts like giving

( )
, receiving

( )
, modesty

( )
,

joy
( )

, fellowship
( )

, withdrawal
( )

, peace
( )

, conflict
( )

, orga-
nization

( )
, corruption

( )
, immaturity

( )
, elegance

( )
, etc. One can

choose a pair of hexagrams at random, obtaining the second from the first by,
say, independently changing each yin to yang (or vice versa) with probability
1
4 ; this technique yields 4096 ways to ponder existential mysteries, as well as a
Markov process by which change itself might perhaps give meaning to life.

A strictly logical way to arrange the hexagrams was eventually introduced
aroundad1060 by ShaoYung.His ordering, which proceeded lexicographically
from to to to to to . . . to to (reading each hexagram
from bottom to top), was much more user-friendly than the King Wen order,
because a random pattern could now be found quickly. When G. W. Leibniz
learned about this sequence of hexagrams in 1702, he jumped to the erroneous
conclusion that Chinese mathematicians had once been familiar with binary
arithmetic (see [65]). Further details about the I Ching can be found in [49]
and [41].

Another ancient Chinese philosopher, Yang Hsiung, proposed a system
based on eighty-one ternary tetragrams instead of sixty-four binary hexagrams.
His Canon of Supreme Mystery (around 2 bc) has recently been translated into
English by Michael Nylan [72]. Yang described a complete hierarchical ternary
tree structure in which there are three regions, with three provinces in each
region, three departments in each province, three families in each department,
and nine short poems called ‘appraisals’ for each family, hence 729 appraisals in
all – making almost exactly two appraisals for each day in the year. His tetra-
grams were arranged in strict lexicographic order when read top-to-bottom:

, , , , , , , … , . In fact, as explained in [72, p. 28], Yang
presented a simple way to compute the rank of each tetragram, as if using a
base-3 number system. Thus he would not have been surprised or impressed
by Shao Yung’s systematic ordering of binary hexagrams, although Shao lived
more than a thousand years later.

Indian prosody

Binary n-tuples were studied in a completely different context by pundits in
ancient India, who investigated the poetic metres of sacred Vedic chants. As we
see in Chapter 1, syllables in Sanskrit are either short or long, and the study of

two thousand years of combinator ics | 5



syllable patterns is called ‘prosody’.Modernwriters use the symbols � and−− to
represent, respectively, short and long syllables. A typical Vedic verse consists of
four lines with n syllables per line, for some n ≥ 8; prosodists therefore sought
a way to classify all 2n possibilities.

The classic work Chandah. śāstra by Piṅgala, written before ad 400 and prob-
ably much earlier (the exact date is quite uncertain), described procedures by
which one could readily find the index k of any given pattern of � s and −− s,
as well as find the kth pattern, given k. In other words, Piṅgala explained how to
rank any given pattern aswell as to unrank any given index; thus hewent beyond
the work of Yang Hsiung, who had considered ranking but not unranking.
Piṅgala’s methods were also related to exponentiation.

The next important step was taken by a prosodist named Kedāra in his
work Vr. ttaratnākara, thought to have been written in the 8th century. Kedāra
gave a step-by-step procedure for listing all the n-tuples from −−−−−− . . . −−
to �−−−− . . . −− to −−�−− . . . −− to ��−− . . . −− to −−−−� . . . −− to
�−−� . . . −− to · · · to ��� . . . �. His method may well have been
the first-ever explicit algorithm for combinatorial sequence generation
(see [52]).

Poetic metres can also be regarded as rhythms, with one beat for each �

and two beats for each −−. An n-syllable pattern can involve between n and 2n
beats, butmusical rhythms suitable formarching or dancing are generally based
on a fixed number of beats. Therefore it was natural to consider the set of all
sequences of � s and −− s that have exactlym beats, for fixedm. Such patterns
are now calledMorse code sequences of lengthm, and it is not at all hard to show
that the number of such sequences is the Fibonacci number Fm+1; in this way
Indian prosodists were led to discover the Fibonacci sequence. For example, the
21 sequences whenm = 7 are

�−−−−−−, −−�−−−−, ���−−−−, −−−−�−−, ��−−�−−,
�−−��−−, −−���−−, �����−−, −−−−−−�,
��−−−−�, �−−�−−�, −−��−−�, ����−−�,
�−−−−��, −−�−−��, ���−−��, −−−−���,
��−−���, �−−����, −−�����, �������.

Moreover, the anonymous author of Prākr. ta Paińgala (c.1320) discovered
elegant algorithms for ranking and unranking with respect tom-beat rhythms.
To find the kth pattern, one starts bywriting downm� s, then expresses the dif-
ference d = Fm+1 − k as a sum of Fibonacci numbers Fj1 + · · · + Fjt ; here Fj1
is the largest Fibonacci number that does not exceed d and Fj2 is the largest not
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exceeding d − Fj1 , etc., continuing until the remainder is zero.Then beats j − 1
and j are to be changed from �� to−−, for j = j1,…, jt . For example, to get the
fifth element of the list above we compute 21 − 5 = 16 = 13 + 3 = F7 + F4;
thus, on changing beats 6 and 7, and 3 and 4, the answer is ��−−�−−.

A few years later, Nārāyan. a Pan. d. ita treated themore general problemof find-
ing all compositions ofmwhose parts are atmost q, where q is any given positive
integer. As a consequence he discovered the qth-order Fibonacci sequence,
which was destined to be used six hundred years later in polyphase sort-
ing; he also developed the corresponding ranking and unranking algorithms
(see [60]).

Piṅgala gave special code names to all the three-syllable metres,

−−−−−− −−−−� �−−−− �−−� −−�−− −−�� ��−− ��� ,

and students of Sanskrit have been expected to memorize them ever since.
Somebody long ago devised a clever way to recall these codes, by inventing the
nonsense word yamātārājabhānasalagām; the point is that the ten syllables of
this word can be written

ya
�

mā
−−

tā
−−

rā
−−

ja
�

bhā
−−

na
�

sa
�

la
�

gām
−−

and each three-syllable pattern occurs just after its code name.The origin of this
nonsense word is obscure, but Subhash Kak [28] has traced it back at least to
C. P. Brown’s Sanskrit Prosody [12] of 1869; thus it qualifies as the earliest known
appearance of a ‘de Bruijn cycle’ that encodes binary n-tuples. Further results
on Indian prosody are given in Chapter 1.

Meanwhile, in Europe

In a similar way, classic Greek poetry was based on groups of short and long
syllables called ‘metrical feet’, analogous to bars of music. Each basic type of
foot acquired a Greek name; for example, two short syllables �� were called
a pyrrhic, and two long syllables −−−− were called a spondee, because those
rhythms were used respectively in a song of war (πυρρίχη) or a song of peace
(σπoνδαί). Greek names for metric feet were soon assimilated into Latin and
eventually intomodern languages, including English; those names are tabulated
below.
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� arsis
−− thesis

�� pyrrhic
�−− iambus
−−� trochee
−−−− spondee

��� tribrach
��−− anapest
�−−� amphibrach
�−−−− bacchius
−−�� dactyl
−−�−− amphimacer
−−−−� palimbacchius
−−−−−− molossus

���� proceleusmatic
���−− fourth pæon
��−−� third pæon
��−−−− minor ionic
�−−�� second pæon
�−−�−− diiambus
�−−−−� antispast
�−−−−−− first epitrite
−−��� first pæon
−−��−− choriambus
−−�−−� ditrochee
−−�−−−− second epitrite
−−−−�� major ionic
−−−−�−− third epitrite
−−−−−−� fourth epitrite
−−−−−−−− dispondee

Alternative terms, such as ‘choree’ instead of ‘trochee’, or ‘cretic’ instead of
‘amphimacer’, were also in common use.Moreover, by the timeDiomedes wrote
his Latin grammar (around ad 375), each of the thirty-two five-syllable feet had
acquired at least one name. Diomedes also pointed out the relation between
complementary patterns; he stated, for example, that tribrach and molossus are
contrarius, as are amphibrach and amphimacer. But he also regarded dactyl
as the contrary of anapest, and bacchius as the contrary of palimbacchius,
although the literal meaning of palimbacchius is actually ‘reverse bacchius’ (see
[15] and [29]). Greek prosodists had no standard order in which to list the indi-
vidual possibilities, and the form of the namesmakes it clear that no connection
to a base-2 number system was contemplated.

Surviving fragments of a work by Aristoxenus called Elements of Rhythm
(c.325 bc) show that the same terminology was also applied to music. And
indeed, the same traditions lived on after the Renaissance; for example,
we find
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in Athanasius Kircher’s Musurgia Universalis [30, p. 32] of 1650, and Kircher
went on to describe all of the three-note and four-note rhythms listed above.
Kircher’s combinatorial writings are studied in greater detail in Chapter 5.

Early lists of permutations

Non-trivial lists of permutationswere not publisheduntil hundreds of years after
the formula n! was discovered. The first such tabulation currently known was
compiled by the Italian physician Shabbetai Donnolo in his commentary on the
kabbalistic Sefer Yetsirah (see Chapter 4). The following table shows his list for
n = 5 as it was subsequently printed in Warsaw in 1884. (The Hebrew letters in
this table are typeset in a rabbinical font traditionally used for commentaries.)

A medieval list of permutations.

Donnolo went on to list 120 permutations of a six-letter word, all beginning
with the letter shin; then he noted that 120 more could be obtained with each of
the other five letters in front, making 720 in all. His lists involved groupings of
six permutations, but in a haphazard fashion that led him into error. Although
he knew how many permutations there were supposed to be, and how many
should start with a given letter, he evidently had no algorithm for generating
them.

A complete list of all 720 permutations of {a, b, c, d, e, f } appeared in Jeremias
Drexel’s Orbis Phaëthon in 1629 (see [16] and [17]). Drexel offered it as proof
that a man with six guests could seat them differently at lunch and dinner every
day for a year – altogether 360 days, because there were five days of fasting
during Holy Week. Shortly afterwards, as we see in Chapter 5, Marin Mersenne
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exhibited all 720 permutations of the six tones {ut, re,mi, fa, sol, la} in hisTraitez
de la Voix et des Chants (Treatise on the Voice and Singing) [44], also presenting
the same data in musical notation:

Drexel’s table was organized lexicographically by columns; Mersenne’s tables
were lexicographic with respect to the order ut < re < mi < fa < sol < la,
beginning with ‘ut, re, mi, fa, sol, la’ and ending with ‘la, sol, fa, mi, re, ut’.
Mersenne also prepared a ‘grand et immense’ manuscript [45] that listed all
40 320 permutations of eight notes on 672 folio pages, followed by ranking and
unranking algorithms. The important algorithm known as ‘plain changes’ (see
[36, pp. 321–4]) was invented in England a few years later.

Methods for listing all permutations of a multiset with repeated elements
were often misunderstood by early authors. For example, when Bhāskara listed
the permutations of {4, 5, 5, 5, 8} in Section 271 of his Lı̄lāvat̄ı (c.1150), he gave
them in the following order:

48555 84555 54855 58455 55485
55845 55548 55584 45855 45585
45558 85455 85545 85554 54585
58545 55458 55854 54558 58554 .

Mersenne used a slightly more sensible, but not completely systematic, order
when he listed sixty anagrams of the Latin name IESVS [44, p. 131]. When
Athanasius Kircher wanted to illustrate the thirty permutations of a five-note
melody in [30, pp. 10–11], this lack of a system got him into trouble, as one is
omitted and another appears twice.

But John Wallis knew better. In his Discourse of Combinations (1685) [69,
pp. 117, 126], published as a supplement to his Treatise of Algebra, he correctly
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listed the sixty anagrams of ‘messes’ in lexicographic order (if we letm < e < s),
and he recommended respecting alphabetical order ‘that we may be the more
sure, not to miss any’.

We will see later that the Indian mathematician Nārāyan. a Pan. d. ita had
already developed a theory of permutation generation in the 14th century,
although his work remained almost totally unknown.

Seki’s list

Takakazu Seki (1642–1708) was a charismatic teacher and researcher who revo-
lutionized the study ofmathematics in 17th-century Japan.While he was study-
ing the elimination of variables from simultaneous homogeneous equations, he
was led to expressions such as

a1b2 − a2b1 and a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1,

which we now recognize as determinants.
In 1683 he published a booklet about this discovery, introducing an inge-

nious scheme for listing all permutations in such a way that half of them were
‘alive’ (even) and the other half were ‘dead’ (odd). Starting with the case n = 2,
when ‘12’ was alive and ‘21’ was dead, he formulated the following rules for
n > 2:

1. Take every live permutation for n − 1, increase all of its elements by1, and insert
1 in front. This produces (n−1)!/2 ‘basic permutations’ of {1, 2, . . . , n}.

2. From each basic permutation, form 2n others by rotation and reflection:

a1a2 . . . an−1an , a2 . . . an−1ana1 , . . . , ana1a2 . . . an−1 ;

anan−1 . . . a2a1 , a1anan−1 . . . a2, . . . , an−1 . . . a2a1an .

If n is odd, those in the first row are alive and those in the second are dead; if n
is even, those in each row are alternatively alive, dead, … , alive, dead.

For example, when n = 3, the only basic permutation is 1 2 3 . Thus 1 2 3,
2 3 1, 3 1 2 are alive while 3 2 1, 1 3 2, 2 1 3 are dead, and we have successfully
generated the six terms of a 3 × 3 determinant. The basic permutations for
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n = 4 are 1 2 3 4, 1 3 4 2, and 1 4 2 3, and from (say) 1 3 4 2 we get a set of eight
– namely,

+ 1 3 4 2 − 3 4 2 1 + 4 2 1 3 − 2 1 3 4 + 2 4 3 1 − 1 2 4 3 + 3 1 2 4 − 4 3 1 2,

which are alternately alive (+) and dead (−). A 4 × 4 determinant therefore
includes the terms a1b3c4d2 − a3b4c2d1 + · · · − a4b3c1d2.

Seki’s rule for permutation generation is quite pretty, but unfortunately it has
a serious problem: it doesn’t work when n > 4. His error seems to have gone
unrecognized for hundreds of years (see [46]).

Lists of combinations

The earliest exhaustive list of combinations known to have survived the ravages
of time appears in the last book of Suśruta’s well-known Sanskrit treatise on
medicine, Chapter 63, written before ad 600 and perhaps much earlier. Noting
that medicine can be sweet, sour, salty, pungent, bitter, or astringent, Suśruta’s
book diligently listed the (15, 20, 15, 6, 1, 6) cases that arise when those qualities
occur two, three, four, five, six, and one at a time.

Bhāskara repeated this example in Sections 110–14 of Lı̄lāvat̄ı, and observed
that the same reasoning applies to six-syllable poetic metres with a given num-
ber of long syllables, but he simplymentioned the totals (6, 15, 20, 15, 6, 1) with-
out listing the combinations themselves. In Sections 274 and 275, he observed
that the numbers

n × (n − 1) × · · · × (n − k + 1)
k × (k − 1) × · · · × 1

enumerate compositions (that is, ordered partitions) as well as combinations;
again he gave no list.

To avoid prolixity this is treated in a brief manner;

for the science of calculation is an ocean without bounds.

Bhāskara (c.1150)

As we see in Chapter 3, an isolated but interesting list of combinations
appeared in 1144 in the remarkable algebra text Kitāb al-bāhir (Flamboyant
Book), written by as-Samaw’al of Baghdad when he was only 19 years old. In
the closing part of that work he presented a list of C(10, 6) = 210 simultaneous
linear equations in ten unknowns, given here in modern notation:
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(1) x1 + x2 + x3 + x4 + x5 + x6 = 65,

(2) x1 + x2 + x3 + x4 + x5 + x7 = 70,

(3) x1 + x2 + x3 + x4 + x5 + x8 = 75,

...

(209) x4 + x6 + x7 + x8 + x9 + x10 = 91,

(210) x5 + x6 + x7 + x8 + x9 + x10 = 100.

Each combination of ten things taken six at a time yielded one of his equations.
His purpose was evidently to demonstrate that overdetermined equations can
still have a unique solution – which in this case is

(x1, x2, . . . , x10) = (1, 4, 9, 16, 25, 10, 15, 20, 25, 5)

(see [3]).

Rolling dice

Some glimmerings of elementary combinatorics arose also inmedieval Europe,
especially in connection with the question of listing all possible outcomes when
three dice are thrown.There areC(8, 3) = 56 ways to choose three objects from
six when repetitions are allowed. Gambling was officially prohibited, yet these
fifty-six ways became rather well known.

In about ad 965 Bishop Wibold of Cambrai in northern France devised a
game called Ludus Clericalis (clerical game) so thatmembers of the clergy could
enjoy rolling dice while remaining pious. His idea was to associate each possible
roll of three dice with one of fifty-six virtues; for example a roll of three 1s
corresponded to love (caritas), the best virtue of all. Players took turns, and the
first to roll each virtue acquired it. After all possibilities had arisen, the most
virtuous player won. Wibold gave a complicated scoring system by which two
virtues could be combined if the sumof the pips on all six of their dicewas 21; for
example, love + humility (1 1 1 + 6 6 6) or chastity + intelligence (1 2 4 + 4 5 5)
could be paired in this way, and such combinations ranked above any individual
virtue. He also considered more complex variants of the game in which vowels
appeared on the dice instead of spots, so that virtues could be claimed if their
vowels were thrown.
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Wibold’s list of fifty-six virtues was presented in lexicographic order, from
1 1 1 to 1 1 2 to · · · to 6 6 6, when it was first described by Baldéric in his Chron-
iconCameracense (Chronicle of Cambrai), about 150 years later [5]. But another
medieval manuscript presented the possible dice rolls in quite a different order:

666 555 444 333 222 111 665
664 663 662 661 556 554 553
552 551 446 445 443 442 441
336 335 334 332 331 226 225
224 223 221 116 115 114 113
112 654 543 432 321 643 641
631 531 653 652 651 621 521
421 542 541 643 642 532 431.

In this case the author knew how to deal systematically with repeated values,
but had a complicated ad hoc way to handle the twenty cases in which all three
dice were different, so he listed 643 twice and missed 632 (see [7]).

An amusing poem entitled The Chaunce of the Dyse, attributed to John
Lydgate, was written in the early 1400s for use at parties. Its opening verses
invite each person to throw three dice; then the remaining verses, which are
indexed in decreasing lexicographic order from 666 to 665 to . . . to 111, give
fifty-six character sketches that light-heartedly describe the thrower (see [24]).

I pray to god that euery wight may caste
Vpon three dyse ryght as is in hys herte
Whether he be rechelesse or stedfaste
So moote he lawghen outher elles smerte
He that is gilty his lyfe to converte
They that in trouthe haue suffred many a throwe
Moote ther chaunce fal as they moote be knowe.

The Chaunce of the Dyse (c.1410)

Ramon Llull

Significant ripples of combinatorial concepts also emanated from an energetic
and quixotic Catalan poet, novelist, encyclopedist, educator, mystic, and mis-
sionary, named Ramon Llull (c.1232–1316). As we see in Chapter 5, Llull’s
approach to knowledge was essentially to identify basic principles and then to
contemplate combining them in all possible ways.
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For example, one chapter in his Ars Compendiosa Inveniendi Veritatem (The
Concise Art of Finding the Truth) (c.1274) began by enumerating sixteen
attributes of God: goodness, greatness, eternity, power, wisdom, love, virtue, truth,
glory, perfection, justice, generosity, mercy, humility, sovereignty, and patience.
Then Llull wrote C(16, 2) = 120 short essays of about 80 words each, con-
sidering God’s goodness as related to greatness, God’s goodness as related to
eternity, and so on, ending with God’s sovereignty as related to patience. In
another chapter he considered seven virtues (faith, hope, charity, justice, pru-
dence, fortitude, temperance) and seven vices (the ‘seven deadly sins’: gluttony,
lust, greed, sloth, pride, envy, anger), withC(14, 2) = 91 subchapters to deal with
each pair in turn. Other chapters were systematically divided in a similar way,
intoC(8, 2) = 28,C(15, 2) = 105,C(4, 2) = 6, andC(16, 2) = 120 subsections.
(One wonders what might have happened if he had been familiar withWibold’s
list of 56 virtues: would he have produced commentaries on allC(56, 2) = 1540
of their pairs?)

Illustrations in a manuscript presented by Ramon Llull to the doge of Venice in 1280.

Llull illustrated his methodology by drawing circular diagrams like those
above (see [40]). The left-hand circle in this illustration, Deus, names six-
teen divine attributes – essentially the same sixteen listed earlier, except that love
(amor) was now called will (voluntas), and the final four were now simplicity,
rank, mercy, and sovereignty, in that order. Each attribute was assigned a code
letter, and the illustration depicts their interrelations as the complete graph
K16 on vertices B,C,D,E, F,G,H, I,K, L,M,N,O,P,Q,R. The right-hand fig-
ure, virtutes et vitia, shows the seven virtues (b, c, d, e, f , g, h) interleaved with
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the seven vices (i, k, l,m, n, o, p); in the original manuscript virtues appeared in
blue ink, while vices appeared in red. Notice that in this case his illustration
depicted two independent complete graphs K7, one of each colour. (He no
longer bothered to compare each individual virtue with each individual vice,
since every virtue was clearly better than every vice.)

Llull used the same approach to write aboutmedicine. Instead of juxtaposing
theological concepts, his Liber Principiorum Medicinæ (Book of the Principles
of Medicine) (c.1275) considered combinations of symptoms and treatments.
He also wrote books on philosophy, logic, jurisprudence, astrology, zoology,
geometry, rhetoric, and chivalry –more than 200 works in all. It must be admit-
ted, however, that much of this material was highly repetitive; modern data
compression techniques would probably reduce Llull’s output to a size much
less than that of (say) Aristotle.

A Llullian illustration from a manuscript presented to the queen of France around 1325.

He eventually decided to simplify his system by working primarily with
groups of nine things. For instance, he first listed only the first nine of God’s
attributes (B,C,D,E, F,G,H, I,K) in a circle (BC,BD, . . . , IK) (see [39]). The
C(9, 2) = 36 associated pairs then form a staircase diagram that he placed to
the right of that circle. By adding two more virtues (patience and compas-
sion) as well as two more vices (lying and inconsistency) he could treat virtues
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vis-à-vis virtues and vices vis-à-vis vices with the same chart. He also proposed
using the same chart to carry out an interesting scheme for voting, in an election
with nine candidates (see [43]).

Three encircled triangles in Llull’s chart illustrate another key aspect of his
approach. A triangle (B,C,D) stands for (difference, concordance, contrariness);
a triangle (E, F,G) stands for (beginning,middle, ending); and a triangle (H, I,K)

stands for (greater, equal, less).These three interleaved appearances ofK3 repre-
sent three kinds of three-valued logic. Llull had experimented earlier with other
such triplets – notably (true, unknown, false).

We can get an idea of how he used the triangles by considering how he dealt
with combinations of the four basic elements (earth, air, fire, water). All four
elements are different; earth is concordant with fire, which concords with air,
which concords with water, which concords with earth; earth is contrary to air,
and fire is contrary to water; these considerations complete an analysis with
respect to triangle (B,C,D). Turning to triangle (E, F,G), he noted that various
processes in nature begin with one element dominating another; then a tran-
sition or middle state occurs, until a goal is reached, like air becoming warm.
For triangle (H, I,K) he said that in general we have fire > air > water > earth
with respect to their ‘spheres’, their ‘velocities’, and their ‘nobilities’; nevertheless
we also have, for example, air > firewith respect to supporting life, while air and
fire have equal value when they are working together.

Llull provided a vertical table to the right of his chart as a further aid. He
also introduced movable concentric wheels, labelled with the letters (B,C,D,E,
F,G,H,I,K) and with other names, so that many things could be contemplated
simultaneously. In this way a faithful practitioner of the Llullian art could be
sure to have all the bases covered.

Several centuries later, in 1669, Kircher published an extension of Llull’s
system as part of a large tome entitled Ars Magna Sciendi Sive Combinatoria
(TheGreat Art of Knowledge, or the Combinatorial Art) [31] (see frontispiece),
with five movable wheels accompanying page 173 of that book. Kircher also
extended Llull’s repertoire of complete graphs by providing illustrations of com-
plete bipartite graphs.

It is an investigative and inventive art. When ideas are combined in all possible ways, the new

combinations start the mind thinking along novel channels and one is led to discover fresh truths

and arguments.

Martin Gardner, Logic Machines and Diagrams (1958)
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The most extensive modern development of Llull-like methods is perhaps
The Schillinger System of Musical Composition (1946) by Joseph Schillinger
[57], a remarkable two-volume work that presents theories of rhythm, melody,
harmony, counterpoint, composition, orchestration, etc., from a combinatorial
perspective. On page 56, for example, Schillinger lists the twenty-four permu-
tations of {a, b, c, d} in the Gray-code order of plain changes; then on page 57
he applies them not to pitches but rather to rhythms, to the durations of notes.
On page 364 he exhibits the symmetrical cycle

(2, 0, 3, 4, 2, 5, 6, 4, 0, 1, 6, 2, 3, 1, 4, 5, 3, 6, 0, 5, 1),

a universal cycle of 2-combinations for the seven objects {0, 1, 2, 3, 4, 5, 6}. This
is an Eulerian trail inK7 : allC(7, 2) = 21 pairs of digits occur exactly once. Such
patterns are grist to a composer’s mill. But we can be grateful that Schillinger’s
better students (such as George Gershwin) did not commit themselves entirely
to a strictly mathematical sense of aesthetics.

Tacquet, van Schooten, and Izquierdo

Three additional books related to our story were published during the 1650s.
André Tacquet wrote a popular text, Arithmeticæ Theoria et Praxis [66], that
was reprinted and revised often during the next fifty years. Near the end, on
pages 376 and 377, he gave a procedure for listing combinations two at a time,
then three at a time, etc.

Frans van Schooten’s Exercitationes Mathematicæ [58] was more advanced.
On page 373 he listed all combinations in an appealing layout,

a
b. ab

c. ac. bc. abc
d. ad. bd. abd. cd. acd. bcd. abcd

,

and he proceeded on the next few pages to extend this pattern to the letters
e, f , g, h, i, k, ‘et sic in infinitum’. On page 376 he observed that one can replace
(a, b, c, d) by (2, 3, 5, 7) to get the divisors of 210 that exceed unity:

2
3 6

5 10 15 30
7 14 21 42 35 70 105 210

.
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On the following page he extended the idea to

a
a. aa

b. ab. aab
c. ac. aac. bc. abc. aabc

,

thereby allowing two as. He did not really understand this extension, though;
his next example

a
a. aa
a. aaa

b. ab. aab. aaab
b. bb. abb. aabb. aaabb

was botched, indicating the limits of his knowledge at the time. On page 411 van
Schooten observed that the weights (a, b, c, d) = (1, 2, 4, 8) could be assigned in
his first layout above, leading to

1
2 3

4 5 6 7
8 9 10 11 12 13 14 15

after addition, but he failed to see the connection with base-2 arithmetic.
Sebastián Izquierdo’s two-volume work Pharus Scientiarum (Lighthouse of

Sciences) [27] included a nicely organized discussion of combinatorics entitled
Disputatio 29,De Combinatione. He gave a detailed discussion of four key parts
of Stanley’s Twelvefold Way [62, Sec. 1.4] – namely, the n-tuples, n-variations,
n-multi-combinations, and n-combinations ofm objects.

In Sections 81–84 ofDe Combinatione he listed all combinations ofm letters
taken n at a time, for 2 ≤ n ≤ 5 and n ≤ m ≤ 9, always in lexicographic order;
he also tabulated them for m = 10 and 20 in the cases n = 2 and 3. But when
he listed them(m − 1) · · · (m − n + 1) variations ofm things taken n at a time,
he chose a more complicated ordering [36, Ex. 7.2.1.7–14].

Izquierdowas first to discover the formulaC(m + n − 1, n) for combinations
of m things taken n at a time with unlimited repetition; this rule appeared in
Sections 48–51 of his work. But in Section 105, when he attempted to list all
such combinations in the case n = 3, he was unaware that there was a simple
way to do it. In fact, his listing of the fifty-six cases form = 6 was rather like the
old awkward ordering of dice rolls that we saw above.
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Combinations with repetition were not well understood until Jacob Ber-
noulli’s Ars Conjectandi (The Art of Conjecturing) came out in 1713 (see
Chapter 6). In Part 2, Chapter 5, Bernoulli simply listed the possibilities in
lexicographic order, and showed that the formula C(m + n − 1, n) follows by
induction as an easy consequence. Niccolò Tartaglia had, incidentally, come
close to discovering this formula in 1556 in his General Trattato di Numeri, et
Misure (General Treatise of Numbers and Measures) [67]; so had the Maghreb
mathematician Ibn Muncim in his 13th-century Fiqh al-H. isāb (see Chapter 3).

The null case

Before we conclude our discussion of early work on combinations, we should
not forget a small yet noble step taken by John Wallis on page 110 of his
Discourse of Combinations [69], where he specifically considered the combina-
tion ofm things taken 0 at a time:

It is manifest, That, if we would take None, that is, if we would leave All; there can be but one

case thereof, what ever be the Number of things exposed.

Furthermore, on page 113, he knew that C(0, 0) = 1:

for, here, to take all, or to leave all, is but one and the same case.

However, when he gave a table of n! for n ≤ 24, he did not go so far as to point
out that 0! = 1, or that there is exactly one permutation of the empty set.

The work of Nārāyan.a

A remarkable monograph entitled Gan. itakaumudı̄ (Lotus Delight of Calcula-
tion), written byNārāyan. a Pan. d. ita in 1356, has recently becomeknown in detail
to scholars outside of India for the first time, thanks to an English translation by
Parmanand Singh [61] (seeChapter 1). Chapter 13 ofNārāyan. a’s work, subtitled
Aṅka Pāśa (Concatenation of Numbers), was devoted to combinatorial gen-
eration. Indeed, although the ninety-seven ‘sutras’ of this chapter were rather
cryptic, they presented a comprehensive theory of the subject that anticipated
developments in the rest of the world by several hundred years.
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For example, Nārāyan. a dealt with permutation generation in sutras
49–55a, where he gave algorithms to list all permutations of a set in decreasing
colexicographic order, together with algorithms to rank a given permutation
and to unrank a given serial number. These algorithms had appeared more
than a century earlier in the well-known work Saṅgı̄taratnākara (Jewel-Mine
of Music) by Śārṅgadeva, Sections 1.4.60–71, who thereby had essentially dis-
covered the factorial representation of positive integers. Nārāyan. a went on in
sutras 57–60 to extend Śārṅgadeva’s algorithms so that general multisets could
readily be permuted; for example, he listed the permutations of {1, 1, 2, 4} as

1124, 1214, 2114, 1142, 1412, 4112, 1241, 2141, 1421, 4121, 2411, 4211,

again in decreasing colexicographic order.
Nārāyan. a’s sutras 88–92 dealt with systematic generation of combinations.

Besides illustrating the combinations of {1, 2, . . . , 8} taken three at a time –
namely,

(678, 578, 478, . . . , 134, 124, 123)

– he also considered a bit-string representation of these combinations in the
reverse order (increasing colexicographic order), extending a 10th-century
method of Bhat.t.otpala:

(11100000, 11010000, 10110000, . . . , 00010011, 00001011, 00000111).

Thus we can legitimately regard Nārāyan. a Pan. d. ita as the founder of the sci-
ence of combinatorial generation – even though, like many other pioneers who
were significantly ‘ahead of their time’, his work on the subject never became
well known, even in his own country.

Permutable poetry

Let us turn now to a curious question that attracted the attention of several
prominent mathematicians in the 17th century, because it sheds considerable
light on the state of combinatorial knowledge in Europe at that time. A Jesuit
priest named Bernard Bauhuis [6] had composed a famous one-line tribute to
the Virgin Mary, in Latin hexameter:
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Tot tibi sunt dotes, Virgo, quot sidera cælo.
(Thou hast as many virtues, O Virgin, as there are stars in heaven.)

His verse inspired Erycius Puteanus, a professor at the University of Louvain,
to write a book entitled Pietatis Thaumata (Miracles of Piety) [55], presenting
1022 permutations of Bauhuis’s words. For example, Puteanus wrote:

107 Tot dotes tibi, quot cælo sunt sidera, Virgo.
270 Dotes tot, cælo sunt sidera quot, tibi Virgo.
329 Dotes, cælo sunt quot sidera, Virgo tibi tot.
384 Sidera quot cælo, tot sunt Virgo tibi dotes.
725 Quot cælo sunt sidera, tot Virgo tibi dotes.
949 Sunt dotes Virgo, quot sidera, tot tibi cælo.

1022 Sunt cælo tot Virgo tibi, quot sidera, dotes.

He stopped at 1022, because 1022 was the number of visible stars in Ptolemy’s
well-known catalogue of the heavens.

The idea of permuting words in this way was well known at the time; such
word play was what Julius Scaliger had called ‘Proteus verses’ in his Poetices
Libri Septem (Seven Books of Poetry) [56]. The Latin language lends itself to
permutations, because Latin word endings tend to define the function of each
noun, making the relative word order much less important to the meaning
of a sentence than it is in English. Puteanus did state, however, that he had
specifically avoided unsuitable permutations such as

Sidera tot cælo, Virgo, quot sunt tibi dotes,

because they would place an upper bound on the Virgin’s virtues, rather than a
lower bound (see pp. 12, 103 of his book).

Of course, there are 8! = 40 320 ways to permute the words of ‘Tot tibi sunt
dotes, Virgo, quot sidera cælo’. But that wasn’t the point; most of those ways
don’t ‘scan’. Each of Puteanus’s 1022 verses obeyed the strict rules of classical
hexameter, the rules that had been followed by Greek and Latin poets since the
days of Homer and Vergil – namely:

(i) each word consists of syllables that are either long (−− ) or short (� );

(ii) the syllables of each line belong to one of 32 patterns,{−−��

−−−−
} {−−��

−−−−
} {−−��

−−−−
} {−−��

−−−−
}

−−��
{−−�

−−−−
}
;
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in other words there are six metrical feet, where each of the first four is either

a dactyl (−−��) or a spondee (−−−−), the fifth foot should be a dactyl, and the

last is either a trochee (−−�) or a spondee.

The rules for long versus short syllables in Latin poetry are somewhat tricky
in general, but the eight words of Bauhuis’s verse can be characterized by the
following patterns:

tot = −− , tibi =
{��

�−−
}
, sunt = −− , dotes = −−−− ,

Virgo =
{−−�

−−−−
}
, quot = −− , sidera = −−��, and cælo = −−−− .

Notice that poets had two choices when they used theword ‘tibi’ or ‘Virgo’.Thus,
for example, the line from Bauhuis’s verse fits the hexameter pattern

−−
Tot

�
ti-

�
bi

−−
sunt

−−
do-

−−
tes,

−−
Vir-

−−
go,

−−
quot

−−
si-

�
de-

�
ra

−−
cæ-

−−
lo.

(Dactyl, spondee, spondee, spondee, dactyl, spondee: ‘dum-diddy dum-dum
dum-dum dum-dum dum-diddy dum-dum’. The commas represent slight
pauses, called ‘cæsuras’, when the words are read; they do not concern us here,
although Puteanus inserted them carefully into each of his 1022 permutations.)

A natural question now arises: if we permute Bauhuis’s words at random,
what are the odds that they scan? In other words, howmany of the permutations
obey rules (i) and (ii), given the syllable patterns listed above? Leibniz raised
this question, among others, in his Dissertatio de Arte Combinatoria (1666),
a work published when he was applying for a position at the University of
Leipzig (see Chapter 6). At this time Leibniz was just 19 years old, largely self-
taught, and his understanding of combinatorics was quite limited; for example,
he believed that there are 600 permutations of {ut, ut, re,mi, fa, sol} and 480 of
{ut, ut, re, re,mi, fa}, and he even stated that rule (ii) represents 76 possibilities
instead of 32.

But Leibniz did realize that it would be worthwhile to develop general meth-
ods for counting all permutations that are ‘useful’, in situations when many
permutations are ‘useless’. He considered several examples of Proteus verses,
enumerating some of the simpler ones correctly but making many errors when
the words were complicated. Although hementioned Puteanus’s work, he didn’t
attempt to enumerate the scannable permutations of Bauhuis’s famous line.

A much more successful approach was introduced a few years later by
Jean Prestet in his 1675 Elémens des Mathématiques [53]. Prestet gave a clear
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exposition leading to the conclusion that exactly 2196 permutations of Bauhuis’s
verse would yield a proper hexameter. However, he soon realized that he had
forgotten to count quite a few cases – including those numbered 270, 384, and
725 in the list given above. So he completely rewrote this material when he
published his Nouveaux Elémens des Mathématiques in 1689. Pages 127–33 of
Prestet’s new book were devoted to showing that the true number of scannable
permutations was 3276, almost 50% larger than his previous total.

Meanwhile John Wallis had treated the problem in his Discourse of Combi-
nations [69, pp. 118–19]. After explaining why he believed the correct number
to be 3096, Wallis admitted that he may have overlooked some possibilities or
counted some cases more than once: ‘but I do not, at present, discern either the
one and other’.

An anonymous reviewer of Wallis’s work remarked that the true number of
metrically correct permutations is actually 2580 – but he gave no proof [1].
This reviewer was almost certainly Leibniz himself, although no clue to the
reasoning behind the number 2580has been found amongLeibniz’s voluminous
unpublished notes.

Finally, Jacob Bernoulli entered the picture. In his inaugural lecture as Dean
of Philosophy at the University of Basel in 1692, he mentioned the tot-tibi
enumeration problemand stated that a careful analysis is necessary to obtain the
correct answer – which, he said, was 3312(!). His proof appeared posthumously
in the first edition of hisArs Conjectandi [8]. Bernoulli did not actually intend to
publish those pages in this now famous book, but the proofreader who found
them among his notes decided to include the full details, in order ‘to gratify
curiosity’ (see [9]).

So who was right? Are there 2196 scannable permutations, or 3276, or 3096,
or 2580, or 3312? W. A. Whitworth and W. E. Hartley considered the question
anew in 1902 in The Mathematical Gazette [71], where they each presented
elegant arguments and concluded that the true total is in fact none of the above.
Their joint answer, 2880, represented the first time that any twomathematicians
had independently come to the same conclusion about this problem.

But, in the end, Bernoulli was vindicated, and everybody else was wrong (see
[36, Ex. 7.2.1.7–21]). Moreover, a study of Bernoulli’s systematic and carefully
indented three-page derivation indicates that he was successful chiefly because
he adhered faithfully to a discipline that we now call the backtrack method.

Even the wisest and most prudent people often suffer from what Logicians call insufficient

enumeration of cases.

Jacob Bernoulli (1692)
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Set partitions

The partitions of a set seem to have been studied first in Japan, where a parlour
game called genji-ko (Genji Incense) became popular among upperclass people
around ad 1500. The host of a gathering would secretly select five packets of
incense, some of which might be identical, and he would burn them one at a
time. The guests would try to discern which of the scents were the same and
which were different; in other words, they would try to guess which of the
5 = 52 set partitions of {1, 2, 3, 4, 5} had been chosen by their host.

Diagrams used to represent set partitions in 16th-century Japan.

Soon it became customary to represent the fifty-two possible outcomes by
diagrams such as these. For example, the first diagram above, when read from
right to left, would indicate that the first two scents are identical and so are
the last three; thus the partition is 1 2 | 3 4 5; the other two diagrams, again
read from right to left, are pictorial ways to represent the respective partitions
1 2 4 | 3 5 and 1 | 2 4 | 3 5. As an aid tomemory, each of the fifty-two patterns was
named after a chapter of Lady Murasaki’s famous 11th-century Tale of Genji,
according to the following sequence (see [19]):

(Once again, as we have seen in many other examples, the possibilities were not
arranged in any particularly logical order.)

The appealing nature of these genji-ko patterns led many families to adopt
them as heraldic crests. For example, stylized variants of the fifty-two patterns
were found in standard catalogues of kimono patterns early in the 20th century
(see [2]).
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Early in the 1700s Takakazu Seki and his students began to investigate the
number of set partitions n for arbitrary n, inspired by the known result that
5 = 52. YoshisukeMatsunaga found formulas for the number of set partitions
when there are kj subsets of size nj, for 1 ≤ j ≤ t, with k1n1 + k2n2 + · · · +
ktnt = n. He also discovered the basic recurrence relation

n+1 = C(n, 0)n + C(n, 1)n−1 + C(n, 2)n−2 + · · · + C(n, n)0,

from which the values of n can readily be computed.
Matsunaga’s discoveries remained unpublished until Arima Yoriyuki’s book

Shūki Sanpō (The Essences of Mathematics) came out in 1769. Problem 56 of
that book asked the reader to solve the equation n = 678 570 for n; Yoriyuki’s
answer, worked out in detail (with credit duly given toMatsunaga), was n = 11.

Shortly afterwards, Masanobu Saka studied the number
{n
k
}
of ways that an

n-set can be partitioned into k subsets. In his work Sanpō-Gakkai (The Sea of
Learning on Mathematics) (1782), he discovered the recurrence formula

{n + 1
k

}
= k

{n
k

}
+
{ n
k − 1

}
,

and tabulated the results for n ≤ 11. James Stirling, in his Methodus Differen-
tialis (Method of Differentials) (1730), had discovered the numbers

{n
k
}

in a
purely algebraic context; thus Saka was the first person to realize their combi-
natorial significance. These numbers are now known as Stirling numbers of the
second kind, often denoted by S(n, k) (see Chapter 6).

An interesting algorithm for listing set partitions was subsequently devised
by Toshiaki Honda (see [36, Ex. 7.2.1.7–24]). Further details about genji-ko and
its relation to the history of mathematics can be found in two Japanese articles
by Tamaki Yano [73].

Set partitions remained virtually unknown in Europe untilmuch later, except
for three isolated incidents. First, George Puttenham published The Arte of
English Poesie in 1589, and pages 70–2 of that book contain diagrams similar
to those of genji-ko. For example, the following seven diagrams were used to
illustrate possible rhyme schemes for five-line poems, ‘whereof some of them
be harsher and unpleasaunter to the eare then other some be’. But his visually
appealing list was incomplete.
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Second, an unpublished manuscript of Leibniz from the late 1600s shows
that he had tried to count the number of ways to partition {1, 2, . . . , n} into
three or four subsets, but with almost no success. He enumerated

{n
2
}

by a
very cumbersome method, which would not have led him to see readily that{n
2
} = 2n−1 − 1. He attempted to compute

{n
3
}

and
{n
4
}

only for n ≤ 5, and
made several numerical slips leading to incorrect answers (see [32, pp. 229–33]
and [34, pp. 316–21]).

The third European appearance of set partitions had a completely different
character. John Wallis devoted the third chapter of his Discourse of Combina-
tions (1685) to questions about ‘aliquot parts’, the proper divisors of numbers,
and in particular he studied the set of all ways to factorize a given integer. This
question is equivalent to the study of multiset partitions; for example, the fac-
torizations of p3q2r are essentially the same as the partitions of {p, p, p, q, q, r},
when p, q, and r are prime numbers. Wallis devised an excellent algorithm
for listing all factorizations of a given integer n, but he did not investigate the
important special cases that arise when n is the power of a prime (equivalent to
integer partitions) or when n is squarefree (equivalent to set partitions). Thus,
although Wallis was able to solve the more general problem, its complexities
paradoxically deflected him fromdiscovering partition numbers, Bell numbers,
or Stirling subset numbers, or from devising simple algorithms that would
generate integer partitions or set partitions.

Integer partitions

Partitions of integers arrived on the scene even more slowly (see Chapter 9).
We saw above that Bishop Wibold (c.965) knew the partitions of n into exactly
three parts not exceeding 6. So did Galileo [22], who wrote a memo about them
(c.1627), listing partitions in decreasing lexicographic order, and also studied
their frequency of occurrence as rolls of three dice. Thomas Strode extended
this to four dice [64], and Thomas Harriot, in unpublished work a few years
earlier, had considered up to six dice (see [63]).

Mersenne listed the partitions of 9 into any number of parts on page 130 of
his 1636 Traitez de la Voix et des Chants (Treatise on the Voice and Singing). For
each partition 9 = a1 + a2 + · · · + ak he also computed the multinomial coef-
ficient 9!/(a1!a2! · · · ak!); as we have seen earlier, he was interested in counting
various melodies, and he knew (for example) that there are 9!/3! 3! 3! = 1680
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melodies on the nine notes {a, a, a, b, b, b, c, c, c}. But he failed to mention the
cases 8 + 1 and 3 + 2 + 1 + 1 + 1 + 1, probably because he had not listed the
possibilities in any systematic way.

Leibniz considered two-part partitions in Problem 3 of his 1666 Dissertatio
de Arte Combinatoria (see Chapter 6), and his unpublished notes show that he
subsequently spent considerable time trying to enumerate the partitions with
three or more summands. He called them ‘discerptions’ or (less frequently)
‘divulsions’ – in Latin, of course – or sometimes ‘sections’ or ‘dispersions’ or even
‘partitions’. He was interested in them primarily because of their connection
with the monomial symmetric functions

∑
xa1i1 x

a2
i2 · · · . But his many attempts

led to almost total failure, except in the case of three summands, where he
almost (but not quite) discovered a general formula. For example, he carelessly
counted only twenty-one partitions of 8, forgetting the case 2 + 2 + 2 + 1 + 1;
and he got only 26 for p(9), after missing 3 + 2 + 2 + 2, 3 + 2 + 2 + 1 + 1,
2 + 2 + 2 + 1 + 1 + 1, and 2 + 2 + 1 + 1 + 1 + 1 + 1 – in spite of the fact that
he was trying to list partitions systematically in decreasing lexicographic order
(see [32, pp. 91–258], [33, pp. 409–30], and [34, pp. 255–337]).

Abraham de Moivre had the first real success with partitions in 1697, in
his paper ‘A method of raising an infinite multinomial to any given power,
or extracting any given root of the same’ [47]. He proved that the coefficient
of zm+n in (az + bz2 + cz3 + · · · )m has one term for each partition of n; for
example, the coefficient of zm+6 is

C(m, 6)am−6b6 + 5C(m, 5)am−5b4c + 4C(m, 4)am−4b3d

+ 6C(m, 4)am−4b2c2 + 3C(m, 3)am−3b2e + 6C(m, 3)am−3bcd

+ 2C(m, 2)am−2bf + C(m, 3)am−3c3 + 2C(m, 2)am−2ce

+ C(m, 2)am−2d 2 + C(m, 1)am−1g.

If we set a = 1, the term with exponents bic jd kel . . . corresponds to the parti-
tion with i 1s, j 2s, k 3s, l 4s, etc. Thus, for example, when n = 6 he essentially
presented the partitions in the order

111111, 11112, 1113, 1122, 114, 123, 15, 222, 24, 33, 6.

He explained how to list the partitions recursively, as follows (but in different
language related to his own notation): for k = 1, 2, … , n, start with k and
append the (previously listed) partitions of n − k whose smallest part is at
least k.
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[My solution] was ordered to be published in the Transactions, not so much as a matter

relating to Play,but as containing some general Speculations not unworthy to be considered

by the Lovers of Truth.

Abraham de Moivre (1717)

Pierre Rémond deMontmort tabulated all partitions of numbers not exceed-
ing 9 into 6 or fewer parts in his Essay d’Analyse sur les Jeux de Hazard (1708),
in connection with dice problems (see Chapters 6 and 13). His partitions were
listed in a different order from de Moivre; for example,

111111, 21111, 2211, 222, 3111, 321, 33, 411, 42, 51, 6.

He was probably unaware of de Moivre’s prior work.
So far almost none of the authors we have been discussing actually bothered

to describe the procedures by which they generated combinatorial patterns.We
can only infer their methods, or lack thereof, by studying the lists that they
actually published. Furthermore, in rare cases such as deMoivre’s paper where a
tabulationmethodwas explicitly described, the author assumed that all patterns
for the first cases 1, 2, … , n − 1 had been listed before it was time to tackle the
case of order n. No method for generating patterns ‘on the fly’, moving directly
fromone pattern to its successorwithout looking at auxiliary tables, was actually
explained by any of the authors we have encountered, except for Kedāra and
Nārāyan. a. Today’s computer programmers naturally prefer methods that are
more direct and need little memory.

In 1747 Roger Joseph Boscovich [10] published the first direct algorithm for
partition generation. His method produces for n = 6 the respective outputs

111111, 11112, 1122, 222, 1113, 123, 33, 114, 24, 15, 6.

As it happens, precisely the reverse order turns out to be slightly easier and faster
than the order that he had chosen (see [36, pp. 391–2]).

Boscovich published sequels in 1748 [11], extending his algorithm in two
ways. First, he considered generating only partitions whose parts belong to a
given set S, so that symbolic multinomials with sparse coefficients could be
raised to the mth power. (He said that the greatest common divisor of all ele-
ments of S should be 1; in fact, however, his method could fail if 1 /∈ S.) Second,
he introduced an algorithm for generating partitions of n into m parts, given
m and n. Again he was unlucky: a slightly better way to do that task was found
subsequently, diminishing his chances for fame (see [36, pp. 392–3]).
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Hindenburg’s hype

The inventor of that better way for generating partitions of n into m parts was
Carl Friedrich Hindenburg (see Chapter 12), who also rediscovered Nārāyan. a’s
algorithm for generating multiset permutations. Unfortunately, these small
successes led him to believe that he had made revolutionary advances in
mathematics – although he did condescend to remark that other people such as
de Moivre, Euler, and Lambert had come close to making similar discoveries.

Hindenburg was a prototypical over-achiever, extremely energetic if not
inspired. He founded or co-founded Germany’s first professional journals of
mathematics (published in 1786–9 and 1794–1800), and contributed long arti-
cles to each. He served several times as academic dean at the University of
Leipzig, where he was also the Rector in 1792. Had he been a better mathemati-
cian, German mathematics might well have flourished more in Leipzig than in
Berlin or Göttingen.

But his first mathematical work, Beschreibung einer ganz neuen Art, nach
einem bekannten Gesetze fortgehende Zahlen durch Abzählen oder Abmessen
bequem und sicher zu finden [26], amply foreshadowed what was to come: his
‘ganz neuen Art’ (completely new art) idea in that booklet was simply to give
combinatorial significance to the digits of numbers written in decimal nota-
tion. Incredibly, he concluded his monograph with large foldout sheets that
contained a table of the numbers from 0000 through 9999 – followed by two
other tables that listed the even numbers and odd numbers separately!

Hindenburg published letters from people who praised his work, and he
invited them to contribute to his journals. In 1796 he edited Sammlung
combinatorisch–analytischer Abhandlungen, whose subtitle stated (in German)
that de Moivre’s multinomial theorem was ‘the most important proposition
in all of mathematical analysis’. About a dozen people joined forces to form
what became known asHindenburg’s Combinatorial School, and they published
thousands of pages filled with esoteric symbolism that must have impressed
many non-mathematicians.

The work of this School was not completely trivial from the standpoint of
computer science. For example, H. A. Rothe, who was Hindenburg’s best stu-
dent, noticed that there is a simple way to go from a Morse code sequence to
its lexicographic successor or predecessor. Another student, J. C. Burkhardt,
observed that Morse code sequences of length n could also be generated
easily, by first considering those with no dashes, then one dash, then two,
etc. Their motivation was not to tabulate poetic metres of n beats, as it had
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been in India, but rather to list the terms of the continuant polynomials
K(x1, x2, . . . , xn) (see [4]). Furthermore, on page 53 of Hindenburg’s 1796
Sammlung (Collection) cited above, G. S. Klügel introduced a way to list all
permutations that has subsequently become known as Ord-Smith’s algorithm
(see [36, pp. 330–1]).

Hindenburg believed that his methods deserved equal time with algebra,
geometry, and calculus in the standard curriculum. But he and his disciples
were combinatorialists who only made combinatorial lists. Burying them-
selves in formulas and formalisms, they rarely discovered any new mathe-
matics of real interest. Eugen Netto [51] has admirably summarized their
work:

For a while they controlled the German market; however,most of what they dug up soon

sank into a not-entirely-deserved oblivion.

The sad outcome was that combinatorial studies in general got a bad name.
Gösta Mittag-Leffler, who assembled a magnificent library of mathematical
literature about one hundred years afterHindenburg’s death, decided to place all
such work on a special shelf marked ‘Dekadenter’ (decadent). And this category
still persists in the library of Sweden’s Institut Mittag-Leffler today, even as that
institute attracts world-class combinatorial mathematicians whose research is
anything but decadent.

Looking on the bright side, we may note that at least one good book did
emerge from all of this activity. Andreas von Ettingshausen’s 1826Die combina-
torische Analysis [21] is noteworthy as the first text to discuss combinatorial
generationmethods in a perspicuousway.He discussed the general principles of
lexicographic generation in Section 8, and applied them to construct good ways
to list all permutations (Section 11), combinations (Section 30), and partitions
(Sections 41–4).

Where were the trees?

We have now seen that lists of n-tuples, permutations, combinations, and parti-
tions were compiled rather early in recorded history, by interested and interest-
ing researchers. That covers almost all of the important combinatorial objects
that frequently need to be listed, except for the various kinds of tree structures.
Thus, our story will be complete if we can trace the origins of tree generation
(see also Chapters 8 and 12).
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But the historical record of that topic before the advent of computers is vir-
tually a blank page, with the exception of a few 19th-century papers by Arthur
Cayley. Cayley’s major work on trees [14], originally published in 1875, was
climaxed by a large foldout illustration that exhibited all of the free (unrooted)
trees with nine or fewer unlabelled vertices. Earlier in that paper he had also
illustrated the nine oriented (rooted) trees with five vertices. The methods he
used to produce those lists were quite complicated. All free trees with up to ten
vertices were listed many years later by F. Harary and G. Prins [25], who also
went up to n = 12 in the cases of free trees with no vertices of degree 2 or with
no symmetries.

The trees most dearly beloved by computer scientists – binary trees, or the
equivalent ordered forests or nested parentheses – are strangely absent from
the literature. Manymathematicians of the 1700s and 1800s had learned how to
count binary trees, and we also know that the Catalan numbers Cn enumerate
dozens of different kinds of combinatorial objects. Yet before 1950 nobody
seems to have published an actual list of the C4 = 14 objects of order 4 in any
of these guises, much less the C5 = 42 objects of order 5, except indirectly: out
of a total of fifty-two genji-ko diagrams (see above), the forty-two that have no
intersecting lines turn out to be equivalent to the five-vertex binary trees and
forests, but this fact was not realized until the 20th century.

There are a few isolated instances where authors of yore did prepare lists of
C3 = 5 Catalan-related objects. Cayley, again, was first; in [13] he illustrated the
binary trees with three internal vertices and four leaves as follows:

(That same paper also illustrated another species of tree, equivalent to so-called
weak orderings.) Then, in 1901, Eugen Netto [50] listed the five ways to insert
parentheses into the expression a + b + c + d :

(a + b) + (c + d ),
(
(a + b) + c

)+ d,
(
a + (b + c)

)+ d,

a + (
(b + c) + d

)
, a + (

b + (c + d )
)
.

The five permutations of {+1,+1,+1,−1,−1,−1}whose partial sums are non-
negative were listed in the following way by Paul Erdős and Irving Kaplan-
sky [20]:
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1 + 1 + 1 − 1 − 1 − 1, 1 + 1 − 1 + 1 − 1 − 1, 1 + 1 − 1 − 1 + 1 − 1,

1 − 1 + 1 + 1 − 1 − 1, 1 − 1 + 1 − 1 + 1 − 1.

Even though only five objects are involved in each of these three examples, we
can see that the orderings in the first two examples were basically catch-as-
catch-can; only the last ordering was systematic and lexicographic.

We should also note briefly the work ofWalther vonDyck, sincemany recent
papers use the term ‘Dyck words’ to refer to strings of nested parentheses. Dyck
was an educator known for co-founding the Deutsches Museum in Munich,
among other things. He wrote two pioneering papers about the theory of free
groups [18]. Yet the so-called Dyck words have at best a tenuous connection
to his actual research: he studied the words on {x1, x−1

1 , x2 , x−1
2 , . . . , xk, x−1

k }
that reduce to the empty string after repeatedly erasing adjacent letter-pairs of
the forms xix−1

i or x−1
i xi; the connection with parentheses and trees arises only

when we limit erasures to the first case, xix−1
i , and he never considered such a

limitation.
Thus we may conclude that, although an explosion of interest in binary trees

and their cousins occurred after 1950, such trees represent the only aspect of
our story whose historical roots are rather shallow.

After 1950

The arrival of electronic computers changed everything. The first computer-
oriented publication about combinatorial generation methods was a note in
1956 by C. B. Tompkins, ‘Machine attacks on problems whose variables are
permutations’ [68]. Thousands more were destined to follow.

Several articles byD.H. Lehmer, especially his ‘Teaching combinatorial tricks
to a computer’ [38], proved to be extremely influential in the early days. Lehmer
represented an important link to previous generations. For example, Stanford
University’s library records show that he had checked out Netto’s Lehrbuch der
Combinatorik in January 1932.

The main publications relevant to particular algorithms of modern impor-
tance are cited in [36], so there is no need to repeat them here. But textbooks
andmonographs that first put pieces of the subject together in a coherent frame-
work were also of great importance. Three books, in particular, were especially
noteworthy with respect to establishing general principles:
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• Elements of Combinatorial Computing by Mark B. Wells (Pergamon Press, 1971),

especially Chapter 5.

• Combinatorial Algorithms by Albert Nijenhuis and Herbert S.Wilf (Academic Press,

1975); a second edition was published in 1978, containing additional material, and

Wilf subsequently wrote Combinatorial Algorithms: An Update (SIAM, 1989).

• Combinatorial Algorithms: Theory and Practice by Edward M. Reingold, Jurg Niev-

ergelt, and Narsingh Deo (Prentice-Hall, 1977), especially Chapter 5.

Robert Sedgewick compiled the first extensive survey of permutation genera-
tion methods in Computing Surveys 9 (1977), 137–64, 314. Carla Savage’s sur-
vey article about Gray codes in SIAM Review 39 (1997), 605–29, was another
milestone.

We noted above that algorithms to generate Catalan-counted objects were
not invented until computer programmers developed an appetite for them. The
first such algorithms to be published have been superseded by better techniques,
but it is appropriate to list them here. First, H. I. Scoins [59] gave two recursive
algorithms for ordered tree generation. His algorithms dealt with binary trees
represented as bit strings that were essentially equivalent to Polish prefix nota-
tion or to nested parentheses.ThenMarkWells, in Section 5.5.4 of his book cited
above, generated binary trees by representing them as non-crossing set parti-
tions, and Gary Knott [35] gave recursive ranking and unranking algorithms
for binary trees.

Algorithms to generate all spanning trees of a given graph have been pub-
lished by numerous authors ever since the 1950s, motivated originally by the
study of electrical networks. Among the earliest such papers were works of
N. Nakagawa [48], W. Mayeda [42], H. Watanabe [70], and S. Hakimi [23].

A recent introduction to the entire subject can be found inChapters 2 and 3 of
Combinatorial Algorithms: Generation, Enumeration, and Search by Donald L.
Kreher and Douglas R. Stinson [37].

Frank Ruskey has been preparing a book entitled Combinatorial Generation
that contains a thorough treatment and a comprehensive bibliography.
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PART II

Ancient Combinatorics



The arrangement of iconographic attributes in the multiple hands of deities, as in this

depiction of a statue of Vis.n.u (Vishnu) holding his discus,conch, lotus,andmace, is a frequent

theme of sample problems concerning permutations in Sanskrit texts.



CHAPTER 1

Indian combinatorics
takanori kusuba and kim plofker

F rom ancient times Indian scholars have shown interest in arrang-
ing things in regular order, applying ordering techniques to various
types of items and concepts and theorizing about such arrange-

ments mathematically. This interest was manifested in rules for permu-
tations, combinations, and enumeration, as well as in the study of series.
In some areas, such as metrics and music, this knowledge may go back to
before the beginning of the present era.

Combinations and permutations in ancient
sources

Many early Sanskrit texts consider various possibilities for selecting and order-
ing elements in a given set of items. As early as the late Vedic period in the
first millennium bc, texts known as prātisākhyas prescribed systematic ways
of rearranging the syllables of the Vedic invocations. Since reciting the words
of the sacred hymns flawlessly was considered crucial to the success of the
accompanying sacrifices, Vedic priests memorized them – not only in their
proper ‘form’, but also with their syllables reversed or otherwise re-ordered –
to serve as a check on possible corruption of the oral tradition.

Lists of the possible results of selecting and ordering different elements in
specifiedways appear in awide variety of canonical texts from the earlyClassical
Sanskrit period; most cannot be precisely ‘dated’, but all are generally ascribed
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to the time span between the last few centuries bc and the first few centuries
ad. For instance, theMānava-dharmaśāstra, a seminal work on dharma or reli-
gious laws and practices, enumerates and critiques the various possible forms
of ‘mixed caste’, arising from marriages between men and women belonging
to each of the four standard varn. as or strata of society (Brāhman. a, Ks.atriya,
Vaiśya, and Śūdra). Similarly, the well-known sexology treatise Kāmasūtra
divides men and women into three categories, each based on their physical
characteristics, and classifies the resulting nine possible heterosexual pairings.

But the śāstra, or science, in which permutations and combinations seem to
have made their first appearance as the subject of generalized computational
techniques, possibly also in the early Classical period, is chandas or Sanskrit
prosody (metrics). In succeeding centuries the relevant applications of com-
binatorial rules were also mentioned in other śāstras, such as music theory,
medicine, and architecture. Not until after the middle of the first millennium
ad or thereabouts does the subject seem to have penetrated to treatises on
mathematics or computation per se (Sanskrit gan. ita), eventually acquiring the
specialized label aṅkapāśa, or ‘net of digits’.

Metrics

Sanskrit literary composition is in the form of prose or verse, the latter genre
going back at least as far as the earliest known Vedic hymns. Verse formats
are regulated either by the number of syllables (aks.ara) or by the number of
syllabic instants (mātrā or mora) that make up the canonical ‘foot’ or pāda
in a particular metre. (The word pāda means literally ‘quarter’, as one verse
usually consists of four identical pādas.) The basic units in Sanskrit prosody are
syllables with onemātrā/mora, called laghu ‘light’, and syllables with twomoras,
called guru ‘heavy’. A light syllable is indicated in prosody texts by a stroke (here
denoted by I) and a heavy syllable is indicated by a little curve (denoted by S).
The following list shows the possible metric variations for a set of four syllables,
followed by those for a set of six moras.

1. SSSS 5. SSIS 9. SSSI 13. SSII
2. ISSS 6. ISIS 10. ISSI 14. ISII
3. SISS 7. SIIS 11. SISI 15. SIII
4. IISS 8. IIIS 12. IISI 16. IIII
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1. SSS 5. IIIIS 9. SSII 13. IIIIII
2. IISS 6. ISSI 10. IISII
3. ISIS 7. SISI 11. ISIII
4. SIIS 8. IIISI 12. SIIII

A standard book, regarded as authoritative in Sanskrit metrics, is the
Chandah. sūtra (Prosody Rules) of Piṅgala, perhaps composed about 200 bc.
Beginning before the 10th century ad, other texts or commentaries on met-
rics treated the subject more or less in accordance with the Chandah. sū-
tra’s presentation. Since Piṅgala’s work is very brief and difficult to under-
stand on its own, these commentaries have been used to support the fol-
lowing exposition of it. (See the detailed discussions in [1], [14], [10,
pp. 61–74], and [16] for the original sūtras and various commentaries
on them.)

Concerning the identification and arrangement of such variations, there are
six fundamental notions (pratyaya) in the Chandah. sūtra; the standard order in
which later commentators treat them is slightly different:

prastāra (extension): a unique standard sequence of all possible variations
derived from a given set of elements, as well as the method of producing the
sequence;

nas. t.a (lost): a technique for determining an unknown or ‘lost’ variation corre-
sponding to a given serial number in the prastāra sequence;

uddis. t.a (indicated): the converse of the preceding – that is, a technique for
determining the serial number of a given variation within its prastāra;

sam. khyā (enumeration): determining the number of variations;

adhvan (way): the process of calculating the amount of space on a writ-
ing surface required for writing out a given prastāra (which we do not
discuss);

lagukriyā (light and heavy [syllable] calculation): the procedure for finding the
number of possible variations of a verse metre containing a given number of
laghu or guru syllables.

Piṅgala expounded the fundamental procedures for the pratyayas, as applied
to syllabic (non-moric) metres, in sixteen concise sūtras or aphorisms, most of
which are translated and explained in the following section.
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The basic pratyayas

Piṅgala’s rule for prastāra or extension, given in Chandah. sūtra 8.20–23, takes
the form of a very brief example for the case of finding variations of three
syllables:

20. heavy and light are [placed] in two ways;

21. there are two adjacent [syllables, heavy and light];

22. [in two ways] the adjacent heavy and light are [placed] separately;

23. there are eight [variations] with three [syllables].

The rule is explained more generally by a commentator as follows, and is illus-
trated by the prastāra for four syllables (shown in the table above):

• Begin with the variation where all syllables are heavy (SSSS).

• Then change the leftmost syllable to a light one to form the second variation.

The sequence of possible choices for this first syllable is thus {S, I}.
• For the third variation, change only the second syllable in the original variation to

light, and for the fourth,make the first syllable light as well.

The sequence of possibilities for the first two syllables is now {SS, IS, SI, II}.
• Continue this process recursively, so that each variation with the kth syllable

light, but the following syllables heavy, conforms to the standard sequence for

the previous k − 1 syllables. The final variation contains only light syllables.

As the table above indicates, this system of extension for the possible metres
with n syllables corresponds to the binary representation of the non-negative
integers up to 2n − 1; if a heavy syllable represents 0 and a light syllable 1, and
if the least significant digit is considered to occupy the leftmost place, then the
prastāra shown is exactly equivalent to writing down the numbers from 0 to 15
in binary notation.

The algorithm for determining nas. t.a, or a ‘lost’ variation, is stated by Piṅgala
as follows:

24. when [an even number] is halved, [write] light;

25. when [an odd number] is increased by 1, [divide by 2 and write] heavy.

We can interpret the rules as follows. If the serial number of the lost variation
is even, it is halved and a light-syllable symbol is written down. If it is odd, it
is increased by 1 and then halved, and a symbol for a heavy syllable is written.
The process is continued until the number of heavy and light symbols shown is
equal to the number of syllables in the variation.
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For example, if we wish to find the eleventh variation in the prastāra for four-
syllablemetres, wewould produce the symbol sequence shownbelow as follows.
Add 1 to 11 because 11 is odd, and halve the sum to get 6. A symbol for a heavy
syllable is recorded. Since 6 is even, it is halved to produce 3, denoted by a light
symbol. 3 is odd, so the sum of 3 and 1 is halved, yielding 2 with a heavy symbol;
2 is even, so it is halved and a light symbol is recorded. The four symbols now
transcribed correspond to the four syllables of the metre, so the procedure is
complete and the desired eleventh variation is heavy–light–heavy–light, or SISI,
as expected.

11 6 3 2 1
S I S I

For finding the serial number of an uddis. t.a, or ‘indicated’ variation, the
Chandah. sūtra states:

26. [Below the last letter of the indicated variation one should put the number 1.]
A first light is multiplied by 2 in reverse order.

27. One should subtract 1 from that [if it is heavy].

Using the same example as above, but now treating the variation itself as
given and the corresponding serial number as sought, we proceed as follows
(and as shown below). Write down the given variation’s sequence SISI, and
place 1 below its rightmost symbol. Stepping through the symbols ‘in reverse
order’, we multiply that 1 by 2 and record the product (2) beneath the heavy
symbol immediately to the left of it. Doubling the 2 in turn yields 4, but since the
current place’s symbol is heavy, the product 4 is decreased by 1 to give 3, which
corresponds to the light symbol in the next leftward place. Doubling 3 yields 6
for the next and final place to the left, and doubling 6 yields 12, but since the
current place is again marked with a heavy symbol, the product is diminished
by 1, giving 12 − 1 = 11, the desired serial number of the given variation.

S I S I
11 6 3 2 1

Piṅgala’s algorithm for finding the total number of possible n-syllable varia-
tions (sam. khyā) also makes use of halving and doubling to compute the num-
ber 2n:

28. When [an even number is] halved, two [is written];

29. when [an odd number is diminished by] 1, [write] 0;
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30. where 0 [is written], doubled;

31. where halved,multiplied by itself.

The case with n = 4 produces the computation shown below. Working from
left to right, the number of syllables 4, being even, is halved and 2 is recorded;
then the even result 4/2 = 2 is also halved and this step is again marked with 2.
The new result 2/2 = 1 is odd, so it is diminished by 1, which is indicated by
writing down 0.The remainder from the subtraction step is 0, meaning that the
reduction of the syllable number is completed. Now we start with the marker
1 on the right, and proceed from right to left, doubling the current number
every time we encounter a 0 and squaring it at every 2, so the final total is
((1 × 2)2)2 = 16.

⇒ 4/2 = 2 2/2 = 1 1 − 1 = 0

2 2 0

16 4 2 1 ⇐
This procedure reduces the number of operations required to compute 2n

by replacing doubling with squaring whenever possible. Its efficiency is evi-
dent upon noting that it involves essentially the same task as the problem of
constructing any integer n from a starting value of 0 by either adding 1 to the
current value or doubling it, with each operation repeated as often as necessary –
that is, adding 1 to any integer exponent m corresponds to doubling 2m, while
doubling m is equivalent to squaring 2m. While it would take n operations to
compute 2n if only doubling were used, it takes fewer than 2 log2 n operations
if both doubling and squaring are permitted (a fact that is exploited in modern
computation algorithms under the name ‘left-to-right binary exponentiation’).

The lagukriyā, or ‘light and heavy calculation’, for determining how many n-
syllable metres contain a specified number of light or heavy syllables in a pāda,
is described very concisely:

34. The full in front.

1 1 1 1 1
1 2 3 4
1 3 6
1 4
1

The meru for carrying out the lagukriyā for four-syllable metres.
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This procedure requires the construction of a so-called meru figure, named
after the fabulous mountain in Indian cosmology that stands at the centre of
the earth’s concentric rings of continents and seas. As illustrated above, where
n = 4, the meru is framed in a half-square formed by a sequence of n + 1
repetitions of 1, written horizontally and vertically. Then the number in each
successive cell, working outward from the corner to the ‘front’, is the sum of the
number to the left of it and the one above it. This produces a figure identical
to what we now call Pascal’s triangle, with the same combinatorial implications.
For example, the final diagonal sequence 1 4 6 4 1 informs us that there is one
variation of a four-syllable pāda containing only heavy syllables, four variations
with three heavy syllables and one light one, six with two heavy syllables and
two light ones, and so forth.

A fountain at the Chennai Mathematical Institute commemorates the combinatorial algo-

rithms of the ancient Indian scholar Piṅgala. It features numbers in what is now called the

Fibonacci sequence.
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Some other combinatorial elements of prosody

The Chandah. sūtra also briefly addresses some applications of pratyayas to
moricmetres, particularly their prastāra, or list of possible variations. Again, the
key concept is a recursive pattern of syllable change, specified by the following
mnemonic (see [14, p. 233]):

Two heavy [syllables,SS],a heavy at the end [IIS], [then] the middle [ISI], [then] the beginning

[SII], and [all] light [syllables, IIII].

Additional syllables required by the given number of moras – as illustrated by
the earlier example of the thirteen variations for a set of six moras – are initially
set to heavy and then sequentially changed to light, working from right to left.

This systematic rule for the prastāra indicates that early prosodists also
understood how to enumerate the metres with a given number of moras –
another combinatorially interesting problem. For, the set of variations for a
metre with n moras consists of all the variations for a metre with n − 2 moras
with an additional heavy syllable (equal to two moras) appended to each, plus
all the variations for a metre with n − 1 moras with an additional light syllable
(that is, a singlemora) appended to each. Since there is one possible variation (I)
for a one-morametre, and there are two variations (S, II) for a two-mora metre,
the number of possible variations for three moras is 1 + 2 = 3 (IS, SI, III), and
the number of variations for four moras is 2 + 3 = 5 (SS, IIS, ISI, SII, IIII), and
so on. In general, the number of possible variations for a metre with nmoras is
the Fibonacci number Fn+1.

The earliest surviving detailed expositions of these combinatorial concepts
in prosody were composed by authors of (and commentators on) chandas texts,
beginning around the end of the 1st millennium ad ([1, transl., p. 20], [14,
pp. 232–5], and [10, p. 60–1]). They are relevant to the development of Sanskrit
prosody and also to its counterpart in vernacular or Prakrit texts, including
the language of the sacred Jaina scriptures. In fact, some of the notable authors
in this period were Jainas, including Hemacandra in the 12th century and the
author of the Prākr. tapaiṅgala at the start of the 14th century. Since most of
their combinatorial techniques were treated more fully and systematically in
the later work of Nārāyan. a Pan. d. ita, as discussed below, we do not elaborate on
them here.
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In his work India the 11th-century Muslim mathematician al-Bı̄rūnı̄ described the combi-

natorics of Sanskrit metrics for Arabic readers. Here he explains the arrangement of the

eight possible three-syllable Sanskrit metres, where each syllable may be either heavy (<)

or light ( | ).
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Combinatorial rules in other śāstras

A number of texts in other Sanskrit technical disciplines echoed some of
the prosodists’ rules about determining the various arrangements of choices
from given sets of items. Bharata’s renowned Nātyaśāstra on dance, music,
and drama, which like the Chandah. sūtra probably dates from the late 1st
millennium bc or within a few centuries afterwards, contains a chapter on
chandas in which Bharata explicitly quotes Piṅgala’s formula for the prastā-
ra or extension. One of his chapters on music also addresses combinato-
rial problems in laying out and naming the variations of melodic sequences
formed with the seven notes (tāna) of the Indian scale. A later music trea-
tise, the 13th-century Saṅgı̄taratnākara of Śārṅgadeva, extends the methods
of combination and permutation to classify sequences of specified numbers of
rhythmic beats (tāla), as well as those of tāna or musical notes (see [8] and
[10, pp. 98–137]).

Combinations are also relevant in the field of āyurveda, or medicine,
particularly in the area of pharmacology. The Carakasam. hitā and Suśruta-
sam. hitā, both from approximately the early 1st millennium ad, treat in a
rather elementary way the combinations of the six basic tastes (sweet, pungent,
astringent, sour, saline, bitter) and of the three humours in Indian medical
theory. For example, Carakasam. hitā 1.26.15–22 painstakingly lists all the num-
bers of possible combinations of tastes, selecting from one to six tastes at a
time:

Sweet is combined with sour and so on; sour and so on [are combined] with the remaining

[tastes] separately.These substances consisting of two tastes amount to fifteen.The combi-

nation of sweet combined with sour and so on separately is [combined] with the remaining

[tastes] separately: thus [is combined the combination] of sour, of saline, and of pungent.

Twenty substances consisting of three tastes are mentioned according to counting . . .

But there is one [substance] having six tastes. Thus sixty-three substances are indicated

by enumerating the tastes.

A later section similarly seeks to list the varieties of diseases caused by imbal-
ances of two out of the three bodily humours (see [10, pp. 139–44]).

Combinatorial themes also appear occasionally in awide range of other texts,
including a section on metrics in the sacred narrative compilation Agnipurān. a
[6, p. 229]. Sometimes a Sanskrit text on architecture refers to a related technical
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term, such as the above-mentioned meru, but it is not yet fully understood
what these signify in this context (see [10, pp. 144–6]). A far more extensive
application of combinatorial concepts is found in the chapter on perfumery
in the 6th-century Br.hatsam. hitā of Varāhamihira, a voluminous work on div-
ination and miscellaneous other subjects [10, pp. 149–66]. Varāhamihira and
his 10th-century commentator Utpala discussed the various fragrances that
can be compounded by mixing any four from a selection of sixteen standard
ingredients in varying ratios, where each ingredient may constitute one, two,
three, or four parts of the whole.

For instance, Varāhamihira noted that, for a given set of four ingredients,
the number of ways to combine them in the proportion 4 : 3 : 2 : 1 is given by
4 × 3 × 2 × 1 = 24, and for four such sets comprising all the sixteen different
ingredients, the total number of substances is 24 × 4 = 96. He then observed
that there are 1820 ways to pick such a set of four from the sixteen possi-
bilities, and declared that the resulting total number of possible substances
is 1820 × 96 = 174 720. It was pointed out by Utpala (and [4]) that this is
inaccurate: the number of possible sets of four (1820) should be multiplied by
the number of possible ways to combine each set of four (24) to give the total
number of perfumes as 1820 × 24 = 43 680.

The derivation of the combination number 1820 itself employs an interesting
technique, cryptically enunciated by Varāhamihira as follows:

[A number] is combined with each preceding [number] that has passed except for the last

place; they call [this] enumeration (sam. khyā) . . .

Utpala’s commentary used the example of choosing four out of sixteen ingre-
dients, as illustrated below (where, for convenience, the corresponding combi-
nation notation C(n, k) is listed next to each number). Write the numbers 1 to
16 upwards in a vertical column; in a second column next to it write 1. Then
add the number 1 at the bottom in the first column to the number 2 above it,
and write the result in the second column above the preceding number. Add
this sum to the third number 3 from the bottom in the first column; write the
result above the sum in the second column. Continue this process till the top of
the column is reached, and repeat it for a third and a fourth column (as shown
below), neglecting the final number in each column. The last number in the
fourth column is the number of ways to select four from sixteen ingredients,
which is 1820.
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16 C(16, 1)
15 C(15, 1) 120 C(16, 2)
14 C(14, 1) 105 C(15, 2) 560 C(16, 3)
13 C(13, 1) 91 C(14, 2) 455 C(15, 3) 1820 C(16, 4)
12 C(12, 1) 78 C(13, 2) 364 C(14, 3) 1365 C(15, 4)
11 C(11, 1) 66 C(12, 2) 286 C(13, 3) 1001 C(14, 4)
10 C(10, 1) 55 C(11, 2) 220 C(12, 3) 715 C(13, 4)
9 C(9, 1) 45 C(10, 2) 165 C(11, 3) 495 C(12, 4)
8 C(8, 1) 36 C(9, 2) 120 C(10, 3) 330 C(11, 4)
7 C(7, 1) 28 C(8, 2) 84 C(9, 3) 210 C(10, 4)
6 C(6, 1) 21 C(7, 2) 56 C(8, 3) 126 C(9, 4)
5 C(5, 1) 15 C(6, 2) 35 C(7, 3) 70 C(8, 4)
4 C(4, 1) 10 C(5, 2) 20 C(6, 3) 35 C(7, 4)
3 C(3, 1) 6 C(4, 2) 10 C(5, 3) 15 C(6, 4)
2 C(2, 1) 3 C(3, 2) 4 C(4, 3) 5 C(5, 4)
1 C(1, 1) 1 C(2, 2) 1 C(3, 3) 1 C(4, 4)

Varāhamihira’s method for C(n, k), shown for n = 16 and k = 4.

Other rules in this chapter of the Br.hatsam. hitā explain how to identify and
count the various combinations, and how to use a specified diagram (actually a
modified magic square of order 4 – see [5]) to represent the different possible
substances.

Assimilation of combinatorics in
mathematics texts

It took significantly longer for Sanskrit authors on gan. ita (or mathematics
proper) to incorporate such rules on combinations and permutations fully into
their own subject. Initially, this appropriation appears to have taken the form of
simply adapting combinatorial formulas and examples from other disciplines
and listing them with other miscellaneous rules and topics. The first known
instance occurs in the mathematical astronomy text Brāhmasphut.asiddhānta,
composed by Brahmagupta in 628, which combines a fairly systematic treat-
ment of astronomical calculations with a more erratic selection of chapters on
various related topics, including general arithmetic and algebra, astronomical
instruments, and chandas (see [3, pp. 357–8] and [6, p. 230]). This latter sec-
tion was mentioned by the 11th-century polymath al-Bı̄rūnı̄ in his book India
[13, pp. 147–50], in his attempt to explain Sanskrit metrics for Arabic-literate
Muslims, but its twenty verses have yet to be fully studied and explained.
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Al-Bı̄rūnı̄ illustrates the possible combinations of syllables in the four pādas of the moric

metre called skandha.

The arithmetic text Pāt. ı̄gan. ita of Śr̄ıdhara, dating to probably the 8th or 9th
century, briefly states a rule for enumerating the combinations of any num-
ber of tastes, from two up to the canonical maximum of six (see [11, p. 325]
and [10, pp. 86–7]). The 9th-century Jaina mathematician Mahāvı̄ra went into
considerably more detail in his arithmetic treatiseGan. itasārasaṅgraha (see [10,
pp. 87–9] and [12, pp. 93–4, 108–9]). His chapter on ‘mixture problems’ deals
with calculations on investments and profits, indeterminate equations or the
‘pulverizer’, series, and some combinatorial rules – including one described as
a type of ‘pulverizer’ for counting combinations of k out of a set of n choices,
which may be expressed in modern notation as follows:

C(n, k) = (n − k + 1) × · · · × (n − 2) × (n − 1) × n
k × (k − 1) × (k − 2) × · · · × 1

.

In this chapter Mahāvı̄ra prescribed techniques for the pratyayas, equivalent to
those of the classical prosodists, and in an earlier chapter he gave a generalized
version of Piṅgala’s sam. khyā rule for computing rn for any positive integers r
and n.

In the 12th-century Lı̄lāvat̄ı of Bhāskara II, which became more or less the
standard second-millennium Sanskrit arithmetic textbook, prosody rules were
again included in the sections on ‘mixture problems’ (including investments,
interest, etc.) and on series. However, after stating his version of the above for-
mula for C(n, k), Bhāskara explicitly pointed out that it is equally applicable to
problems in different fields (see [2, pp. 106–7], [10, p. 89], and [11, pp. 187–8]):
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Numbers beginning with and increasing by one [are set down] in reverse order [and

respectively] divided by [the same numbers] standing in order. [Each] next [fraction] is

to be multiplied by the previous, and the one next to it by that [product], [and so on]; [the

results] are the [numbers of] variations of one, two, three, etc. [objects]. This is considered

to be general. Its application in metrics among [those] who know it is given in the chapter on

metrics [in the Brāhmasphut.asiddhānta]; in architecture in the variations of window frames

and the partial-meru [diagram]; and in medicine in the variations of tastes. These are not

described for fear of over-extension [of this book]. (L̄ılāvat̄ı, 112–14)

That is, after writing down the n fractions

n
1
,
n − 1

2
,
n − 2

3
, . . . ,

1
n
,

we obtain the number of combinations of any k out of n objects from the
product

C(n, k) = n
1

× n − 1
2

× n − 2
3

× · · · × n − k + 1
k

.

Besides identifying the previous incarnations of combinations and permuta-
tions as applications of the same general methods, Bhāskara devoted the final
section of the Lı̄lāvat̄ı to a new application of them under the technical term
aṅkapāśa or ‘net of digits’ (see [10, pp. 90–5], [2, pp. 274–85], and [11, p. 191]).
As its name suggests, this subject focuses on how to determine the numbers
that can be created from a given set of digits (excluding 0), although some of
the examples illustrate non-numerical variations such as the n! different statues
of a specified deity that can be created by rearranging n iconographic attributes
(trident, conch shell, lotus, etc.) on its n hands. Treating a permutation of digits
as an integer also allows aṅkapāśa to explore new problems, such as finding
the arithmetical sum of all the integers produced from a given set of digits.
Bhāskara’s aṅkapāśa rules compute the following quantities:

• the total number n! of permutations of n different objects, and the sum of all the

integers thus produced if the objects are digits;

• the total number n!/(n1! n2! · · · ) of permutations of n non-distinct digits, if one

digit is repeated n1 times, another n2 times, etc. – and how to find their sum in

each case;

• the total number m!/(m − n)! of permutations of n distinct digits chosen from

m possibilities;
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• the total number of permutations of n digits that add up to a specified sum s,

provided that s < n + 9. Bhāskara’s formula is

s − 1
1

× s − 2

2
× s − 3

3
× · · · × s − n + 1

n − 1
.

The combinatorial expositions of Nārāyan.a
Pan.d. ita

The culmination of combinatorics as a mathematical topic in Sanskrit appears
to have been reached in the Gan. itakaumudı̄ (Lotus Delight of Calculation),
composed by Nārāyan. a Pan. d. ita in 1356, and in the accompanying commen-
tary supplied either by Nārāyan. a himself or by another author. The thirteenth
chapter of the work is devoted to aṅkapāśa, and the fourteenth is devoted to
the earliest currently known comprehensive Sanskrit exposition of constructing
magic squares of any order and with any given sum (see [7]). Here we focus
mostly on surveying the structure and innovations of Nārāyan. a’s Chapter 13
(see [10] and [15] for complete translations with commentary).

While evidently following the example of Bhāskara’s Lı̄lāvat̄ı in much of his
subject selection and organization, Nārāyan. a also drew on sources in music,
metrics, medicine, and miscellaneous topics such as the Br.hatsam. hitā. He
merged his borrowings and new results into an unprecedentedly complete and
systematic treatment of combinatorial rules which, as he noted, is generally
applicable in many fields (see [10, p. 320]):

It is applied to dance and music,metrics,medicine, garland-making, and mathematics as well

as architecture. Knowledge of these is indeed [acquired] by means of the net of numbers.

Nārāyan. a broke downhis exposition of aṅkapāśa into sections on ‘sequences’
(paṅkti), ‘operations’ (karan. a), and the pratyayas. The combinatorial variations
to which his rules apply are considered to be integers composed of numerical
digits between 1 and 9, although for some of the pratyayas the digits can stand
as symbols for non-numerical objects, such as musical notes.

Among Nārāyan. a’s twelve types of sequence are the following:

• an increasing sequence from 1 up to a given n, or {1, 2, 3, . . . , n};
• a sequence without intervals, or the n-digit integer with each digit equal to 1;

• a sequence with separations, or the digit 1 repeated n times;

• an additive sequence for a given number of terms n and a given number of

addends q, where the first two terms are 1, the third is their sum 2, and each
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successive term up to the (n + 1)st is the sum of the previous q terms – for

example,when n = 7 and q = 3, the additive sequence is {1,1, 2, 4, 7, 13, 24, 44},
and when q = 2, it is the sequence of Fibonacci numbers {1, 1, 2, 3, . . . , Fn+1}
(see [14, pp. 237–8]);

• a geometric progression sequence {1, q, q2, q3, . . . , qn}, for given numbers n and q.

The ‘operations’ include tabular diagrams that are variations on the well-
known meru figure illustrated above, and the use of a ‘marker’ to keep track
of certain specified cells within a diagram. The pratyayas are fundamentally
the same concepts enunciated in ancient prosody, but Nārāyan. a supplemented
them with many related problems and techniques to produce the following list
of computable quantities:

• sam. khyā, or the total number of variations;

• ‘repetition’, or how many times each of the given digits appears in a given place;

• the sum of the last digits in all the variations;

• the sum of all the variations;

• the total number of digits and total number of each distinct digit in all the

variations;

• prastāra, or the standard list of all variations;

• the number of variations with a specified number of places;

• nas.t.a, or the particular variation corresponding to a given serial number within

the prastāra;
• uddis.t.a, or the serial number corresponding to a given variation;

• the number of variations whose digits add up to a given sum;

• the number of variations containing a specified number of repetitions of a given

digit;

• the number of variations ending with a given digit.

He divided his explanations and illustrations of these computations according
to five different conditions, or ‘patterns’, determining the combinatorial nature
of the problem, as follows:

1. n distinct digits in n places;

2. non-distinct digits in n places;

3. n places containing any digits from 1 up to a specified highest digit q;

4. any number of places containing any digits from 1 up to a specified highest digit

q, where the sum of the digits in each variation is a given number s;

5. n places containing any n distinct digits from 1 up to a specified highest digit q.

Some of the pratyayas apply to all of the patterns, and others only to certain
ones.
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(a)

(b)

(c)

A Nepalese Sanskrit manuscript of Nārāyan.a’s Gan. itakaumud̄ı includes diagrams to illus-

trate the worked examples in his commentary: (a) the pattern-1 prastāra; (b) a pattern-3
prastāra, where the number of pieces is 6 and the highest digit is 2; (c) adding up the total

number of variations in a pattern-4 prastāra,where the sum of the digits is 7 and the highest

digit is 3.

A pattern-5 prastāra,where the number of places is 6 and the highest digit is 9, from a 1792

manuscript of Nārāyan.a’s Gan. itakaumud̄ı.
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Nārāyan. a’s methods were designed for computational ease and modularity –
that is, the sequences were used to determine the entries in the cells of a dia-
gram, and the diagram entries and sequence elements were used together to
solve problems in the calculation of the pratyayas. For example, the ‘partial-
meru’ figure of size n (shown below for the case n = 6) is a half-grid whose
top row contains 1 in its first cell followed by n − 1 zeros. Below that, as
Nārāyan. a described it, the columns all contain elements of the ‘increasing
sequence’ {1, 2, 3, . . . } written from top to bottom and multiplied by ‘the prod-
uct of their own rows’ (see [10, p. 328]) – that is, the cell in the ith row of the jth
column (where 2 ≤ i ≤ j ≤ n) contains the number (i − 1) × (j − 1)!.

1 0 0 0 0 0
1 2 6 24 120

4 12 48 240
18 72 360

96 480
600

This figure can then be used to answer different questions about the pratya-
yas, for variations with up to n places. For instance, if we wish to know the total
number of variations produced by permuting the four distinct digits 2, 3, 6, and
1 (a pattern-1 case), we obtain it from what Nārāyan. a [10, p. 328] called ‘the
sum of the numbers in the cells of the hypotenuse’ for the first four columns:
1 + 1 + 4 + 18 = 24 = 4!; equivalently, we can just multiply together the first
four terms in the increasing sequence. The number of variations ending with
each of the specified digits is 24

4 = 6, so the sum of the upper digits in all the
variations is

(6 × 6) + (6 × 3) + (6 × 2) + (6 × 1) = 72.

This result is thenmultiplied by the four-digit ‘sequence without intervals’ 1111
to give 72 × 1111 = 79 992 as the sum of all the digits in all the variations (see
[10, p. 334]).

The use of ‘markers’ to designate certain cells in a diagram can be illus-
trated by the procedure prescribed by Nārāyan. a for finding the uddis. t.a,
the serial number of a variation in the above example, as follows (see [10,
p. 338]):
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Whatever is the number at the end of the indicated [variation], as far as that is from the

final [number] of the base [order], just as far in the cell below of the partial Meru one

should place a marker. There is omission of this [last number] in both the base order and

the indicated [variation]. [Do this] again as long as there is such a number. The sum of the

numbers which fall in the cells occupied by the markers is the measure of the variations at

the indicated [variation] combined with the first number.

For instance, if the serial number of the four-digit variation 6231 is sought, we
first compare it with the ‘base order’ variation 1236 with the digits appearing in
ascending order. In the indicated variation 6231 the ‘end’ or rightmost digit 1 is
fourth from the right in the base order. So in the rightmost column of the partial
meru for n = 4, shown below, we mark the entry 18 (represented by italics) in
its fourth row.

1 0 0 0
1 2 6

4 12
18

Next, the omission of 1 from both variations results in the truncated forms 623
of the indicated variation and 236 of the base order.The new rightmost number
3 in the indicated variation is second from the right in the new form of the base
order, so in the adjacent third column we mark the entry 2 in the second row.
The same process tells us where tomark entries in the second and first columns.
Thenwe add up all themarked entries to find the serial number of the indicated
variation 6231: 18 + 2 + 1 + 1 = 22.

We can see from the list of variations shown below that the result is in
agreement with the standard prastāra, which requires us to permute the first
two digits before changing the third, the first three digits before changing the
fourth, and so on, until the last variation appears in reverse base order or 6321.

1. 1236 7. 1263 13. 1362 19. 2361
2. 2136 8. 2163 14. 3162 20. 3261
3. 1326 9. 1623 15. 1632 21. 2631
4. 3126 10. 6123 16. 6132 22. 6231
5. 2316 11. 2613 17. 3612 23. 3621
6. 3216 12. 6213 18. 6312 24. 6321

The prastāra with base order 1236.
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Our final example ofNārāyan. a’s rules involves a somewhatmore complicated
case, where the sum s of the digits and the highest digit q are specified but
the number of digits is not fixed. Such a set of variations is equivalent to the
partitions of s that include any of the digits from 1 up to q. Nārāyan. a [10, p. 359]
noted:

The number at the end of the sequence called additive is the measure of the variations.

[The numbers taken] in reverse order from its penultimate number are the variations

ending with 1 and so on.

For example, the additive sequence for s = 7 and q = 3 is the above-mentioned
sequence {1, 1, 2, 4, 7, 13, 24, 44}, meaning that there are forty-four such num-
bers between 133 and 1111111. Of these numbers, twenty-four have 1 as their
final digit, thirteen have 2, and seven have 3.

Furthermore, Nārāyan. a employed a sequence mysteriously called ‘the
underworld’ to glean more details about these variations (see [10, p. 323,
p. 360]):

One should write 0 and the number 1 below the sequence called additive. Then [the

number] above the last [number] is added to the sum of the numbers in equal[ly many]

places as the highest [digit], in reverse order. In this way one should write numbers in

front of those in all the places . . . The numbers produced from the sequence [called]

the underworld for the same highest [digit] and sum are [taken] in reverse order.They are

the occurrence [of] the digits 1 and so on with that sum.

That is, the ‘underworld’ sequence begins with the numbers 0 and 1 written
under the first two numbers in the corresponding additive sequence for the
given s and q, and its remaining terms are successively computed by adding
up its last q terms and the number in the additive sequence above its last term.
Thus, in the example for s = 7 and q = 3 shown below, we find the underworld
sequence terms

0 + 1 + 2 + 2 = 5, 1 + 2 + 5 + 4 = 12, 2 + 5 + 12 + 7 = 26,

and so forth. Taken in reverse order, they tell us that the variations contain
118 occurrences of the digit 1, 56 occurrences of the digit 2, and 26 of the
digit 3.

1 1 2 4 7 13 24 44
0 1 2 5 12 26 56 118
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It remains unclear as to why mathematicians like Bhāskara II and Nārāyan. a
Pan. d. ita cast so much of their combinatorics in terms of the ‘net of digits’ – that
is, the arithmetic properties of variations interpreted as integers. Scholars in
other śāstras, such as prosody and music, continued to develop the pratyayas
of their disciplines (see [1, transl., p. 59]), but they do not seem to have rein-
terpreted them as special cases of the mathematicians’ aṅkapāśa. Nor does
aṅkapāśa itself seem to have profoundly impinged on other areas of mathe-
matics. It may well have been valued primarily as an interesting research area
in its own right, particularly for its unique combination of very simple oper-
ations with challenging methods and problems. As Nārāyan. a observed (see
[10, p. 320, p. 373]), paraphrasing a similar sentiment expressed earlier by
Bhāskara:

[even though,] in this mathematics called aṅkapāśa there is no multiplication,no division,no

square and square root, no cube and its root, no operation for subtracting fractional parts,

no miscellaneous [rules] for fractions,no rule of three or rule of five,no areas and volumes,

no equation of unknowns and so on .…

Nonetheless, in the net of digits ‘those who are jealous, depraved, and poor
mathematicians fall down’.
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The arithmetical triangle from Zhu Shijie’s Siyuan yujian of 1303.



CHAPTER 2

China
andrea bréard

Combinatorial practices in China go back to high antiquity, when
divinatory techniques relied on configurations of broken and
unbroken lines. The Yijing or I Ching (Book of Change), com-

piled under the Zhou dynasty, has transmitted these practices up to the
present time and has been a widely commented upon and read source.
But combinatorial practices in China were not limited to divination and
magic squares: a large number of early sources also described games such
as Go and chess, and games with cards, dominoes, and dice, that show a
combinatorial interest from a more mathematical point of view. The ear-
liest source that systematically discusses permutations and combinations
is an 18th-century manuscript. Although mathematics had by then been
introduced from Europe, the manuscript is clearly based on traditional
mathematical concepts and algorithmic modes. In this chapter we show
how early combinatorial practices provided a framework for later mathe-
matical developments in imperial China.

Combinatorial practices

We begin with a brief look at three areas in which combinatorial practices
occurred: divination, games, and magic squares.
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Divination

An early interest in combining and arranging two distinct elements as n-tuples
can be found in one of China’s Confucian classics, and goes back to as early
as the end of the Zhou dynasty (c. 3rd century bc). As mentioned in Donald
Knuth’s introductory chapter, the Book of Change gives – in a specific sequence
that changed over time – interpretations of the sixty-four hexagrams, diagrams
of six stacked broken or unbroken lines. Leibniz’s prominent arithmetical read-
ing of these figures as a binary system certainly was a misinterpretation, though
by no means the sole occurrence of linking these diagrams used for divination
with mathematical content. The following sections show how Chinese authors
later used them as a model to discuss combinatorial issues from a theoretical
point of view (see [1]).

Gaming

During the Song dynasty (960–1279), gaming emerged as another field of com-
binatorial practice in relation to mathematical writing. Shen Gua (1031–95),
a polymath and state official, explicitly discussed the possible configurations
in the game of Go, with a grid of 19 × 19 lines, where each position could be
empty, or could contain a black stone or a white stone. Furthermore, late-16th-
century texts, generally referred to by historians asRiyong leishu (Encyclopedias
for Daily Use), describe the game of ‘ivory tiles’ (yapai).

A late-16th-century manual showing the possible permutations of pips on three ‘ivory tiles’,

each depicting two of the numbers 4, 5, and 6.

Theorigins of these domino-like tiles, played in a card-like fashion, date back
to the Song dynasty Xuanhe era (1082–1135). The printed pattern sheets attest
to a certain combinatorial activity, that of enumerating the possible permuta-
tions of the number of pips on a combination of three tiles, as shown above.
The three doubles shown on the left were called the ‘regular cavalry’, whereas
all other permutations were referred to as ‘irregular cavalries’. It is possible
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that winning schemes in the game of ivory tiles were based on combinatorial
considerations, but there is certainly no evidence of the existence of a concept
of probability (see [2]).

Magic squares

Magic squares have also been an often-cited reference for combinatorial the-
ories in early China. But, as Cammann [3] has pointed out, only two dia-
grams, the Hetu (Yellow River Chart) and the Luoshu (Luo River Writing),
which are legendarily ascribed to two semi-divine figures from the 3rd and 2nd
millenia bc, appear in the surviving mathematical and other texts before the
Song dynasty. In the following figure, ‘knotted chord’ configurations are used to
represent numbers. The Yellow River Chart on the right shows an arrangement
of the numbers 1 to 10, whereas only the Luo River Writing on the left is a true
3 × 3 magic square of the numbers 1 to 9. Both diagrams were deeply rooted in
a correlative system of thought, relating odd and even numbers to yin and yang,
and their positions to the five directions (the four cardinal directions and the
centre), five elements, or four seasons.

The Luoshu (left) and Hetu (right) diagrams, from Cheng Dawei’s Unified Lineage of Mathe-
matical Methods (1592).

Yang Hui (c.1238–98), in his Xugu zhaiqi suanfa (Continuation of Ancient
Mathematical Methods for Elucidating the Strange Properties of Numbers)
(1275), gave a method for constructing a magic square of order 3 (resulting
precisely in the Luoshu) and two of order 4. For order 3, YangHui started from a
diagonal arrangement (see left figure below), and then prescribed interchanging
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top with bottom, and right with left. ‘Making the four corners stick out’ results
in the arrangement of the Luoshu (see right figure below and left figure above).

1

4 2

7 5 3

8 6

9

→

9

4 2

3 5 7

8 6

1

→
4 9 2

3 5 7

8 1 6

Construction of the Luoshu diagram in Yang Hui (1275).

In the case of a 4 × 4 magic square, an analogous method was presented
without justification to produce the example shown in the right figure below.
Here, Yang Hui started from an arrangement of the consecutive numbers 1 to
16 in the four columns of a square array and again proceeded by interchanging
the corners – first the corners of the outer square, then the corners of the inner
square – and in the end any row of the diagram adds up to 34, whether vertical,
horizontal, or diagonal, as shown below.

→
13

14

15

16

9

10

11

12

5

6

7

8

1

2

3

4

4 9 5 16

14 7 11 2

15 6 10 3

1 12 8 13

Furthermore, Yang Hui showed two particular examples each of magic
squares of orders 5 to 8, and one example each of orders 9 and 10. One magic
square of order 5 and one of order 7 are ‘bordered’: one or more of the inner
magic squares are magic squares themselves (see the figure below). Such exam-
ples can be found in earlier sources from the Islamic world, but, as Yang Hui
did not even mention this property of his 5 × 5 and 7 × 7 squares, it is unclear
whether such particularmagic squares were transmitted to China or discovered
independently.

1 23 16 4 21
15 14 7 18 11
24 17 13 9 2
20 8 19 12 6
5 3 10 22 25

46 8 16 20 29 7 49
3 40 35 36 18 41 2
44 12 33 23 19 38 6
28 26 11 25 39 24 22
5 37 31 27 17 13 45
48 9 15 14 32 1 0 47
1 43 34 30 21 42 4

Two bordered magic squares given by Yang Hui.
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A remarkably original, but little known, contribution to magic squares
occurred in the late 1800s in China. Bao Qishou found ‘magic perimeter solu-
tions’ for the five Platonic solids: the cube, the tetrahedron, the octahedron, the
icosahedron, and the dodecahedron. The author seems to have been interested
in generalizing the problem of assigning a number to each vertex of a solid in
such a way that consecutive numbers on the perimeters of the structure all sum
to the same constant. For example, Bao labelled the vertices of a cube with the
numbers 1 to 8 so that the sumaround each face is 18, and also labelled the edges
with 1 to 12 so that each sum is 26; then, by combining these two labellings
(adding 8 to the edge labels), he achieved a perimeter labelling, using 1 to 20,
where each sum is 76. But Bao did not reveal his secret of how precisely one
might proceed, and rather defied the reader to solve the problem [4]:

Further diagrams can be constructed by the previous methods. It becomes easier to make

variations when more and more numbers are used. However, it is pointless to give these

illustrations when all methods have been exhaustively demonstrated.

Two ‘magic’ labellings of the vertices of a dodecahedron by Bao Qishou.

In his essay Zengbu suanfa hunyuantu (Additional Mathematical Methods
for Solid and Spherical Figures), Bao used a variety of diagrams, unfoldings,
or three-dimensional illustrations to depict his perimeter magic figures. Above
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we see the particularly interesting case of the dodecahedron. On the left, we
see a planar representation with the vertices consecutively labelled from 1 to
20, with the twelve pentagonal faces summing to the twelve numbers from
47 to 58. This figure is not a magic dodecahedron, but is still a clever varia-
tion, since it is impossible to have constant face sums with consecutive-vertex
labelling. The three-dimensional illustration on the right in the figure above
is another variant, in which the vertices of the dodecahedron have the same
labelling with 1 to 20 as on the left, and the numbers 21 to 50 for the edges.
Thus, Bao obtained a fully ‘face-magic’ dodecahedron in which each face sum
is 230.

Chen Houyao’s manuscript

Among the now extant Chinese mathematical writings, there is only one
manuscript essay devoted to combinatorics: Cuozong fayi (The Meaning of
Methods for Alternation and Combination) by Chen Houyao (1648–1722).
It dealt systematically with problems of permutations and combinations in
the case of divination with trigrams, the formation of hexagrams or names
with several characters, and combinations of the ten heavenly stems (tiangan)
and the twelve earthly branches (dizhi) to form the astronomical sexagesi-
mal cycles. Games of chance, such as dice throwing and card games, equally
serve as a vehicle for discussing algorithms for calculating combinations, with
or without repetition. In the foreword to his treatise, Chen Houyao under-
lined the originality of his contribution to the mathematical tradition in China
[5]. Referring to the classic Nine Chapters of Mathematical Procedures [6], he
observed:

The Nine Chapters have entirely provided all [mathematical] methods, but they lack of any

type of method for alternations and combinations.

Unfortunately we do not know whether the author based his solution meth-
ods on knowledge circulating among early Qing dynasty mathematical net-
works, or whether he learned about combinatorics from the teachings he
received from the Kangxi Emperor, who in turn had been instructed by
the French Jesuit mathematicians sent by Louis XIV, ‘Les mathématiciens
du Roi’.

Although singular in its appearance, the existence of ChenHouyao’s short but
well-constructed collection of problems and solution procedures is nevertheless
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an indication that other sources with combinatorial problems may have circu-
lated during the late imperial period. Similar phenomena of selective textual
transmission in China can be observed for the development of other mathe-
matical concepts and ideas. Another reason to believe that combinatorics was
a wider field of mathematical enquiry is the fact that Chen Houyao referred
explicitly to his predecessors when he expressed his intention to improve the
efficiency of their algorithms.

In the case of hexagrams (configurationsmade up of six lines, each broken or
unbroken, as discussed in Knuth’s introductory chapter), he underlined that the
calculation of all possible combinations with repetition can be obtained either
by successive multiplication of the two possibilities:

number of configurations consisting of 2 lines = 2 × 2 = 4;

number of configurations consisting of 3 lines = 4 × 2 = 8;
...

number of configurations consisting of 6 lines = 32 × 2 = 64;

or, in a much simpler way, by squaring the eight possibilities for obtaining a
trigram (a configuration made up of three lines) (see [7]):

If one multiplies by itself the thus obtained number [the number 8 for trigrams], one

economizes half of the multiplications.

In other problems in which Chen Houyao suggested two algorithms for
finding the solution, he not only named one of them explicitly as the ‘original
method’, but also indicated the detailed sequence of operations to follow. For
one problem, the equivalence (in modern mathematical terms) between Chen’s
method,

C(30, 9) = 30 × 29 × 28 × 27 × 26 × 25 × 24 × 23 × 22
9 × 8 × 7 × 6 × 5 × 4 × 3 × 2

= 5 191 778 592 000
362 880

= 14 307 150,

and the ‘original method’,

C(30, 9) = (. . . (((22 × 23) ÷ 2) × 24) ÷ 3) × · · · × 30) ÷ 9,

is illustrated in the following example [8]:
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Let us suppose one has thirty playing cards. All cards have a [different] form. Each hand

consists of nine cards. How many combinations can one obtain by drawing one hand? It

says:14 307150 hands.
The method says: One takes thirty cards as the dividend. Furthermore one subtracts

one from thirty. This makes twenty-nine,onemultiplies this [the dividend of 30] with it. One

then again subtracts one, and multiplies this [the product of 30 and 29] with 28 . . . One

multiplies this [the product of 30, 29, 28, 27, 26, 25, 24, and 23] with 22. Nine cards make

up one hand. Because one subtracts nine layers, one has to multiply eight times to obtain

the dividend. Altogether one obtains by multiplications 5191 778 592 000 as the dividend.

Now one shall also successively subtract each hand of the nine cards. One multiplies this

[the nine cards] with 8, further one multiplies this with 7 . . . Further one multiplies this

[the product of 9, 8, 7, 6, 5, 4, and 3] with 2. With one [multiplied] this remains unchanged,

therefore one does not multiply. Altogether one obtains by these multiplications 362 880

as divisor. By this one divides the above dividend, one obtains 14 307150 hands. The

explanation (jie [9]) says: Here the situation is as in the previous example concerning

the combination of eight personal names. Yet although one does not have repetitions in

combinations of names, one can still invert their ordering. But here each hand has nine

cards, each card has a different colour, and there are neither repetitions nor permutations

of their ordering.This is the reason why the methods which are used are different. At first,

the calculation of 5191 778 592 000,which one obtains through successive subtraction and

multiplication of the thirty cards, equals the previous method concerning the combination

of personal names. Names have no above or below, no inversion of ordering. That is why

one further has to eliminate the equivalent ones obtained by changing the ordering. Thus

one divides this [the dividend 5191 778 592 000] by the divisor, the successively subtracted

and multiplied nine cards. One then obtains the real number.

The original method multiplies and divides alternately one at a time. Its principle is not

easy to grasp and the method is very confusing and clumsy. It does not equal the efficiency

of common multiplication and common division in this method here.

This problem shows that in China games of chance did provide a framework
for the mathematical treatment of possible outcomes. But it is doubtful that
the conceptual step that relates the number of favourable events and the total
number of possible events, which in Europe laid the foundations of amathemat-
ical theory of probability, was ever taken in China. Neither Chen’s method, nor
later algorithms to calculate combinations and permutations, seemed to inspire
further theoretical considerations of chance, at least judged on the mathemat-
ical sources preserved. In China probability theory, now an important part of
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mathematical statistics and a field that relies on combinatorial tools, seems to
have been a mathematical area entirely imported from the West.

The arithmetical triangle

An even earlier prominent candidate for a possible emergence of combinatorial
considerations in the Chinese mathematical tradition might be what is known
as the ‘Pascal triangle’ or the ‘arithmetical triangle’. It first appeared in China
in a chapter on algorithms for root extraction, in Yang Hui’s Xiangjie jiu zhang
suanfa (Detailed Explanations of The Nine Chapters on Mathematical Meth-
ods), completed in 1261, but it must have been circulating a century earlier. In
theWest, Pascal also applied his arithmetical triangle to the theory of combina-
tions, the powers of binomial quantities, and the problem of points – the division
of stakes in an interrupted game of chance (see [10], [11], and Chapter 6).

In China, we know only of its important use in the context of interpolation
techniques, solutions of polynomial equations, and the construction of finite
arithmetical series – in particular, through an early-14th-century treatise, the
Siyuan yujian (Jade Mirror of Four Elements, 1303) by Zhu Shijie, who placed
the diagram at the beginning of his book. Although Zhu did not give a combi-
natorial interpretation of the diagram, his interest in combinatorial practices
played out on another level: the terminology used for the finite series was
constructed from combinations of binomial expressions in the linguistic sense.
A mathematical meaning was attached to each prefix or suffix, reflecting the
factorization of each term in the arithmetical series. Inverse problems (such as
how many terms form a given sum) were solved by interpolation techniques,
using the coefficients from the triangle (see [12, Ch. 4.2] and [13]).

Later, Wang Lai (1768–1813) did relate finite arithmetical series to com-
binatorial problems in an essay Dijian shuli (The Mathematical Principles of
Sequential Combinations) [14]. Without referring to the arithmetical triangle,
he illustrated his subject matter with the example of ten objects from which
sequentially one, two, three, four, or five objects are drawn. He was probably
unaware of Chen Houyao’s manuscript, since he claimed the same priority to
the field of combinatorics [16]:

Procedures of sequential combinations had not been discovered in ancient times. Now that

I have decided to investigate them, it is thus appropriate to explain the object of inquiry
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first. Let us suppose one has all kinds of objects. Starting off from one object,of which each

establishes one configuration, and going up to all the objects taken together, they form

altogether one configuration (shu). In between lie sequentially:

two objects connected to each other form one configuration, and we shall discuss how

many configurations this can make through exchanging and permuting ( jiao cuo);

three objects connected to each other form one configuration, and we shall discuss how

many configurations this can make through exchanging and permuting;

four objects, five objects, up to arbitrarily many objects, they all entirely follow that which

is the so-called procedure of sequential combinations.

Thepossible outcomes of drawing k objects froma set ofn objects correspond
to sums of higher-order series, which Zhu Shijie had already calculated in his
Siyuan yujian, but without explicitly referring to problems of combination.
Here, for the first time in the transmittedChinesemathematical tradition,Wang
Lai linked combinations to figurate numbers. He gave drawings for C(10, k),
illustrating the sum of finite series with surfaces and piles of unit pebbles,
as shown below, for k = 1 to 5, from right to left. He also remarked on the
symmetrical relation C(10, k) = C(10, 10 − k), which explains why he did not
illustrate the cases C(10, k) for k = 6 to 10.

Wang Lai’s Dijian shuli.

When Chen calculated the total number of pebbles arranged in triangular or
pyramidal shapes – the so-called ‘triangular piles’ (sanjiao dui) – he used Zhu
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Shijie’s procedures for calculating the sums of finite arithmetical series of higher
order:

C(10, 1) = C(10, 9) = 1 + 1 + · · · + 1 = 10;

C(10, 2) = C(10, 8) = 1 + 2 + 3 + · · · + 9 = 9 × 10
2

= 45;

C(10, 3) = C(10, 7) = 1 + 3 + 6 + 10 + · · · + 36 = 8 × 9 × 10
2 × 3

= 120;

C(10, 4) = C(10, 6) = 1 + 4 + 10 + 20 + · · · + 84 = 7 × 8 × 9 × 10
2 × 3 × 4

= 210;

C(10, 5) = 1 + 5 + 15 + 35 + 70 + 126 = 6 × 7 × 8 × 9 × 10
2 × 3 × 4 × 5

= 252.

The illustrations ofC(10, k) shown above (where k = 1 to 5) start in the right-
hand column and suggest the patterns of formation of every term of the series,
beginning with C(10, 1) = 1 + 1 + · · · + 1 = 10. These illustrations stemmed
from the Yuan dynasty tradition of considering piles of discrete objects in dif-
ferent geometrical shapes. The series C(10, 2) = 1 + 2 + · · · + 9 thus became
a triangle in which pebbles were piled up in rows with one to nine pebbles in
each successive row. The next sum, for C(10, 3), was then a regular pyramid,
where each layer was composed of one such triangle with (from top to bottom)
1, 3, 6, . . . , 36 elements. For C(10, 4), Wang showed seven pyramids in the left-
hand column of the right-hand page:

C(10, 4) = 1+ (1+ 3)+ (1+ 3 + 6)+ · · · + (1+ 3 + 6+ 10+ 15+ 21+ 28).

Finally, on the left-hand page C(10, 5) was thought of as twenty-one pyramids
that can be grouped in two ways. A horizontal reading of the drawing gives the
terms

C(10, 5) = (6 × 1) + (5 × 4) + (4 × 10) + (3 × 20) + (2 × 35) + (1 × 56),

whereas a diagonal reading from right to left produces different terms for the
same sum:

C(10, 5) = 1 + (1 + 4) + (1 + 4 + 10) + (1 + 4 + 10 + 20)

+ (1 + 4 + 10 + 20 + 35) + (1 + 4 + 10 + 20 + 35 + 56).
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The author then illustrated a general method for calculating the total sum of
combinations

sn = C(n, 1) + C(n, 2) + · · · + C(n, n).

The indicated algorithm corresponds in modern mathematical terms to an
iterative procedure: successively double the ‘root’ (the preceding result) and
add unity. Given a set of n objects, and starting with s1 = 1, Wang prescribed
iterating the following operation for k = 2, 3, . . . , n:

sk = 2sk−1 + 1.

The corresponding figure (see below) depicts these n − 1 iterations for n = 10,
successively doubling a horizontal bar in length and extending it by a unitary
amount. One thus obtains s10 = 1023.

Some historians [17] have claimed that Wang Lai recognized here the
remarkable identity

C(n, 1) + C(n, 2) + · · · + C(n, n) = 2n − 1,

but no explicit mention of the fact that 1023 = 210 − 1, nor of any kind of
generalization, can be found in his text.
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As an application of his procedure for calculating sn,Wang Lai stated a related
mathematical problem. It stems from the earliest instance of combinatorial
practices, mentioned at the beginning of this chapter: divination with broken
andunbroken lines. InWang’s example, a shamanperforming yarrow stalks div-
ination (shigua) produces a hexagram, a configuration made up of six lines (liu
yao). Wang was interested in the total number of possible configurations made
up of 1 to 6 lines that one can produce from this hexagram; this corresponds to
finding the sum

C(6, 1) + C(6, 2) + · · · + C(6, 6).

He calculated his result in two distinct ways. The first method proceeds by
doubling successively the result for the maximum number of lines in such a
configuration, and then adding 1. Wang Lai remarked that five iterations give
the total number of possible configurations.Thus, in five steps he calculated the
final result:

(2 × 1) + 1 = 3; (2 × 3) + 1 = 7; (2 × 7) + 1 = 15;

(2 × 15) + 1 = 31; (2 × 31) + 1 = 63;

or, when transcribed into a condensed formula,

63 = 2 ×
(
2 ×

(
2 × (

2 × (2 × 1 + 1) + 1
)+ 1

)
+ 1

)
+ 1.

Alternatively, Wang Lai could have calculated the total of 63 configurations
by adding up the various possibilities for the configurations in which 1, 2, . . . , 6
lines were used. He indeed calculated each of these by using the older proce-
dures for ‘triangular piles’ (procedures for calculating the sums of triangular
numbers, as already found in Zhu Shijie’s text of 1303). Again, as Chen Houyao
had done earlier, Wang Lai remarked on the symmetry C(n, k) = C(n, n − k),

C(6, 1) = C(6, 5) = 6,

C(6, 2) = C(6, 4) = 5 × 1
2 (5 + 1) = 15,

C(6, 3) = 4 × (4 + 1) × 1
6 (4 + 2) = 20,

C(6, 6) = 1,

but did not explicitly calculate their sum,

C(6, 1) + C(6, 2) + · · · + C(6, 6) = 6 + 15 + 20 + 15 + 6 + 1 = 63.
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As mentioned earlier, Wang Lai did not connect his calculations with the
arithmetical triangle. Its seventh line would contain precisely the numbers
1, 6, 15, 20, 15, 6, and 1 (C(n, 6), for n = 0, 1, . . . , 6), and their sum equals 26.
But Wang did not refer here to the corresponding values in the triangle, and no
explicit mention of the fact that 63 = 26 − 1, nor of any kind of generalization
to sn = 2n − 1, can be found in his text. What Wang gave in the end was a gen-
eral procedure for the sum of higher-order ‘triangular piles’ (finite arithmetic
series):

(n + 1) × (n + 2) × · · · × (n + k)
1 × 2 × · · · × k

= C(n + k, k).

As an example, he explicitly formulated the procedure and performed numeri-
cal calculations to determine the sum of the so-called ‘fourth-order triangular
pile’ (si cheng sanjiao dui) [18], with 5 as the particular ‘base number’ (genshu):

C(4 + 5, 5) = 5 × (5 + 1) × (5 + 2) × (5 + 3) × (5 + 4)
1 × 2 × 3 × 4 × 5

= 126.

Li Shanlan

In 1867 number-theoretic relationships in arithmetical triangles were examined
more systematically in China by Li Shanlan (1811–82) in his Duoji bilei (Ana-
logical Categories of Discrete Accumulations) [19]. The most important result
this led to is the famous ‘Li Renshu identity’ (see [20]), now written as

n∑
k=0

C(n, k)2 C(m + 2n − k, 2n) = C(m + n, n)2.

Naturally, Li Shanlan did not present his identity in this way. In fact, he did
not use any algebraic formalism to develop his formula at all, but expressed
it entirely in traditional algorithmic and rhetorical language. His book is a
deductive construction of generalized arithmetical triangles, starting from the
Pascal triangle. The sum of the cubes of natural numbers, for example, was
deduced as a sum of multiples of certain diagonals of the Pascal triangle [21]:

n∑
k=1

k3 =
n∑

k=1

C(k + 2, 3) + 4 ×
n∑

k=1

C(k + 1, 3) +
n∑

k=1

C(k, 3).
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In the case of the ‘Li Renshu identity’, Li gave a generalized arithmetical
triangle showing the square binomial coefficientsC(k + n, n)2.Thus the second
diagonal from the left in the figure below shows, for k = 0, 1, . . . , 11, the values
(from top to bottom) ofC(k + 1, 1)2, and the third diagonal from the left shows,
for k = 0, 1, . . . , 10, the values of C(k + 2, 2)2.

Li Shanlan’s Duoji bilei.

Like Wang Lai, Li Shanlan added geometrical representations of the cells of
his generalized arithmetical triangles in the formof figurate numbers.Thefigure
on the right above shows the quadratic numbers – the coefficients C(k + n, n)2

for the values n = 1 and k = 0, 1, 2, 3 on the right, and the corresponding coef-
ficientsC(k + n, n)2 for the values n = 2 and k = 0, 1, 2, 3 as triangular patterns
of triangles on the left. The Li Renshu identity itself was given implicitly in the
statement on the construction of the cells of the generalized triangle in the figure
as the sum of cells in previously constructed triangles.

But interpreting Li Shanlan’s writings as contributions to combinatorics is
problematic (see [22]). His work, as viewed from within the Chinese math-
ematical tradition, is rather situated in a specific mathematical domain that
developed as early as the Han dynasty. In particular, it was concerned with the
discretization of continuous solids into a finite number of elements. Gradually
abstracted from a specific geometrical context, this ultimately led Zhu Shijie
in 1303 to work out a systematic set of procedures for the summation of finite

china | 79



series in relation to the arithmetical triangle. SeveralQing dynasty authors, such
as Li Shanlan, pursued research along these lines, but the field evolved without
any combinatorial interpretation (see [12], Ch. 5).

From a present-day mathematical perspective, their results, taken out of
context and transcribed into modern algebraic formulas, can indeed be seen
as important combinatorial contributions. We have tried to show, by taking
into consideration earlier mathematical traditions in China, that Chen Houyao
and Wang Lai’s texts turn out to be the only two that conveyed a genuine
combinatorial meaning. Chen’s manuscript is particularly original in that it
presented new mathematical problems on games of chance and divination,
two ancient and widely diverse fields of combinatorial practice in China.
In Wang Lai’s essay, the canonical hexagrams were established as the sole
paradigmatic combinatorial model for the discussion of algorithms from a
rational mathematical point of view.
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The arithmetical triangle of al-Karajı̄ (c.1007).



CHAPTER 3

Islamic combinatorics
ahmed djebbar

Combinatorics, considered in its general sense as the collection of
manipulations and the study of configurations [1], appeared rela-
tively early in such areas of medieval Arab intellectual activity as

astrology, lexicography, music, chemistry, and even philosophy. Follow-
ing the resurgence of traditional disciplines (such as geometry, the theory
of numbers, and astronomy) and the development of new ones (such as
algebra, Indian calculation, and trigonometry), new combinatorial pre-
occupations then arose, linked to the study of theoretical questions.

Introduction

Analysis of the documents that have come down to us indicates that the practice
of combinatorics went through two distinct periods. In the first, prior to the
12th century, combinatorics was confined to listing and counting procedures,
either arithmetical or mechanical, which led to the modelling of a range of
different problems and thus to general propositions or formulas applicable to
them. The second period, which began perhaps in the second half of the 12th
century, was a return to certain combinatorial preoccupations, together with a
revival in linguistic studies. So we observe the emergence of true propositions
(announced anddemonstrated), some calculating procedures (with a table or by
arithmetical formulas), and then the application of new tools to solve problems
arising from different areas.
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In this chapter we present known aspects of these various combinatorial
practices, basing our presentation on research from the past three decades.
However, our conclusions and conjectures cannot be other than provisional,
given the very incomplete nature of the extant sources.

Practical combinatorics before the 12th century

One of the most ancient disciplines that allowed for combinatorial manipula-
tion was astrology. The need to know different configurations of planets, so as
to use them in forecasting events, led naturally to their enumeration [2]. There
were also astrologers who favoured the study of magic squares and circles [3]
and constructed, or had constructed for them, numerous planar configurations
that they called ‘numbers in harmony’: in the 10th century we find instances in
the famous encyclopedia of Ikhwān as.-S. afā’ [4]. But as far as the manipulation
of integers was concerned (depending on arithmetic, rather than combina-
torics), magic squares proved particularly interesting to mathematicians such
as Abū l-Wafā’ (d.997) [5], Ibn al-Haytham (d.1039) [6], and others after them.

With the coming of Islam, the privileged status of Arabic favoured the devel-
opment of several ‘sciences of language’. In this setting lexicographers listed (and
sometimes counted) configurations of letters of the alphabet under certain con-
straints, with the aim ofmaking glossaries.We know, for example, that al-Khal̄ıl
Ibn Ah.mad (d.786) gave the numbers of combinations of two, three, four, and
five of the twenty-eight letters of the Arabic alphabet, and that the grammarian
Sı̄bawayh (d.796) subsequently determined the numbers of arrangements of
these same letters, but taking into account incompatibilities of pronunciation
(see [7]).

This combinatorial tradition wasmaintained by the linguists of the following
centuries, but with some variations and in the setting of new preoccupations;
we can cite, in particular, a book ofH. amza al-Isfahānı̄ (d.970), who repeated the
counting effected by al-Khal̄ıl (see [8]). After him, Ibn Jinnı̄ (d.1005) included
different arrangements of Arabic letters in his Theory of Derivation, trying
to associate the meanings of all permutations of this combination with each
three-letter combination having a particular meaning (see [9]). In Spain, in
his Mukhtas.ar (Summary), az-Zubaydı̄ (d.989) considered countings that take
account of the constraints linked to pronunciation and usage.
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We note, moreover, on reading work by the polygraph as-Suyūt.ı̄ (d.1505),
that even if the methods of calculation varied from author to author, they
were all submitted to linguistic constraints (concerning rules of pronunciation
or the nature of the letters forming the words) that might not lead to the
formulation of general algorithms. In addition, these methods were not free
of error, at the level of results and the reasonings that justified them. This all
tends to prove that they did not yet have formulas or procedures to enable the
counting.

This is also confirmed, for example, in the Jamhara of Ibn Durayd (d.933),
where two different methods of calculation were incompletely presented. The
first consisted of taking the letters to be combined, arranging them in two
concentric rings, and then turning the rings to make different letters corre-
spond.This procedure is identical to one that would later be found in astrology:
Al-Būnı̄ (d.1205), Ibn ↪Arabı̄ (d.1240), and even Ramon Llull (d.1316), used it
(see [10]).

Rotating rings of Ibn Durayd.

The second method consists of counting separately the words without
repeated letters, and those with repetition, and counting the first group so
as to distinguish between those words without wāw and yā and the rest. The
calculation is correct for the arrangements with repetition of the twenty-eight
letters taken in pairs, but is false for arrangements of more than two letters.
The error shows up in the values of combinations of three letters: for exam-
ple, Ibn Durayd seems to have used the formula C(n, 3) = nC(n, 2) instead
of C(n, 3) = 1

3 (n − 2)C(n, 2). It is astonishing that successive authors did not
compare these results with those of al-Khal̄ıl Ibn Ah.mad, who did not explic-
itly specify any particular method, but whose results were rigorously exact
(see [11]).
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Combinatorial circles of al-Khal ı̄ l.

In the area of chemistry Jābir Ibn H. ayyān (8th century), one of the first great
Arabic specialists in this field, theorized a kind of combination of elements
constituting matter. Starting from the four elementary qualities that form the
basis of Arabic chemistry and medicine (heat, cold, dryness, and humidity),
he introduced the notion of degree, each comprising seven divisions (minutes,
seconds, etc.). He then split the Arabic alphabet into four categories, corre-
sponding to the four qualities, and established a direct relationship between
the combinations of letters and those of the qualities. According to this logic,
chemistry became a morphology of metals, in the same way that language is a
composition of words (see [12]).

Music theorists also used elementary combinatorial procedures in their study
of notes and scales. This was done particularly by al-Fārābı̄, who said, with
regard to combinations of intervals [13]:

When the intervals are all unequal,we can make three combinations. In the first, the largest

of the three intervals is placed at one end, the smallest at the other. In the second, the

largest is at one end, with the smallest at the centre. In the third, the largest interval is in

the centre. And for each of these combinations, one can arrange the intervals either from

the flat to the sharp, or from the sharp to the flat.
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We find similar formulations regarding the combination of sounds in the works
of Ikhwān as.-S. afā’ (10th century) [14]:

If you arrange these three fundamental sounds in pairs, nine melodies will result . . . In

triples there are ten combinations. Here we have all the types of melodies composed

[from] the [fundamental] sounds: three of them [are] simple, nine are binary, and ten are

ternary.

In the mathematical domain, the combinatorial approach that we observe is
of the same nature as in other disciplines – that is, it did not require the
formulation of general propositions to resolve problems. Combinatorial pro-
cedures frequently appeared in work that led to the resolution of problems that
were harder and of a different nature. During the period that interests us here,
as we shall see through various examples, it was astronomy and algebra that
allowed mathematicians to confront problems whose solutions could not be
obtained by classical arithmetical procedures.

Combinatorial approaches in astronomy

It was through trigonometrical problems that the elements of combinatorics (its
approach and its results) arose in a chapter of Arabic astronomy which, in any
case, concerned classifying problems according to their solubility and general-
izing methods of calculation. From this dual perspective, precise calculations
or simple enumerations enabled the classification of all cases considered as to
their solvability and their methods of solution. Two works illustrate this well:
the Kitāb ash-shakl al-qat.t. ā↪ (Book of the Secant Figure) of Thābit Ibn Qurra
(d.901) and the Kitāb Maqāl̄ıd ↪ilm al-hay’a (Book of the Keys to Astronomy)
of al-Bı̄rūnı̄ (d.1048).

Beyond his trigonometrical preoccupations, IbnQurra’s treatise is essentially
dedicated to the solution of the following combinatorial problem:

To count, list, and justify all the possible ways of writing, the problem of the ‘secant figure’

– that is, the formula given by Menelaus in his Sphaerica (Spherics), Book III,
Proposition 1:

chord(2AE)

chord(2EB)
= chord(2AF)

chord(2FD)
× chord(2DC)

chord(2CB)
.
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FD

C

E

A

If we denote the six elements of this equality by a1, a2, . . . , a6, we have

a1
a2

= a3
a4

× a5
a6

or, equivalently, a1a4a6 = a2a3a5.

From this formula, Ibn Qurra showed that one could deduce several other
relationships, which he listed and whose validity he demonstrated. First he
obtained eighteen permutations, from which he proved the existence of a rela-
tionship analogous to the above formula and which he enumerated in a table
[15]; then he deduced eighteen other permutations from the first by permuting
the numerators and denominators of each fraction. He concluded by show-
ing that only the thirty-six permutations obtained correspond to the problem.
For this, he considered the fifteen combinations of six elements, a1, a2, . . . , a6,
taken in pairs [16]. He studied nine of these, leaving out the six following
combinations:

(a1; a4), (a1; a6), (a2; a3), (a2; a5), (a3; a5), (a4; a6).

As he showed, these combinations have to be excluded because they form rela-
tionships that do not arise from the secant figure [17].

It was also a problemof spherical trigonometry that allowed al-Bı̄rūnı̄ to have
recourse to combinatorialmethods. Like IbnQurra, he solved specific problems
without reference to rules or to previous results, and like him, he explicitly
used the general concept of combinations with (moreover) an identical formu-
lation, in spite of the different nature of the combinations dealt with by the two
writers.

This is how he proceeded. After expounding his own proof of the relation
arising from the theorem of sines, he proposed
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to establish a classification of spherical triangles, and then to indicate how to calculate the

unknown elements from the known ones,

the goal being to determine, where possible, all the elements (sides and angles)
of a spherical triangle when given just one, two, or three of them (see [18]).
In this, he counted the triangles according to the nature of the interior angles
formedby the three sides to determine the combinationswith repetition of three
angles, taken three at a time.

Much later, in his Kitāb ash-shakl al-qat.t. ā↪ (Book of the Secant Figure),
Nas. ı̄r ad-Dı̄n at.-T. ūs̄ı (d.1274) revealed a more systematic and detailed study
of spherical triangles, with supplementary combinatorial considerations – for
example, combinations with repetition of three types of sides of a triangle, and
a figure of compatible combinations of ten types of angles (already studied by
al-Bı̄rūnı̄) and ten types of sides (see [19]).

Combinatorial approaches in algebra

It was through systems of equations with integer solutions that combinatorial
approaches made their appearance in algebra. In one of his extant works, Abū
Kāmil (d.930) wished to show the existence of problems whose solutions were
very large numbers. Each time, he was led to make an exact count of the solu-
tions of the system being studied. But since the search for integer solutions of
each of these systems is equivalent to a counting problem with constraint, only
the enumeration of the solutions was accessible to the author. In effect, he was
led each time to counting the quadruples (x, y, z, t) in a set A defined by

A = {(x, y, z, t) : y = ak, z = bm, t = cn, x = g(y, z, t), x + y + z + t < d},

where a, b, c are fractions, k,m, n are positive integers, and g is a linear relation.
The inequality that appears in each problem corresponds to the constraint that
complicates the counting, and that moved Abū Kāmil away from the lexico-
graphical procedures familiar to linguists. An example is given below.

After Abū Kāmil, combinatorial approaches emerged, both implicitly and
explicitly, in the contributions of al-Karaj̄ı (d.1029) and as-Samaw’al (d.1175).
The former constructed the arithmetical triangle inductively, so as to use its
coefficients (in any order) for the development of the binomial, in order to study
some mathematical operations applied to polynomials. But, probably because
of the nature of this purely algebraic approach, al-Karaj̄ı did not separate out the
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Abū Kāmil’s problem on the buying of birds [20]

This problem concerns buying, with 100 dirhams (100d), 100 birds of four types:

geese at 4d each, chickens at 1d each, pigeons at 1d for two, and starlings at 1d for
ten:

x = 3
10 y + 1

6 z.

From this,

A = {(x, y, z, t) : x = 3
10 y + 1

6 z and t = 100 − x − y − z}.
This splits A into two subsets, with

B = {(x, y, z, t) ∈ A : y = 10n, z = 6k}
and

C = {(x, y, z, t) ∈ A : y = 10(n + 1
2 ); z = 6(k + 1

2 )}.
But B = ⋃

Bk , with

Bk = {n ≥ 1 : (3n + k) + 10n + 6k < 100}
= {n ≥ 1 : n < 1

13 (100 − 7k)},
and C = ⋃

Ck , with

Ck = {n ≥ 0 : 3(n + 1
2 ) + (k + 1

2 ) + 10(n + 1
2 ) + 6(k + 1

2 ) < 100}
= {n ≥ 0 : n < 1

13 (90 − 7k)}.
To determine |Bk| for 1 ≤ k ≤ 12,and |Ck| for 0 ≤ k ≤ 11, the author proceeded
by enumeration;

finally, he obtained

|A| = |B| + |C| = (|B1| + · · · + |B12|
)+ (|C1| + · · · + |C11|

)= 45+ 53 = 98.

combinatorial significance of the coefficients which he calculatedwith the aid of
his figure.The second aspect of the arithmetical triangle is similarly absent from
the work of as-Samaw’al, in which the latter presented certain contributions of
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his predecessor and developed them with original results. It is totally possible
that al-Bı̄rūnı̄ [21]may have independently used this same arithmetical triangle
in one of his studies on the extraction of thenth root of a number, butwe have no
confirmation of this because his treatise has not come down to us.We know that
al-Khayyām (d.1131) wrote a book, still undiscovered, in which he presented a
procedure for the extraction of the nth root of a number, based, it would seem,
on the development of the binomial (see [22]).The same triangle is foundmuch
later in a work on calculation by Nas.ı̄r ad-Dı̄n at.-T. ūs̄ı [23].

The arithmetical triangle of Nas.̄ır ad-Dı̄n at.-T. ūs̄ı.

Also in relation to the development of algebra, a combinatorial approach
featured in the Kitāb al-bāhir (Flamboyant Book) of as-Samaw’al. In one chap-
ter, the author proposed to classify problems in terms of their solubility, the
number of their solutions, and conditions for compatibility. He began by distin-
guishing between the problems that are possible and those that are impossible.
But he also made a second classification, according to the finite or infinite
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number of solutions of the given equation. To illustrate a third classification,
in terms of conditions for compatibility, he enumerated a set of equations.
As an example, he proposed to find ten integers, six of which add up to a
given number (see [24]). To determine the C(10, 6) = 210 solutions, he pro-
ceeded to a systematic enumeration of all the equations. Then he obtained,
always by enumeration, the number of conditions for compatibility, which
is 9 × C(8, 5).

As we have stated, the problems of a combinatorial nature solved in the
examples that we have just presented all have a common feature: the absence
of an explicit reference to combinatorial results outside astronomy and algebra
that can serve as models. We also note that, contrary to astronomy, no element
of combinatorial terminology features in the manipulations of the algebraists
whom we have just briefly presented.

Additionally, we must emphasize that we do not have enough information to
be able to affirm that the combinatorial nature of the problems that appeared in
the areas of astronomy and algebra, which we have just described, was noticed
by mathematicians from the East and the West after as-Samaw’al. In any case,
it appears very improbable that countings associated with the indeterminate
analysis of Abū Kāmil, and the binomial coefficients of al-Karaj̄ı whose strictly
algebraic solution completely hides the combinatorial aspect, were noticed else-
where, particularly because of the absence of symbols.

Combinatorics in the East

We have very few sources for combinatorial practices in the Muslim East after
the 12th century. But the documents that have come down to us show that these
practices always involved the solution of particular problems in one or another
discipline, and also show where the combinatorial approach was used as a tool
for the solutions, without reference to previous results. Having said that, in view
of the methods used and the results obtained, we can say that one sees a slow
phenomenon of accumulation of practices that go objectively in the direction
of the emergence of a new chapter in mathematics.

In philosophy, one notices the introduction of combinatorial approaches
in connection with the study of logical or metaphysical problems. This was
the case, for example, with one of the questions treated by Ibn Sı̄nā (d.1037)
in his Kitāb ash-shifā’ (Book of Healing) and in his Kitāb al-ishārāt wa

92 | combinator ics : anc ient and modern



t-tanbı̄hāt (Book of Directives and Remarks). In the 13th century, Nas. ı̄r ad-Dı̄n
at.-T. us̄ı took up the thoughts of Ibn Sı̄nā again, and proposed to elucidate a
mathematical aspect. For that, he calculated the number of combinations of
n elements, one at a time, two at a time, . . . , n at a time, and deduced the
sums and products of numbers of this type. Here, also, the author did not refer
to combinatorial propositions that were established before him, particularly
those to be found in Maghreb (north-west African) works of the 12th and 13th
centuries, which we discuss at length in the following section (see [25]). This is
also an example of the non-circulation of certain scientific writings, evenwithin
the Muslim Empire.

Inmathematics, two oriental texts fromafter the 12th century survive, each of
which, in its own way, bears witness to the existence and persistence of explicit
combinatorial preoccupations and approaches. The older one is the Tadhkirat
al-ah. bāb of al-Fāris̄ı (d.1320), a scientist known particularly for his commen-
tary on Ibn al-Haytham’s Book of Optics. In his study of the decomposition
of an integer as a product of prime factors [26], he was led to determine all
the possible combinations of these numbers to obtain the divisors of the given
integer. For this, he constructed a truncated arithmetical triangle and identified
with each C(n, k) the entry of the triangle to be found at the intersection of the
kth row and the (n−k+1)th column. But at no point did al-Fāris̄ı refer to an
arithmetical triangle, which, as we have seen, had been constructed and used
by a number of mathematicians between the 11th and 13th centuries. To help
the reader represent the divisors of a number concretely from its decomposition
into prime factors, the author also constructed a second table that contained the
results of his enumerations: a first column for all the forms of decomposition of
an integer into prime factors, a second column for the number of divisors arising
from this decomposition, and a third column for examples corresponding to
each decomposition.

The second mathematical text containing these countings is from the 15th
century. It is H. āwı̄ l-lubāb (The Collection of the Marrow) by the Egyptian Ibn
al-Majdı̄ (d.1447). It is a commentary on a celebrated Maghreb 14th-century
manual, the Talkhı̄s. (Summary) of Ibn al-Bannā (d.1321). In this treatise [27],
the author studied a new problem that reveals incontestably a realization of, and
interest in, combinatorial tools for the resolution of mathematical questions.
In fact, he presented a method that allows the counting of all equations with
positive coefficients that one can write with monomials of degree less than or
equal to a given integer n; its approach rests on combinatorial reasoning and
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induction. But, as we shall see, the calculations and the countings approach of
Ibn al-Majdı̄, which are not found in any other known work, seem to have been
written in a more ancient combinatorial tradition whose main focus was the
city of Marrakech in the far western Maghreb.

Combinatorics in the Maghreb: Ibn Mun↪im

According to the information that is available to us today, it was in north-
west Africa that practical combinatorics started a new chapter, with its objects,
tools, and areas of application. But, as in the East, it was a non-mathematical
discipline, linguistics, that prepared the origins of this chapter.This activity was
certainly not new to theMaghreb, but during the centuries that concern us it was
about to benefit from a real dynamism (see [28]). In fact, from the 12th century
we note a regaining of interest in the different chapters of linguistics that non-
mathematicians dedicated themselves to studying.Moreover, it is not by chance
that it was Ibn al-Bannā, the author of several works on the Arabic language
[29], who was one of those writers whose combinatorial preoccupations had
the greatest consequences.

To be precise, we note that problemswere posed and solved by using formulas
and reasoning of a combinatorial character, that this terminology, born from
the needs of linguists, acquired a mathematical status, and that a new form
was established to be used as an instrument operating onmathematical objects.
But without a detailed knowledge of the different aspects of this activity since
its origins, we limit ourselves here to pointing out and enlarging upon certain
salient features.

From the endof the 12th century or the beginning of the 13th, someproblems
posed by Arabic linguistics of the 8th century were re-examined, this time
within the framework of an autonomous chapter on the science of calculation.
This is what Ibn Mun↪im, a mathematician from Marrakech, did in his treatise
Fiqh al-h. isāb (Science of Calculation). But before we present the details of his
contribution, it is useful to say a few words about this relatively little-known
mathematician, who died in 1228.

Modern bibliographers, such as H. P.-J. Renaud, H. Suter [30], and oth-
ers, have confused this mathematician with the geometer and astronomer
Muh. ammad Ibn ↪Abd al-Mun↪im, who lived in Sicily at the court of Roger II.
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However, their common source was the historian Ibn Khaldūn, who did not
mention Sicily when he spoke of this mathematician [31]. Amongst the ancient
Maghreb biographies that we could consult, only one mentions him – Ibn ↪Abd
al-Malik (d.1303), who gives us the following information. Ibn Mun↪im came
fromDenia, on the coast of Spain near Valencia. He stayed inMarrakech, where
he taught. He was known at the time as one of the best specialists in geometry
and number theory. At the age of 30, he started studying medicine, which he
practised later with success while still pursuing his mathematical activities.
As well as his work Fiqh al-h. isāb, he published writings on geometry and
magic squares, but none of his works on these two disciplines has come down
to us.

It is in the 11th section of his book, entitled ‘the counting of words that are
such that the human being can only express himself by one of them’, that Ibn
Mun↪im described his approach and his combinatorial results. The contents of
this section were presented by the author as an extension of the results of al-
Khal̄ıl Ibn Ah.mad, the great 8th-century linguist, and is a generalization of his
calculations which allowed him to determine combinations without repetition
of Arabic phonemes (see [32]). To this effect, Ibn Mun↪im proposed to treat
the problem first in a general manner, and then to follow it by demonstrations
of examples and pictures. However, as the analysis of this section confirms, the
generality of which the author spoke did not leave the fixed linguistic setting,
and was concerned with the establishment of mathematical formulas and pro-
cedures with a view to counting words of any length in any language. Despite
all this, his study objectively passed beyond the linguistic setting in which it
was formulated and realized, as much in the manner of posing the problems
and linking them together by the methods of reasoning used as by the results
established.

Starting with a set of silk colours that played the role of the abstract
model, Ibn Mun↪im established a rule allowing one to determine all the pos-
sible combinations of n colours, k at a time. For this, he used an induc-
tive method to construct a numerical table, where he identified the elements
with the combinations he sought. Using a strictly combinatorial approach he
thereby gave, for the first time to our knowledge, the famous arithmetical
triangle that the algebraists at the centre of the (Islamic) Empire had already
constructed in an algebraic setting, with a view to determining binomial
coefficients.
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The arithmetical triangle of Ibn Mun↪im.

It is to be regretted that, fearing ‘excesses and length’, Ibn Mun↪im decided
against expounding the ‘extraordinary properties’ (as he put it) that he knew
how to obtain from a simple comparison of elements in the table. Given the
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ability of this mathematician, it is certainly possible that he had noticed, on a
single reading of the table of numbers, new relationships between its positions,
and thus new combinatorial formulas. It is equally possible that he contented
himself with just showing it to his students. From later sources, we know that
one of his students pursued his teachings and inspired in his turn some new
mathematicians. This was al-Qād. ı̄ ash-Shar̄ıf (d.1283), whose book al-Qānūn
f̄ı l-his. āb (Canon of Calculation) has not yet been found. Its contents could
throw light on the eventual place of combinatorics in mathematical teaching
in Marrakech in the 13th century.

The studies of Ibn Mun↪im were pursued, following a combinatorial
approach based on induction, by establishing formulas relating to permutations
(with or without repetition) of a set of letters, and formulas given recursively,
for the number of possible readings of the same word of n letters (taking into
account all the pronunciation signs used in a given language).

The author concluded this first part by establishing the formula for arrange-
ments without repetition, adopting a process analogous to the preceding one
and necessitating having recourse to tables of numbers (see [33]). As in his
research into simple combinations, Ibn Mun↪im once again made his sets of
objects (such as letters of the alphabet, colours of silk, or coloured threads)
function like abstract models by identifying each time the object being studied
with the elements of the model. Taking into account the approach he adopted,
IbnMun↪imwas also led to tackle problems on partitions of numbers. However,
at no time did he mention this question in its full generality.

As well as several applications, the third part of the 11th section contains a
series of tables that permit us to determine one at a time all the elements that
appear in the counting of words that one can pronounce in a given language –
that is, the combinations, permutations, and arrangements, with or without
repetition.

So as to emphasize the ‘theoretical’ aspect of his study, Ibn Muncim stated
firmly that the tables in the last part of the section did not exist in the first
version of the book. He added these

after the work was recopied and it was in the hands of students

with the aim of illustrating the general procedures established in the first two
parts.

It remains for us to say a few words about the types of reasoning used by
the author to establish his results, and about their status with regard to tools
and traditional mathematical approaches. An analysis of the author’s approach
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Results established by Ibn Mun↪im

(1) Combinations in the arithmetical triangle:

C(n, k) = C(k − 1, k − 1) + · · · + C(n − 1, k − 1).

(2) The number of permutations in a word of n distinct letters:

Pn = 1 × 2 × 3 × · · · × n.

(3) The number of permutations in a word of n letters of which p letters are

repeated (respectively) k1 , k2, . . . , kp times:

P(n, k) = pn/(pk1 × pk2 × · · · × pkp ).

(4) The number of pronunciations of a word, taking note of vowels:

Sn = 4Sn−1 − 3Sn−3, or equivalently Sn = 3Sn−1 + 3Sn−2.

makes two types of reasoning apparent, which one could qualify globally as
inductive and combinatorial. The first of these, with its different variants (and
with the meaning that it had up to the 17th century), is a traditional tool in
Arabic mathematics, with its privileged area (the theory of numbers) having
a particular, but recognized, status. For the second type of reasoning, which
we have not seen in mathematical writings before the Fiqh al-h. isāb, induction
was distinguished by an approach that combined enumeration and counting.
The use of this approach to establish rules that we consider general seems to
be a factual recognition of its mathematical character. However, we cannot yet
affirm that an explicit recognition had truly taken place, in spite of the presence
(after the 13th century and in many other teaching texts) of reasonings and of
combinatorial propositions already established and operating like new tools.

The presence of all these elements (approaches, results, commentaries) in
the same mathematical work certainly begs the question of the degree of orig-
inality of the author. In fact, it seems difficult to attribute to one single math-
ematician at the same time the announcement of a number of new results (by
comparison with the known Arabic tradition), the mathematization of these
results, as much in their formulation as in their establishment, and above all,

98 | combinator ics : anc ient and modern



their introduction as an autonomous subject in a work dedicated essentially to
the science of calculation and the theory of numbers. At the beginning of his
book, IbnMun↪im stated specifically that he had not been content to report the
results and proofs of theAncients, but their unfortunately stereotyped and over-
vague formulation added to our ignorance of certain aspects of the history of
combinatorics between the 8th and 9th centuries. Consequently, we are unable
to appreciate the nature and importance of the personal contribution of Ibn
Mun↪im.

That being so, when compared (for example) with the fumblings and the
absence of rigour that one finds in certain combinatorial problems up to the
17th century, the elaborate character of the results and approaches present
in the Fiqh al-h. isāb and the spirit of method that was released force us to
move the beginning of the mathematization of this discipline within the frame-
work of Arabic science to well beyond the epoch of Ibn Mun↪im. In the
absence of new information to prove or disprove this hypothesis, the Fiqh
al-h. isāb remains the most ancient known work in which the double aspect
of theory and practice is included in a chapter devoted to combinatorial
analysis.

But his importance does not stop here. First of all, and with regard to the
Arabic linguistic tradition, his work seems like a culmination in the extent to
which he presented a general solution to the problem posed by the first Eastern
lexicographers. Secondly, on a strictly mathematical plane, this work represents
an important stage reached where, as we can see in detail, it marks the end of
a series of combinatorial practices, that of calculation by enumeration or by
means of tables, and the beginning of another stage, that of the extension of
‘formulas’ and the enlargement of their sphere of use.

Combinatorics in the Maghreb: Ibn al-Bannā

Towards the end of the 13th century at the latest, a new threshold was crossed
in combinatorial activity in the Maghreb. Formulas expressing the number of
combinations and arrangements of n objects taken k at a time were given, but
with new proofs and in the setting of a classical area, that of the theory of num-
bers. This contribution was presented and elucidated explicitly by Ibn al-Bannā
in two of his works, the Tanbı̄h al-albāb (Warning to Intelligent [People]) and
the Raf↪ al-h. ijāb (Lifting of the Veil).
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The first of these was a collection of problems, coming mainly from areas
outside mathematics. In Problem 14, entitled ‘A question taken from linguis-
tics’, he first announced the arithmetical rule, already given by Ibn Mun↪im,
that permits the calculation of permutations of any number of letters of the
alphabet. But what is new is what he said about the counting of combina-
tions. In fact, not only did he give (for the first time to our knowledge) the
arithmetical formula that allows explicit calculations of combinations without
repetition (C(n, k), for n ≥ 2 and 2 ≤ k ≤ n), but he also took care to mark
himself out from his predecessor Ibn Mun↪im and the latter’s method based
on the construction of the arithmetical triangle. Here is what he said on the
subject [34]:

As far as [knowing] how many 3-letter or 4-letter words can be composed from the

twenty-eight letters of the dictionary, Ibn Mun↪im made a table for this. And I have never

seen anybody simplify [the problem] by a rule. I have therefore thought about this and the

idea of a simple procedure came to me: this consists in considering [successive] numbers

which differ by 1 and whose number is equal to the number of letters of the combination

andwhose greatest is 28.Then,you consider the successive numbers,starting from1,whose
number is equal to the number of letters of the combination.Then you divide what results

from the product of the first numbers, the ones by the others, by what results from the

product of the other numbers.What results from this is the number of words. And one

must suppress the [numbers] common to the [number] divided and to the divisor before

the multiplication of their numbers, one at a time, so that it becomes easier and shorter

[to calculate].

Thus we obtain the classic formula

C(n, k) = n × (n − 1) × · · · × (n − k + 1)
k × (k − 1) × · · · × 2 × 1

.

The Raf↪ al-h. ijāb was conceived by Ibn al-Bannā as a partial commen-
tary on, and complement to, his manual Talkhı̄s. a↪māl al-h. isāb (Summary
of Methods) for the Tanbı̄h al-albāb [35]. It is therefore not surprising that
we rediscover there the results that we have just discussed. But this time
they are presented in a more general classical setting, that of number the-
ory in the Pythagorean tradition such as it travelled to the Maghreb via
the Arabic translation of the Introduction to Arithmetic of Nicomachus (2nd
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century). In fact, the combinatorial expressions are compared to the sums
of finite sequences of integers and of the elements of the table of figurate
numbers.

This explicit arithmetic approach enables us to say that Ibn al-Bannā had a
clear perception of the close link, at the level of both results and proofs, between
the methods of arithmetic and combinatorics. For results, we can state specifi-
cally that it was the table of polygonal numbers that affirmed the link between
the two disciplines. But for proofs, there are different methods of induction that
justify Ibn al-Bannā’s integration of combinatorial results into the vast topic
of number theory. In a more precise way, Ibn al-Bannā used the procedure of
regression to establish the sums of the finite series of n terms and an induction
of ‘almost general’ type, operating this time on the propositions of double index
P(i, j) for any j (see [36]).

The application of combinatorial results

As well as the formulas attributed to him, Ibn al-Bannā seems to have been the
first in the Arab tradition to become interested in the combinatorial aspects of
certain classical problems. In this way, in theRaf↪ al-h. ijāb, he took upThābit Ibn
Qurra’s work on the secant figure by using combinatorial reasoning to simplify
it considerably: all the forms of Menelaus’s theorem were obtained as results of
arrangements arising from the expression a1a4a6 = a2a3a5 (see [37]).

In the same treatise Ibn al-Bannā counted the different equations that result
from a geometric or arithmetic progression, whenwe consider each of these as a
set of elements characterizing it. An arithmetic progression was thus identified
with a set of five elements: the first termu1, the last termun, the number of terms
n, the common difference r, and the sum Sn. The different partitions of this set
into two subsets containing the ‘knowns’ and the ‘unknowns’ correspond to the
number of equations sought. Todetermine this number, he used (without saying
so) the formula for combinations of n objects taken k at a time [38]. This is
exactly the same process that he adopted in his little book on elementary geom-
etry entitledRisāla f̄ı t-taks̄ır (Epistle onMeasuring) [39], where the classic geo-
metrical figures are identified with the set of their constituent elements (angles
and sides). Finally, in his book known asArba↪maqālāt (TheFour Epistles) [40],
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he counted the different combinations of integers and fractions linked by the
elementary arithmetical operations.

These countings of very different objects were possible through his clear per-
ception of the correspondence established between a finite set of any kind and
a subset of the alphabet playing the role of the abstract set. It was therefore one
step further in mathematical symbolization because, from then on, to operate
on any objects it was sufficient tomanipulate the letters. Ibn al-Bannā, and later,
Ibn Haydūr (d.1413) in his Jāmi↪, said so explicitly [41].

It was also Ibn al-Bannāwhowas the first to have the idea of reassembling and
solving non-mathematical problems with a combinatorial aspect. In his Tanbı̄h
al-albāb, he dealt with the following problems:

• enumerating the different cases of possible inheritance when the inheritors are n

boys and k girls (Problem 1);

• announcing all situations where washing with water is necessary, and those where

one can dispense with water (Problem 2);

• enumerating, according to the strictures of the Malekite rite, all prayers for com-

pensating for forgetting some of them (Problem 4);

• enumerating all possible readings of the same phrase, according to the rules of

Arabic grammar (Problem 15) [42].

After Ibn al-Bannā, certain commentators who had assimilated the ear-
lier contributions extended them or applied them to new problems. This was
the case with Ibn Haydūr in the Maghreb and Ibn al-Majdı̄ in Egypt [43].
We note that the presence of the same vocabulary used by these different
authors, and the fact that none of them explicitly revised the known results,
reinforced the continuity of combinatorial preoccupations, at least since Ibn
Mun↪im.

Taking into account the quantitative and qualitative importance of the results
and practices that we have just described, we naturally ask ourselves about
the presence of combinatorial elements in the mathematical teachings of the
Maghreb from the 13th century onwards. The appearance in the works of sev-
eral commentators of combinatorial approaches and a preoccupation with the
Talkhı̄s. of Ibn al-Bannā is a prime argument in favour of this hypothesis. Ibn
Khaldūn gave us a second argument: concerning mathematical commentaries
in the paragraph of his Muqaddima on linguistics, he reproduced the classic
results (transmitted since al-Khal̄ıl) on combinations and arrangements of the
letters of the alphabet. But he also added two proofs, perhaps taught to him
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by his teacher al-Ābil̄ı, who himself was a pupil of Ibn al-Bannā. Moreover, in
one of them, which allows the establishment of the combinations of n letters of
the alphabet taken two at a time and three at a time, he committed an error of
reasoning (and not of calculation) that could betray a difficulty in assimilating
combinatorial approaches (see [44]).

Conclusion

The different elements presented in this chapter show, we believe, that new
material and new tools seem to have emerged slowly in the setting of the Arab
scientific tradition, by the solution of concrete problems and then their con-
tinued mathematization. That said, we do not know how much understanding
these people had, nor how much importance they gave to these developments.
In any case, this did not go so far as to give a name to this activity and to
distinguish it from classical operations on integers, despite the use of these
results in other areas of mathematics. Combinatorics did not thus benefit from
the favourable conditions of the beginning of the 11th century that enabled
the first algebraic practices to be transformed into a discipline with a name, a
status, and a wide range of applications. Moreover, combinatorics did not have
the good fortune of trigonometry, which was descended from astronomy but
which succeeded in detaching itself towards the middle of the 11th century
with the publication of works (those of al-Bı̄rūnı̄ and of IbnMu↪ādh) dedicated
exclusively to it (see [45]).

Among the causes that could explain the limited development of combi-
natorics in Islamic countries, there was first the absence of local or regional
institutions charged with renewing programmes and imposing, and then per-
petuating, the teaching of new ideas. Secondly, there was the influence of the
general environment: as we have already said, combinatorics seems to have been
taught until the 13th century in Marrakech, but the decline of scientific activity
in the 14th century (witness Ibn Khaldūn in hisMuqaddima) did not spare the
theoretical areas ofmathematics. All of this became concretized in a cessation of
research and a decreased interest in anything that did not immediately concern
the applications of science.

There is finally the nature and status of the areas of application of combi-
natorics. In the 14th century, linguistics no longer provided a source of prob-
lems and inspiration for practical use and reflections of a combinatorial nature,
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because the problems had been completely solved by mathematicians. Philos-
ophy also no longer had the vitality it had in the 9th to the 12th centuries,
and offered no new problems. There remained just one area, that of games of
chance, which despite religious prohibition could be a substitute and source of
inspiration for practical combinatorics, but so far no Arab texts on this theme
have been discovered.

In fact, combinatorial practices needed to continue to develop theoretically
in a different scientific and cultural context, thereby opening the field to new
types of problems. This would be done in the Europe of the 17th century.
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37. Ibn al-Bannā (see Note 35, ff. 42a,b).
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CHAPTER 4

Jewish combinatorics
victor j. katz

M any Jewish scholars from the early years of our era were inter-
ested in calculating permutations and combinations. Among
the problems that led to the study of these notionswere finding

the number of words that could be formed out of the letters of theHebrew
alphabet, and determining the number of conjunctions of the planets. It
was Levi ben Gerson in the 14th century who was able to formalize these
notions and rigorously derive the formulas for the numbers of permuta-
tions and combinations.

Introduction

Although Jews today are relatively active in the mathematical sciences, restric-
tions on Jewish life in Europe in the medieval period made it difficult for Jews
at that time to study mathematics. Nevertheless, at various times and places in
medieval Europe, when Jews were allowed to participate in public life, some
Jews did make contributions to mathematical ideas. In particular, Jews were
active in intellectual life inmedieval Spain underMuslim rule, under the Chris-
tians in Provence before it became part of France in the 15th century, and in
various Italian states at the time. The mathematical ideas in which Jews were
interested generally stemmed from questions arising from their Biblical and
Talmudic studies, since any Jewish man who showed scholarly bent began his
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studies with religious texts. Therefore, invariably, Jewish scholars of the time
were rabbis, because it was rabbis who would be supported by the Jewish com-
munity at large. And it was their rabbinical training that often led them to go
beyond answers to immediate practical questions and consider more abstract
and theoretical results.

In this chapter we consider Jewish contributions to the study of combina-
torics – specifically, to the study of permutations and combinations. The first
analysis of such questions arose from specific matters: thus, the study of per-
mutations arose from the question of how many words can be created from the
letters of the Hebrew alphabet. The question was a mystical one: God created
the world by giving names to things, so the rabbis wanted to know how many
‘things’ God could have named. The first appearance of this question seems to
be in the Sefer Yetsirah (see below), but it continued to appear in the works of
authors as late as the 16th century.

Similarly, the question of combinations showed up initially as an astrological
question in the work of Rabbi Abraham ibn Ezra in the 12th century. Ibn Ezra
wanted to know howmany possible conjunctions there are of the seven planets,
for a conjunction was a significant astronomical event, possibly portending
major consequences on earth.

Eventually, Rabbi Levi ben Gerson in the 14th century was able to treat
both permutations and combinations as purely mathematical questions. In a
major work of 1321 Levi worked out, often using the method of mathemati-
cal induction, the formulas for determining the number of permutations and
combinations in the case of arbitrary finite sets.

The Sefer Yetsirah

The earliest surviving Jewish source on combinatorics seems to be the mystical
work Sefer Yetsirah (Book of Creation), written sometime before the 8th century
and perhaps as early as the 2nd century. In this work, the unknown author
calculated the various ways in which the twenty-two letters of the Hebrew
alphabet can be arranged. Jewish mystics believed that God had created the
world and everything in it by naming these things (in Hebrew, of course), so
it was of interest to know how many ‘things’ could be named (see [4, p. 23]):

God drew them, combined them, weighed them, interchanged them, and through them

produced the whole creation and everything that is destined to be created.
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The twenty-two letters of the Hebrew alphabet.

In one passage the author wrote about making words from just two letters
(see [4, p. 11]):

He fixed the twenty-two letters on the sphere like a wall with two hundred and thirty-

one gates, and the sphere turns forwards and backwards . . . But how was it done? He

combined . . . the aleph with all the other letters in succession, and all the others again

with aleph; bet with all and all again with bet, and so the whole series of letters. Hence it

follows that there are two hundred and thirty-one formations.

What this seems tomean is that the author found that there are 231 ‘forward’
combinations of two letters, where the earlier letter comes before the later one,
and then 231 ‘backward’ ones, where the later letter comes before the earlier one.
The 10th-century commentator SaadiaGaon (892–942), whowas born in Egypt
but spent much of his life in Babylonia as head of a Talmudic academy, noted
that children in Palestine learned spelling and pronunciation by considering all
222 = 484 possible ordered pairs of letters. He noted further that the author
of the Sefer Yetsirah dropped all twenty-two repeated pairs from consideration
and then halved the remaining number to get his result.

The author also considered how to make words from more than two letters
(see [4, p. 23]):

Two stones [letters] build two houses [words], three build six houses, four build twenty-

four houses,five build one hundred and twenty houses, six build seven hundred and twenty

houses, seven build five thousand and forty houses. From thence further go and reckon

what the mouth cannot express and the ear cannot hear.

Evidently, the author understood that the number of possible arrangements of
n letters is n!.
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Saadia Gaon extended this rule as follows (see [1, p. 495]):

If somebody wants to know how many words may be built from a larger number than

that, as for instance 8, 9,10 and so on, the rule is that one should multiply the result of the

first product by the following number and what one thus obtains is the sum total. And its

explanation is as follows: the permutations of two letters give 2 words, if you multiply 2 by

3,you get 6,and that is the number of the permutations of the three letters . . . If you want

to know the number of the permutations of 8 letters,multiply the 5040 that you got from

7 by 8 and you will get 40 320 words; and if you search for the number of permutations of

9 letters, multiply 40 320 by 9 and you will get 362 880; and if you search for the number

of permutations of 10 letters, multiply 362 880 by 10 and you will get 3 628 800 words;

and if you search for the number of permutations of 11, multiply these 3 628 800 by 11
and you will get 39 916 800 words. And if you want to know [the permutations] of still

larger numbers, you may operate according to the same method. We, however, stopped

at the number of 11 letters, for the longest word to be found in the Bible [with no letter

repeated] contains 11 letters.

Evidently, the author understood that n! = n × (n − 1)!.
An Italian rabbi, Shabbetai Donnolo (913–70), explicitly derived the factorial

rule for permutations in a somewhat later commentary on the Sefer Yetsirah (see
[6, p. 144]):

The first letter of a two-letter word can be interchanged twice,and for each initial letter of a

three-letter word the other letters can be interchanged to form two two-letter words – for

each of three times.And all the arrangements there are of three-letter words correspond

to each one of the four letters that can be placed first in a four-letter word: a three-letter

word can be formed in six ways, and so for every initial letter of a four-letter word there

are six ways – altogether making twenty-four words, and so on.

Since the Sefer Yetsirah continued to be studied in Jewish mystical circles, we
even find much later commentaries on the mathematics involved. In the 16th
century, for example, Rabbi Moses Cordovero (1522–70) from Safed, Palestine,
gave a very detailed explanation of the basic permutation rule, and then pro-
ceeded to generalize his results to the case where one or more letters in a word
are duplicated (see [7, p. 32]):

If we should find a repeated letter, then one half of the number corresponding to the

number of elements should be subtracted. For this reason the tetragrammaton [the four

letters making up the Hebrew name of God, two of which are the same] will not give more

than 12 constructions, or one half the number otherwise resulting – since four stones

usually build 24 houses, while these four stones build but 12 . . . A word of three letters
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would by the law give rise to six forms; if, however, there are two like letters in the group

there will be but three permutations. If, in a group of four, a letter be repeated three times

the first duplication will destroy half of the permutations, as we have explained; and the

second duplication (that is, the third like letter) will destroy two-thirds of the remainder,

four forms remaining out of 12. Thus abbb, which should give 24 permutations by the

original law,will (because of three like letters) yield but four. In a group of five letters whose

permutations would ordinarily be 120, if there are two like letters as in abcdd, there will

remain 60; if there are three like letters, as in abddd, two-thirds of the remaining forms will

disappear and but 20,or one-third,will remain as a result of the effect of the third letter . . .

Cordovero completed his discussion by considering the case where more than
one letter is repeated.

Abraham ibn Ezra

As noted earlier, the author of the Sefer Yetsirah briefly mentioned how to
calculate the number of combinations of letters taken two at a time. A more
detailed study of combinations was carried out by Rabbi Abraham ben Meir
ibn Ezra (1090–1167), a Spanish–Jewish philosopher, astrologer, and Biblical
commentator. He left his native Spain in 1140 and spent the remainder of his
life in various Jewish communities in Italy and the south of France, at which
time he composed most of his Biblical commentaries.

Ibn Ezra discussed combinations in an astrological text. In particular,
because conjunctions of the seven planets (including the Sun and the Moon)
were believed to have a powerful influence on human life, he wanted to count
the ways in which these could occur. Ibn Ezra in fact calculated C(7, k) for each
integer k from2 to 7 andnoted that the total was 120.He beganwith the simplest
case, that the number of binary conjunctions (sets of two elements out of seven)
is 21. This number is equal to the sum of the integers from 1 to 6, and can be
calculated by a well-known rule. Ibn Ezra wrote the calculation this way (see
[2, p. 350] and [3]):

It is known that there are seven planets.Now Jupiter has six conjunctions with the [other]

planets. Let us multiply then 6 by its half and by half of unity. The result is 21, and this is the
number of binary conjunctions.

Although ibn Ezra left it to the reader to understand that Saturn has five
conjunctions, Mars four, and so on, what he was asserting, in modern terms,
is that
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C(7, 2) = 1 + 2 + 3 + 4 + 5 + 6 = 6 × (
( 1
2 × 6) + 1

2
) = 21.

More generally, ibn Ezra asserted that

It is known that the sum of the numbers from 1 to any desired number is found by

multiplying it by half of itself and by half of unity.

That is,
1 + 2 + · · · + n = n × (

( 1
2 × n) + 1

2
) = 1

2n(n + 1).

To calculate ternary combinations, ibn Ezra first calculated the number of
these involving Jupiter (see [2, p. 351]):

We begin by putting Saturn with Jupiter and with them one of the others. The number of

the others is five; multiply 5 by its half and by half of unity. The result is 15. And these are

the conjunctions of Jupiter.

Thus, there are five ternary combinations involving Jupiter and Saturn, four
involving Jupiter and Mars, but not Saturn, and so on. Hence, there are

C(6, 2) = 5 × (
( 1
2 × 5) + 1

2
) = 15

ternary conjunctions involving Jupiter.
Similarly, to find the ternary conjunctions involving Saturn but not Jupiter,

ibn Ezra needed to calculate the number of choices of two planets from the
remaining five:C(5, 2) = 10. He then found the ternary conjunctions involving
Mars, but neither Jupiter nor Saturn, and concluded with the result

C(7, 3) = C(6, 2) + C(5, 2) + C(4, 2) + C(3, 2) + C(2, 2)

= 15 + 10 + 6 + 3 + 1 = 35.

He next calculated the quaternary conjunctions by analogous methods. The
conjunctions involving Jupiter require choosing three planets from the remain-
ing six; those with Saturn but not Jupiter require choosing three from five.
So, finally,

C(7, 4) = C(6, 3) + C(5, 3) + C(4, 3) + C(3, 3) = 20 + 10 + 4 + 1 = 35.

Ibn Ezra simply stated the results for the conjunctions involving five, six, and
seven planets. Essentially, his work gives an argument for the case n = 7, easily
generalizable to the general combinatorial rule

C(n, k) = C(n − 1, k − 1) + C(n − 2, k − 1) + · · · + C(k − 1, k − 1).
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Rabbi ibn Ezra’s astrological work, which included this material on combina-
tions, appeared in Latin translation in 1281.The Latin version seems to indicate
that the translation was made from the Arabic, so it must sometime earlier have
been translated into Arabic from the Hebrew original, although no such Arabic
manuscript has yet been found. Nevertheless, some of these same ideas appear
in Arabic writings of the 13th century.

Levi ben Gerson

Levi ben Gerson (1288–1344) was an astronomer, philosopher, mathematician,
and Biblical commentator, who spent his entire life in and around Orange, in
the south of France. Although today he is known in Jewish circles mainly for his
philosophical works, in his time he was well regarded even in the Christian sci-
entific community of France for his knowledge of mathematics and astronomy.
In 1321, he wrote his most important mathematical work, the Maasei Hoshev
(The Art of the Calculator), in which he gave careful rigorous proofs of various
combinatorial formulas.

An extract from Levi ben Gerson’s Maasei Hoshev.
Translation: ‘The sixth section of this volume is finished, and with its completion the book

is complete. The praise goes exclusively to God. Its completion was in the month of Elul in

the 82nd year of the sixth millennium. Bless the Helper.’

Levi’s text, which appeared in a second edition in 1322, is divided into two
parts – a first theoretical part, in which each result receives a detailed proof,
and a second applied part, in which explicit instructions are given for per-
forming various types of calculation and which contains numerous interesting
problems, most to be solved using ratio and proportion. Levi’s theoretical first
section begins with a quite modern justification for considering theory at all
(see [5, p. 1]):
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Because the true perfection of a practical occupation consists not only in knowing the

actual performance of the occupation but also in its explanation, why the work is done

in a particular way, and because the art of calculating is a practical occupation, it is clear

that it is pertinent to concern oneself with its theory. There is also a second reason to

inquire about the theory in this field. Namely, it is clear that this field contains many types

of operations, and each type itself concerns so many different types of material that one

could believe that they cannot all belong to the same subject. Therefore, it is only with the

greatest difficulty that one can achieve understanding of the art of calculating, if one does

not know the theory.With the knowledge of the theory,however,complete mastery is easy.

One who knows it will understand how to apply it in the various cases which depend on

the same foundation. If one is ignorant of the theory,one must learn each kind of calculation

separately, even if two are really one and the same.

Levi worked up gradually to the formulas for permutations and combina-
tions, at each step giving a careful Euclidean-style proof. In someof these proofs,
he used the essentials of themethod ofmathematical induction, which he called
the process of ‘rising step by step without end’. In general, when Levi used such
a proof, he first proved the inductive step, the step that allows one to move
from k to k + 1, then noted that the process begins at some small value of k,
and finally stated the complete result. However, given that he had no notation
for an arbitrary integer (which we indicate by k), what he always did in this
context was prove the inductive step by the method of generalizable example.
In other words, he proved this step for a particular integer, making it clear that
the proof would be the same no matter what integer was picked. (This method
of generalizable example was used frequently in pre-modern mathematics, by
many mathematicians from Euclid to Pascal.)

Of course, Levi did not give a general statement of his inductive proof
method. On the other hand, he used it in various proofs throughout the book,
including two of the earliest theorems in the text, theorems that deal with
associativity and commutativity of multiplication.

Proposition 9. If one multiplies a number which is the product of two numbers by
a third number, the result is the same as when one multiplies the product of any
two of these three numbers by the third.

Proposition 10. If one multiplies a number which is the product of three numbers
by a fourth number, the result is the same as when one multiplies the product of
any three of these four numbers by the fourth.

In modern notation, the first result states that a(bc) = b(ac) = c(ab), while the
second result extends this result to four factors.
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Levi proved Proposition 9 by counting the number of times that the various
factors of the product appear in that product. In his proof of Proposition 10
he noted that a(bcd) contains bcd a times. Since, by Proposition 9, bcd can be
thought of as b(cd), it follows that the product a(bcd) contains acd b times,
so a(bcd) = b(acd), as desired. Levi then generalized these two results to any
number of factors (see [5, p. 8]):

By the process of rising step by step without end, this is proved; that is, if one multiplies

a number which is the product of four numbers by a fifth number, the result is the same

as when one multiplies the product of any four of these by the other number. Therefore,

the result of multiplying any product of numbers by another number contains any of these

numbers as many times as the product of the others.

We see here the essence of the principle of mathematical induction, in that
both steps of the method are explicitly proved, with the second step proved by
the method of generalizable example. Levi used the principle again in proving
that (abc)d = (ab)(cd), and concluded that one can use the same proof to
demonstrate the following result:

Any number contains the product of two of its factors as many times as the product of

the remaining factors.

Levi was certainly not consistent about applying his induction principle. The
middle of the text contains many theorems that deal with sums of various
sequences of integers – theorems that could be proved by induction – but for
many of these Levi used other methods. In his proof of the formula for the sum
of the first n integral cubes, however, he used a method related to induction
that we would call the ‘method of descent’. The critical result here is, in fact, the
result we would use today in giving an inductive proof of this formula:

Proposition 41. The square of the sum of the natural numbers from 1 up to a given
number is equal to the cube of the given number added to the square of the sum
of the natural numbers from 1 up to one less than the given number.

In modern notation, this result says that

(1 + 2 + · · · + n)2 = n3 + (1 + 2 + · · · + (n − 1))2.

We present Levi’s proof symbolically. First, by Levi’s Proposition 30,

n2 = (1 + 2 + · · · + n) + (1 + 2 + · · · + (n − 1)).

j ewish combinator ics | 117



Then

n3 = n × n2 = n
(
(1 + 2 + · · · + n) + (1 + 2 + · · · + (n − 1))

)
= n2 + n

(
2 × (1 + 2 + · · · + (n − 1))

)
.

But

(1 + 2 + · · · + n)2 = n2 + 2n(1 + 2 + · · · + (n − 1))

+ (1 + 2 + · · · + (n − 1))2.

It follows that

n3 + (1 + 2 + · · · + (n − 1))2 = (1 + 2 + · · · + n)2.

Levi next noted that, although 1 has no number preceding it, ‘its third power
is the square of the sum of the natural numbers up to it’. In other words, he gave
the first step of a proof by induction for the result stated as follows:

Proposition 42. The square of the sum of the natural numbers from 1 up to a
given number is equal to the sum of the cubes of the numbers from 1 up to the
given number.

Levi noted that, by Proposition 41,

(1 + 2 + · · · + n)2 = n3 + (1 + 2 + · · · + (n − 1))2.

The final summand is, also by Proposition 41, equal to

(n − 1)3 + (1 + 2 + · · · + (n − 2))2.

Continuing in this way, Levi eventually reached 12 = 13, and the result is
proved.

We note again that, although the proposition is stated in terms of an arbitrary
natural number, Levi’s own proof is by the method of generalizable example.
In this case his proof was given for n = 5; in fact, the first five numbers were
represented by the five initial letters of the Hebrew alphabet.

Levi did use mathematical induction to prove the major results on per-
mutations and combinations, the theorems that provided the climax to the
theoretical part of the text. First, he showed that the number of permutations
of a given number n of elements is what we now call n!:
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Proposition 63. If the number of permutations of a given number of different
elements is equal to a given number, then the number of permutations of a set of
different elements containing one more number equals the product of the former
number of permutations and the given next number.

Symbolically, this proposition states that

P(n + 1) = (n + 1)P(n),

where P(n) stands for the number of permutations of a set of n elements. This
result provides the inductive step in the proof of the proposition P(n) = n!,
although Levi did not mention that result until the end.

His proof of Proposition 63 was very detailed. Given a permutation abcde of
the original n elements, and a new element f , he noted that fabcde is a permuta-
tion of the new set. Because there are P(n) such permutations of the original set,
there are also P(n) permutations of the new set beginning with f . Also, if one of
the original elements, such as e, is replaced by the new element f , then there are
P(n) permutations of {a, b, c, d, f } and therefore also P(n) permutations of the
new set with e in the first place. Because any of the n elements of the original
set, as well as the new element, can be put in the first place, it follows that the
number of permutations of the new set is (n + 1)P(n). Levi finished the proof of
Proposition 63 by showing that these (n+ 1)P(n) permutations are all different.
He concluded (see [5, p. 49]):

Thus it is proved that the number of permutations of a given set of elements is equal to

that number formed by multiplying together the natural numbers from 1 up to the number

of given elements. For the number of permutations of 2 elements is 2, and that is equal

to 1 · 2, the number of permutations of 3 elements is equal to the product 3 · 2, which is

equal to 1 · 2 · 3, and so one shows this result further without end.

Thus, Levimentioned the beginning step and thennoted that, with the inductive
step already proved, the complete result is also proved.

After proving by a counting argument that P(n, 2) = n × (n − 1), where
P(n, k) represents the number of permutations of k elements in a set of n ele-
ments, Levi proved by induction on k that

P(n, k) = n × (n − 1) × (n − 2) × · · · × (n − k + 1).

As before, he stated the inductive step as a theorem:
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Proposition 65. If a certain number of elements is given and the number of per-
mutations of order a number different from and less than the given number of
elements is a third number, then the number of permutations of order one more in
this given set of elements is equal to the number which is the product of the third
number and the difference between the first and the second numbers.

Modern symbolism replaces Levi’s convoluted wording with a brief phrase:

P(n, k + 1) = (n − k) × P(n, k).

Levi’s proof was quite similar to that of Proposition 63, in that he looked at
how permutations of k + 1 elements can be found from those of k elements. At
the end, he stated the complete result (see [5, p. 51]):

It has thus been proved that the permutations of a given order in a given number of

elements are equal to that number formed by multiplying together the number of integers

in their natural sequence equal to the given order and ending with the number of elements

in the set.

To clarify this statement, Levi again used a generalizable example. He gave
the initial step of the induction by quoting his previous result in the case n = 7
– that is, the number of permutations of two elements in a set of seven is equal to
6 × 7.Then the number of permutations of three elements is equal to 5 × 6 × 7
(since 5 = 7 − 2). Similarly, the number of permutations of four elements is
equal to 4 × 5 × 6 × 7, ‘and so one proves this for any number’.

In the final three propositions of the theoretical part ofMaasei Hoshev, Levi
completed his development of formulas for permutations and combinations.
Proposition 66 shows that

P(n, k) = C(n, k) × P(k, k),

while Proposition 67 simply rewrites this as

C(n, k) = P(n, k)/P(k, k).

Since he had already given formulaic procedures for calculating both the
numerator and the denominator of this quotient, Levi had thus demonstrated
the equivalent of the standard formula for C(n, k):

C(n, k) = n × (n − 1) × (n − 2) × · · · × (n − k + 1)
1 × 2 × · · · × k

.

Finally, Proposition 68 demonstrates that C(n, k) = C(n, n − k).
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Thus, by 1321, the basic results on permutations and combinations were
available in the Principality of Orange. Unfortunately for the development of
mathematics, Levi’s work does not seem to have had any influence in subsequent
centuries. So, did anyone read Levi’s book? Given that there are today about a
dozen manuscript copies of the work extant, in libraries throughout Europe as
well as one in New York, it appears that the book must have had a reasonable
circulation for a medieval manuscript. In particular, we know that there was a
copy in Paris in the library of the Oratorian priests, a copy brought there from
Constantinople in 1620 by Achille Harlay de Sancy, the French ambassador to
the Ottoman Empire. This copy would certainly have been available to any of
the priests at the Oratory who read Hebrew and were trained in mathematics,
and possibly to Marin Mersenne (1588–1648), who was in contact with many
of these priests and who included a study of combinations and permutations
in his work on music theory in the 1630s. But Mersenne made no reference
to this text and only some cryptic remarks about how he learned combinatorics
himself. And even thoughBlaise Pascal (1623–62) certainly learned somemath-
ematics in his visits toMersenne’s gatherings ofmathematicians, he toomade no
reference to previous writers on the theory of induction in his own statements
on the subject.Thus, as is true formany results in the history ofmathematics, the
original discoverers received no mention when their ideas were rediscovered
years later and finally brought into the mathematical mainstream.
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CHAPTER 5

Renaissance
combinatorics

eberhard knobloch

Combinatorial thinking in theRenaissance had philosophical, reli-
gious, and game-theoretical roots. The concept of Llullism, in
which all knowledge is derived by combining a finite number of

attributes, originated in the 13th century and spread throughout Europe;
in the same century we find combinatorial studies related to games of
dice. From the 16th century, Jesuits, Cistercians, and members of other
religious orders played a crucial role in the development of combina-
torics. The basic combinatorial operations were explained and illustrated
by examples fromdaily life andby tables, normallywithout proof: number
theory and music theory were the most important mathematical fields of
application. In the 17th century, authors frequently inserted sections on
combinatorics into their arithmetic or algebra textbooks, and began to
write special monographs on the subject.

Medieval glimpses

One of the two main roots of combinatorial thinking in the Middle Ages was
philosophical in nature. The Catalan mystic, poet, and missionary Ramon Llull
(1232–1316) was by far the most influential author in this regard. His ‘Great
or General Art’ was a systematic summary of all the branches of knowledge
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of his time, based on the combinatorial art. In order to know something it
was not necessary to analyse the objects by means of experience, but rather to
understand the fundamental terms, the so-called ‘principles’, and to combine
them with each other. Thus, combinatorics became the basic tool for exploring
all that was known at that time.The Llull school remained important for several
hundred years, and flourished especially in the 17th century (see [29]).

Some of Ramon Llull’s circulatory diagrams.
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Llull illustrated his method by mechanisms of letters, figures, triangles, and
circles, and introduced six symmetric figures:

• figure A depicts the sixteen fundamental values (dignitates), such as goodness,

magnitude, power,wisdom, and truth;

• figure S contains twelve composed notions and four combinatorial figures;

• figure T concerns relative principles and significations;

• figure V links the virtues and vices;

• figure X concerns the predestination of individuals;

• figure YZ combined the figures A, S, T,U, V, and X, in the form of a crucifix.

Underneath are four boxes, whose contents (again, the four elements) are
ordered as latin squares; in the last two columns, the second entries should be
IGNIS and AER.

Unlike his followers in the 17th century, Llull was not primarily interested
in the mathematical problem of enumerating the possible sign combinations.
His combinatorial art was designed as an inventive logic that could judge
every posed problem. Yet, Llull drew attention to such mathematical calcula-
tions.

The second main source was games of chance – especially dice games. The
pseudo-Ovidian hexametric poem De Vetula (On a Little Old Woman) was
written between 1222 and 1268, probably by Richard de Fournival (b.1201).
There the author enumerated the fifty-six essentially different throws of three
dice: ‘essentially different’ means that the points of the dice are not counted
individually – only the types of combination of the points matter. He correctly
explained why there are thirty cases where two dice show equal points, and
twenty cases where all three dice have distinct points. He added the numbers
under the condition that the dice are individualized, and he knew that the sum
of these numbers is 216 (see [17] and [31]).

In 1283 the Castilian king Alphons X the Wise (1221–84) composed his
Libros de Acedrez, Dados e Tablas (Books on Chess, Dice, and Tables). The
section on games of dice describes twelve such games and enumerates the
fifty-six possible throws of three dice generating from 3 up to 18 points, and
the possible throws of two dice for which the sum of their values equals
the number on the third die. Similar considerations for three dice appear
in a commentary on Dante’s Divina Commedia (Divine Comedy), published
in 1477.
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An extract from De Vetula.

Italian beginnings

In 1494 Leonardo da Vinci’s friend Luca Pacioli (1445–1517) published his
mathematical encyclopedia, Summa de Arithmetica Geometria Proportioni e
Proportionalità (Comprehensive Treatise on Arithmetic, Geometry, Propor-
tions, and Proportionality). Here, he studied the arrangements of a number of
people at a table (2nd distinction, 5th treatise), calculating 11! or P(11, 11) =
39 916 800; to this end he used the recursion law

n × (n − 1)! = n!
(see [28] and [19, pp. 2f]).

Much more combinatorial knowledge was revealed by Girolamo Cardano,
one of the most important scientists of the 16th century. He was a successful
physician whowrote onmany subjects, and his own list of works includes forty-
sixmonographs.HisArsMagna (TheGreatArt) on algebra (1545) explained the
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algorithmic solution of the general cubic equation, which he had learned from
his countryman, the arithmetician and physicist Niccolò Tartaglia (c.1500–57).
At least four of his books deal with combinatorics: his Practica Arithmeticae
(Practice of Arithmetic) of 1539 [6], De Subtilitate (On Subtlety) of 1550 [7],
Liber de Ludo Aleae (Book on the Game of Dice) written around 1550 [9], and
his Opus Novum de Proportionibus (New Work on Proportions) of 1570 [8].

Girolamo Cardano (1501–76).

In Chapter 51 of his Practica Arithmeticae, Cardano gave several examples
to illustrate the number 2n − 1 − n of all combinations of at least two things
selected from n: eleven different powers of x admit 211 − 1 − 11 = 2036 linear
combinations, the seven planets admit 27 − 1 − 7 = 120 combinations, and
twenty-two letters lead to 222 − 1 − 22 = 4 194 281 expressions (dictiones).
Their difference, he said, concerns the substance, not the order. Still more
expressions occur if the order is permuted; thus Cardano hinted also at arrange-
ments. It is worth noting that, for Cardano, a combination involved at least two
elements: for him, selections of one or no elements were not combinations.

In Chapter 15 of De Subtilitate, Cardano explained how the num-
bers C(n, k) = C(n, n − k) could be calculated from the preceding values
C(n, k − 1) = C(n, n − k + 1) by multiplying by n − k + 1 and dividing by k.
He took both selections into account at the same time – for example, he wrote,
for n = 20,

(40 × 19)/2 = 2 × (20 × 19)/2 = C(20, 2) + C(20, 18),
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and continued with (40 × 19 × 18)/(2 × 3), etc. Thus, already by 1550,
Cardano knew the multiplicative calculation of C(n, k):

C(n, k) = n × (n − 1) × · · · × (n − k + 1)
1 × 2 × · · · × k

.

In Chapter 17, he explained the construction of ‘combination locks’ con-
sisting of several rotating numbered rings, but he did not analyse the related
combinations of numbers mathematically: such analyses are to be found in his
Liber de Ludo Aleae.This book did not influence the development of the subject
because it was not published until 1663, in an edition of his complete works.

In order to study dice probabilities Cardano intensively investigated the pos-
sible throws of two or three dice. He calculated the number of arrangements
with repetition in special cases, and found the number of throws or combina-
tions that meet certain conditions: for example, there are eleven throws of two
dice that include at least one 1, and ninety-one ways of obtaining at least one
6 in three throws of a die, or in one throw of three dice. He also classified the
throws of three dice according to the type of repetition: for example, there are
six throws with all three faces alike, ninety throws with a double and one single,
such as (1, 1, 2), and 120 throws with all faces different, such as (1, 2, 3).

In a similar way he solved the question of finding how many ways a throw of
two dice, like (1, 2), can be completed to a throw of three dice; the result looked
for is 30 – that is, there are thirty throws of three dice that include at least one
1 and at least one 2. Finally, he considered the different types of throws of four
astragals (heel bones in the shape of three-sided prisms with rounded ends):
there are thirty-five such types of throws (as explained in [9], p. 276).

In order to solve such problems, Cardano considered specific permutations
with and without repetition, but without mentioning any general rules for cal-
culating these numbers; for example, since there are twenty throws where all
faces are different, and each one gives rise to six different permutations, there
are 6 × 20 = 120 such throws altogether.

All in all, Cardano’s dice results represented a notable achievement, and far
more than Galileo Galilei achieved in his fragment Sopra le Scoperte dei Dadi
(On Findings of Dice). Galileo probably wrote this between 1613 and 1623 in
order to explain the different frequencies of throwing the totals 9 and 10 with
three dice (see [27]).

In his Opus Novum de Proportionibus, Cardano resumed his combinatorial
studies.With the aid of numerical examples he explained (inwords) the additive
law of formation

128 | combinator ics : anc ient and modern



C(n, k) + C(n, k + 1) = C(n + 1, k + 1),

used the multiplicative law in the form

C(n, k) = n − (k − 1)
k

× C(n, k − 1) ,

and illustrated the equality

C(n, k) = C(n, n − k)

bymeans of the arithmetical triangle.This time he determined the number of all
possible combinations of n elements as 2n − 1, since he now included selections
with just one element among his combinations.

Meanwhile, the arithmetician and physicist Niccolò Tartaglia (1499/
1500–57) had published his General Trattato di Numeri et Misure (General
Treatise on Numbers and Measures) in 1556 (see [38] and [19, p. 3]). He
repeated Pacioli’s rule for permutations without repetition, and determined the
number of special combinations with repetition by enquiring into the number
of essentially different throws of up to eight dice. To this end he relied on the
arithmetical triangle and used the identity we now write as∑

k

C(n + k − 1, k) = C(n + k, k).

Outside Italy

The combinatorial results of the Italian mathematicians were quickly taken
up by authors from outside Italy. The German parson and algebraist Michael
Stifel (c.1487–1567) explicitly referred to ‘Cardano’s rule’ in his Arithmetica
Integra (CompleteArithmetic), regarding theways of combining arbitrary given
things (see [35]): ‘It is useful’, he said, ‘to find the number of aliquot parts of
arbitrary numbers’. Stifel alluded to Cardano’s Practica Arithmeticae and to the
(2n − 1 − n)-rule, modifying it to 2n − 1 in order to find the number of proper
factors (‘aliquot parts’) of a product of n distinct prime numbers. The same
distinction between the number of combinations of elements and the number of
proper factors of a product was alsomade byWilliamBuckley in hisArithmetica
Memorativa [Arithmetic Useful for Memorizing], which appeared in 1567 (see
[2] and [12]).

Italian influencewas also apparent in the Logistica (Arithmetic) of the French
mathematician Jean Borrel (c.1492–c.1570) (see [1]). By 1559 he hadmentioned
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Pacioli, and doubtlessly relied on Tartaglia, when he enumerated the possible
outcomes of throws of up to four dice and stated the numbers (252 and 462) for
five and six dice. He also considered arrangements with repetition by studying
combination locks constructed from six rotating rings arranged side by side,
each with six letters on it: only one of the 66 = 46 656 arrangements admitted
the opening of the lock.

Christoph Clavius

Christoph Clavius was the chief Jesuit mathematician charged by Pope Gregory
XIII with the reform of the Christian calendar. From 1570 he published a long
series of mathematical textbooks and commentaries on ancient and medieval
writings for mathematical education in the Jesuit colleges.

Christoph Clavius (1538–1612).

His first monograph was In Sphaeram Ioannis de Sacro Bosco Commentarius
(Commentary on the Sphere of John of Holywood) (see [11]).While explaining
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the Aristotelian theory of the number and order of the elements, he seized
the opportunity to insert a ‘most-wonderful digression on the combinations
of things’. This digression later influenced an impressive list of authors: Georg
Henisch (1608), Paul Guldin (1622), Marin Mersenne (1625), Pierre Hérigone
(1634), Daniel Schwenter (1636), Kaspar Schott (1658), Sebastián Izquerdo
(1659), GottfriedWilhelm Leibniz (1666), Athanasius Kircher (1669), Johannes
Caramuel (1670), and Kaspar Knittel (1682) (see [19, pp. 6–10]).

Clavius must have been aware of earlier writers, because he said that only
a few of them had explained such rules; maybe he was alluding to Cardano,
because he had used some of Cardano’s examples (planets and letters).

A diagram from Clavius’s combinatorial works.

Clavius dealt with just three questions, which he illustrated with several
examples:

• He expressed in words the formula 1
2 n(n − 1) for the number C(n, 2) of

2-subsets of an n-set – that is, of combinations in the strict sense of the word.

• He stated that there are 2n − 1 − n ‘conjunctions altogether’ of n-sets – that is,he

understood ‘conjunction’ or ‘combination’ in the strict sense of the word: the one

0-subset and the n 1-subsets are not conjunctions, and thus the number n + 1 is
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to be subtracted from 2n . Clavius’s examples include the four elements, the five

predicables (general notions), the seven planets, and the twenty-three letters of

the alphabet (with 223 − 1 − 23 = 8 388 584 conjunctions).

• He mentioned that even more expressions (dictiones) would appear if the ele-

ments in every conjunction could be permuted; this is reminiscent of Cardano’s

Practica Arithmeticae. Thus, he envisioned the notion of arrangements without

discussing the general case.He considered only P(n, n), the permutations without

repetition, and calculated them by means of the recursion formula

(n − 1)! × n = n! or P(n − 1, n − 1) × n = P(n, n);

for example, 23! = 25 852 016 738 884 976 640 000.

Letters, planets, elements, and seating arrangements of companies at table
remained his favourite examples when he illustrated combinatorial operations.

Marin Mersenne

TheFrenchMinimite friarMarinMersenne (1588–1648) was deeply influenced
by Llullism andwas by far themost important Renaissance author in the history
of combinatorics before Gottfried Wilhelm Leibniz (1646–1716). His religious
interests were inseparably connected with his interest in the Llullistic combina-
torial art, believing that God was the first to practise this fundamental universal
art when he created the world, and that Godwas the first combinatorialist when
he combined the single parts of the universe: thus,mankindmust imitateGod in
order to be creative. This especially applied to music: Llullism aimed at musical
education, Christianization, God’s glorification, creativity, and optimization.

Mersenne’s combinatorial studies are set out in six publications, whose titles
show that he was addressing mathematicians as well as theologians. In 1623, he
published his huge encyclopedia Quaestiones Celeberrimae in Genesim (Most
FamousQuestions Related toGenesis), whose title ends ‘AWorkUseful forThe-
ologians, Philosophers, Physicians, Legal Advisors,Mathematicians,Musicians,
But Especially for Those who are Dealing with Optical Reflections’ (see [21]);
he used similar formulations again and again.

Two years later there appeared La Vérité des Sciences contre les Sceptiques ou
Pyrrhoniens (The Truth of the Sciences Against the Sceptics or Pyrrhonians)
(see [22]); its aim was to demonstrate that mathematics is most useful for the
understanding of the Holy Scriptures.

In both of these monographs Mersenne explained the rules for calculat-
ing the numbers of permutations without repetition (P(n, n) = n!) and of
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combinations of n elements (2n − 1 − n), completely relying on Clavius, but
his rule for reckoning the number of permutationswith repetitionwas still false.
Compared with Clavius, the only novelty was a table for the values 1! to 50! and
an enumeration of the 120 songs consisting of the five notes ut, re, mi, fa, sol.

His Cogita Physico-mathematica (Physico-mathematical Considerations)
of 1644 and his Novae Observationes Physico-mathematicae (New Physico-
mathematical Observations) of 1647 (see [25] and [26]) contain some addi-
tional remarkswith regard to the two theoretical books onmusic, which include
Mersenne’s most important contributions to combinatorics – his French Har-
monie Universelle Contenant la Théorie et la Pratique de la Musique (Universal
Harmony Containing the Theory and Practice of Music) of 1636 [24] and his
Latin Harmonicorum Libri, in Quibus Agitur de Sonorum Natura, Causis, et
Effectibus: De Consonantiis, Dissonantiis, Rationibus, Generibus, Modis, Can-
tibus, Compositione, Orbisque Totius Harmonicis Instrumentis (Books about
Harmony Dealing with Nature, Causes and Effects of the Notes, With the Con-
sonances, Dissonances, Proportions, Keys, Modes, Songs, Composition, and
Harmonical Instruments of the Whole World) of 1635/6 (see [23] and [24]).

On the basis of extensive tables that illustrated all of the above rules and
theorems by means of musical notes, he offered a detailed discussion of five of
the six basic combinatorial operations: permutationswith orwithout repetition,
arrangements with or without repetition, and combinations without repetition.
P(n, n) was calculated by means of the above recursion rule.

Combinations of four notes, from Mersenne’s Harmonicorum Libri.

Mersenne continued the table of such permutations up to 64!, a ninety-digit
number and the largest factorial ever calculated up to then, although his table
contains a number of errors. He listed the 720 different songs with six notes,
writing themout inmusical notation, and systematically studied all the different
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types of repetition regarding the number 9; this was presumably reminiscent of
Llull, who had selected nine fundamental notions for his theory of language.
In modern terms, he looked for the multinomial numbers C(n; n1, n2, . . . , np),
where

n1 + n2 + · · · + np = n with each ni ≥ 1.

Mersenne cited the short treatise Ars Combinandi (The Art of Combining) by
Jean Matan, who had done the same for n = 5.

Arrangements were dealt with as generalizations of permutations, as an
ordered selection of p of the n elements, where the formula is

P(n, p) = n × (n − 1) × · · · × (n − p + 1).

Mersenne took n = 22, and specifically calculated the sum of the different
values

P(22, 1), P(22, 2), . . . , P(22, 22).

He then did the same for the np arrangements with repetition, and calculated
np − P(n, p), the number of arrangements in which at least one element is
repeated.

In order to get the number C(n, p) of unordered selections of p-subsets of an
n-set, he used the rule

C(n, p) = P(n, p)
P(p, p)

.

Instead of discussing combinations with repetition in general, he considered
the more difficult problem of finding combinations of n symbols that represent
a special type of repetition, always relyingmainly on hismusical examples. As in
the case of permutations with repetition, he represented the types by number-
theoretical partitions of n. He did not explain his method, which can, however,
be reconstructed from the special cases he had discussed earlier.

Let p be the number of selected notes and n be the number of given notes.
The partition of p is

p = 1r1 + 2r2 + · · · + prp, where 0 ≤ ri ≤ p and i = 1, 2, . . . , p

– that is, ri pairwise-distinct notes occurring i times. Altogether, there are
r1 + r2 + · · · + rm = r distinct notes, for 1 ≤ m ≤ p.

We thus have C(n, r) combinations. We get a new unordered selection of
each given type whenever a note of a certain frequency replaces a note of
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another frequency – for example, if two notes that occur once or twice are
exchanged.We do not get a new combination if two notes of the same frequency
are exchanged, because we are dealing with unordered selections. The same
frequencies function as repetition in a permutation with repetitions of a certain
type. We therefore have to multiply C(n, r) by r! / r1! r2! · · · rm!; for example, if
nine elements are selected from twenty-two, the partition 2, 2, 1, 1, 1, 1, 1 leads
to C(22, 7) × 7! / 5! 2! = 3 581 424.

In a similar way, Mersenne calculated the number of ordered selections.
Here the order of the p selected notes matters, but now the type of repeti-
tion of p has to be interpreted as a permutation with repetition. As a con-
sequence, the number of unordered selections has still to be multiplied by
p! / ((1!)r1 × (2!)r2 × · · · × (m!)rm).

Athanasius Kircher

The most famous Jesuit Llullist and universal scientist of the 17th century was
Athanasius Kircher, the German professor of mathematics at the Roman Col-
lege in Rome, who was called a ‘universal genius’ and a ‘master of a hundred
arts’. The ‘universal science’ was an imitation of God’s creative force, which had
arranged theworld according tomeasure, number, andweight (WisdomXI, 20).

Athanasius Kircher (1602–80).
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Kircher’s universal science was characterized by two main aspects – his ana-
logical thinking and the combinatorial art (see [20] and [32]). There was thus
a strong religious context for Kircher’s combinatorial approach to mathema-
tizing different sciences, such as music theory, linguistics, and the philosophy
of science. In 1663 his conception of a ‘new and universal language’ (Poly-
graphia Nova et Universalis) was based on combinations of notions in different
languages between which he presupposed a one-to-one correspondence. His
main contribution to combinatorics is contained in the eighth book of his
Musurgia Universalis sive Ars Magna Consoni et Dissoni in X Libros Digesta qua
Universa Sonorum Doctrina, et Philosophia, Musicaeque tamTheoreticae, quam
Practicae Scientia, Summa Varietate Traditur (Universal Musical Art or Great
Art of Consonance and Dissonance, Subdivided into Ten Books, by which the
Whole Doctrine and Philosophy of Notes and the Science of Theoretical and
Practical Music are Treated with the Greatest Versatility) (see [15]). He equated
‘to compose’ with ‘to combine’, thereby elaborating a mechanical method of
composing that was later denounced as ‘sounding algebra’.

Although he did not reveal his source, Kircher completely depended on
Mersenne’s two great monographs on music theory. He did not discuss all of
Mersenne’s combinatorial problems, yet he still exhibited a remarkable knowl-
edge of combinatorics. Kircher wanted to demonstrate that the force of num-
bers and combinations, the huge variety of possible permutations and ordered
and unordered selections of relatively few elements, constitutes the universal
harmony of God’s creation. He even used Mersenne’s number examples, with
nine and twenty-two elements, andmost of his examples were taken frommusic
theory.

Kircher repeatedMersenne’s rules forP(n, n),P(n, k), and arrangements with
repetition, but calculated the factorials only up to 24!. As to permutations
with repetition, Mersenne had explained that there is just one permutation
of (say) nine equal notes. Kircher interpreted the notion of ‘mutatio’ (per-
mutation) in the strict sense of the word, and asserted that there can be no
permutation at all of n equal elements. He did not notice that this assertion
contradicted the division rule for permutationswith repetition, taken over from
Mersenne.

Whereas Mersenne had listed all thirty possible types of repetition of nine
notes, Kircher considered only nineteen of them, without referring to the
number-theoretical context – that is, partitions of 9. The type of repetition
(n − k, k) of n elements leads to
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n!
(n − k)! k! = n(n − 1)(n − 2) · · · (n − k + 1)

k! = C(n, k);

in other words, Kircher calculatedC(n, k) bymeans of the formula for permuta-
tions with repetition. But he left aside the most difficult problem of calculating
the combinations or arrangements of certain types of repetition. He applied the
principle ofmultiplication of choices to a sequence of bars consisting of different
numbers of notes and admitting different numbers of permutations:

If there are k successive choices to be made, and if the ith choice can be made in ni ways,

for 1 ≤ i ≤ k, then the total number of ways of making these choices is the product n1 ×
n2 × · · · × nk .

In 1669 Kircher revisited his mathematical studies related to combinatorics
in his Ars Magna Sciendi sive Combinatoria qua ad Omnium Artium Scien-
tiarumque Cognitionem Brevi Adquirendam Amplissima Porta Recluditur (The
Great Art of Knowledge or the Combinatorial Art,Through which the Broadest
Door is Opened for Quickly Acquiring Knowledge in All Arts and Sciences)
(see [16]). He mainly repeated Clavius’s combinatorial results, adding only the
calculation of all factorials up to 50! and special rules for permutations with
repetition where only one element is repeated twice, three, four times, etc. This
time his illustrations of the combinatorial rules concerned letters and Llullistic
notions.

Kircher’s pupil and collaborator Kaspar Schott (1608–66) was interested in
what Kircher had called the ‘force of number and combination’. In Volume 3
of his four-volume Magia Universalis (Universal Magic) (1657–59) (see [33]),
he referred to Clavius, Kircher, and Tacquet, other members of his order. The
‘Arithmetical Magic’ (8th book) dealt with permutations and selections, like
Schott’s three predecessors, but now included arrangements of arrangements.
Schott arranged two sets of pairwise distinct elements, thus getting

2P(n1, k1) × P(n2, k2);

the factor 2 arises since the two sets can be interchanged.

The Llullists: Izquierdo, Caramuel, and Knittel

In 1659, around the same time as Schott published his four-volumeMagia Uni-
versalis, the Spanish Jesuit and Llullist Sebastián Izquierdo (1601–81) published
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his Pharus Scientiarum (Lighthouse of Sciences) (see [10] and [14]), an ency-
clopedia of the Llullist conception of science. Its 29th disputation was exclu-
sively dedicated to combinatorics, consisting of 159 paragraphs and including
twenty-two tables that differ almost completely from all known tables of his
predecessors.

Izquierdo cited only Clavius, but he might also have read Cardano’s Opus
Novum de Proportionibus, because the forms of their arithmetical triangle are
identical. But apart from that, Izquierdo wrote a very clear, systematic, and
original general treatise on combinatorics, the longest known before those of
Leibniz and Jacob Bernoulli. There are still no mathematical demonstrations of
the theorems and rules, which are simply illustrated by twenty-two tables and
many examples.

First, Izquierdo distinguished between three main groups of combinations:
those that differ only by substance (combinations without repetition), by posi-
tion (permutations without repetition), and by repetition. There is no modern
equivalent of the third group, and indeed no successor of Izquierdo (besides
Caramuel) took up this classification; this may be because the third type is not
based on a consistent notion: if there are n elements a, b, c, . . . , then the total
number of combinations differing only by repetition is n2:

a, aa, aaa, . . . , aa···a (n times), b, bb, bbb, . . . , bb···b (n times), etc.

Each combination contains only one continually repeated element, while dif-
ferent combinations can contain different elements, contradicting the defini-
tion. Izquierdo would have had to confine himself to one continually repeated
element.

The three main groups lead to four further groups of combinations: those
that differ by substance and position (arrangements without repetition), by sub-
stance and repetition (combinationswith repetition), by position and repetition
(permutations with repetition), and by substance, position, and repetition
(arrangements with repetition).

To a large extent, Izquierdo presented the combinatorial knowledge we
already know from Mersenne. Yet, there are some interesting differences
between these two authors. Izquierdo maintained that no rule can be found in
other authors for calculating the number of combinations of n different things
taken r at a time; possibly, he did not know such predecessors. He explained the
additive law of formation of the arithmetical triangle. Instead of combinations
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of certain types of repetition, he considered combinations with repetition in
general, using the arithmetical triangle and the relation

C(n + k − 1, k) + C(n + k − 1, k + 1) = C(n + k, k + 1).

He did not present an independent rule to calculate such combinations directly.
He found the numberA(n) of all arrangements without repetition of n elements
taken r at a time (for r = 1, 2, . . . , n), according to the recursion

A(n) = nA(n − 1) + n.

Only a few years after Izquierdo, the Spanish Cistercian Juan Caramuel de
Lobkowitz (1606–82) published several large volumes partly dealing with com-
binatorics, metrics (1663) [3], and rhythmics (1665) [4], and especially the two-
volumeMathesis BicepsVetus etNova (Old andNewTwo-HeadedMathematics)
(1670) (see [5]).

A long section in the second volume (Syntagma 6) deals with combinatorics,
games of dice, and lotteries. At the beginning, Caramuel referred to Izquierdo
when he defined the notion of a combination. The following section on com-
binatorics is nothing but a complete repetition of Izquierdo’s explanations,
including his terminology and tables. Caramuel citedCardano’sOpusNovumde
Proportionibus, whereCardano used themultiplicative lawof formation of com-
binations without repetition.There can be no doubt that Caramuel took it from
Cardano, although hemaintained that it could not be found in any other author.

Caramuel possibly also knew Cardano’s posthumously published Liber de
Ludo Aleae (1663). In any case, there are some similarities between Cardano’s
book and Caramuel’s section on the game of dice (Kybeia). Caramuel correctly
listed the possible outcomes of throwing twodice and briefly discussed the game
with two astragals. The third section inquired into combinatorial questions in
connection with lotteries.

Llullism declined in the second half of the 17th century. Scholars like Kircher
or Caramuel were severely criticized by representatives of the new science, such
as Leibniz, Nicolaus (I) Bernoulli, and de Montmort. Yet in 1682 the German
Jesuit Kaspar Knittel (1644–1702) published his Via Regia ad Omnes Scientias
et Artes (Royal Road to All Sciences and Arts) [18], whose combinatorial expla-
nations were based mainly on those of other Jesuits, such as Clavius, Guldin,
Kircher, and Schott.
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Title page of Caramuel’s Mathesis Biceps.
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French and Belgian contributions

Little is known about the life of the French mathematician Pierre Hérigone
(d. c.1643); maybe his name was a pseudonym for Clément Cyriaque
de Mangin. He taught mathematics in Paris, where he published a six-
volume Latin–French mathematical encyclopedia from 1634 to 1642, which
was reprinted in 1643/4 as ‘Mathematical Textbook Demonstrated by a Short
and Clear Method by Means of Real and Universal Signs Which are Easily
Understandable Without the Use of an Arbitrary Idiom’ (see [13]). Doubtless,
he based his combinatorial explanations particularly on Clavius, adding some
details, the multiplicative calculation of C(n, k), the arithmetical triangle as a
tool in the theory of binomial expansions, and the solution of the question

How many combinations without repetitions of n things taken k at a time contain a certain

element?

His correct answer was C(n − 1, k − 1).
In his Theoria et Praxis Arithmeticae (Theory and Practice of Arithmetic)

(1656/65), the Belgian Jesuit André Tacquet (1612–60) relied on Hérigone and
Kircher, explicitly mentioning his sources (see [37]), and repeating Hérigone’s
question together with its solution, and Kircher’s rule for calculating the num-
ber of permutations with repetition, and added three observations:

• C(n, k) = C(n, n − k) (Cardano and Mersenne had already formulated this

relation);

• the numbers of combinations increase as k approaches 1
2n;

• if n is even, then C(n, 1
2n) is the greatest number; if n is odd, the greatest value

occurs twice, for k = 1
2 (n ± 1).

Using a lengthy calculation, Tacquet illustrated the gigantic size of P(n, n) for
n = 24: even if each writer filled forty pages with forty permutations per day,
a billion writers could not write down all 24! permutations of 24 letters of the
alphabet in a billion years.

Tacquet’sTheoria et Praxis Arithmeticaewas used by Jean Prestet (1652–90), a
pupil of Nicolas Malebranche (1638–1715). In 1675 Prestet entered the order of
the French ‘Oratorians of our Lord Jesus Christ’, and in the same year published
his Élémens des Mathématiques ou Principes Généraux de Toutes les Sciences,
Qui ont les Grandeurs pour Objets (Elements of Mathematics or General Princi-
ples of All the Sciences whose Objects are Quantities) (1689/95) [30]. Prestet’s
monograph was an algebra textbook that included some combinatorics. He
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criticized Kircher’s rule for the number of permutations with repetition of just
one repeated element and generalized the rule for arbitrarily many repeated
elements. As we have seen, Kircher elaborated his relevant table only for one
repeated element, but he considered this table as the paradigm formore general
types of repetition.

Prestet also discussed arrangements with repetition. He chose as an example
the number of numbers that can be formed from 0, 1, 2, . . . , 9, and calculated
the number of words consisting of at most 24 letters of the alphabet.

The French–Belgian contribution shows that combinatorial studies became
an integral part of arithmetical and algebraic textbooks in the 17th century.

Dutch and English contributions

The Dutch mathematician Frans van Schooten the Younger (1615–60) is well
known as the editor of François Viète’s mathematical works (1646) and transla-
tor into Latin of, and commentator on, RenéDescartes’s LaGéométrie (1649 and
1659/61). In 1657 he published his five books of Exercitationes Mathematicae
(Mathematical Exercises) [39]: and Gottfried Wilhelm Leibniz (1646–1716),
JohnWallis (1616–1703), John Kersey (1616–77),Thomas Strode (fl. 1642–88),
and Jacob Bernoulli (1654–1705) used themwhen they wrote their own contri-
butions to combinatorics.

Van Schooten’s fifth book is a collection of various problems. To find all
selections (or combinations) of a set of n elements is, he said, very similar to
the problem of finding all divisors, or aliquot parts (with divisors smaller than
m), of a natural number

m = p1 × p2 × · · · × pn,

the product of n distinct prime numbers. There are 2n − 1 selections or aliquot
parts – he ignored the possibility of selecting no element – and 2n divisors. He
also considered special examples of combinations with repetition, but without
formulating a general rule.

The same applies to the inverted problem, where he looked for suitable prod-
ucts with a given number of aliquot parts. If k aliquot parts are required, then ak

is a suitable product. Other products come into question, and were mentioned
by van Schooten, but he confined himself to certain special examples.

Van Schooten also systematically studied Bachet’s weighing problem, a
famous problem in additive number theory or the theory of partitions: each
natural number can be represented as a sum of distinct powers of 2 if only
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positive terms are allowed, or as a sum of distinct powers of 3 if negative terms
are also allowed.

Towards 1671 John Wallis, Savilian Professor of Geometry at the University
of Oxford, elaborated his Discours of Combinations, Alternations, and Aliquot
Parts, which appeared as an appendix to his 1685 Treatise of Algebra (see
[34] and [40]), and a Latin version was published in his Mathematical Works
(1693). Wallis developed van Schooten’s ideas and put them into a broader
combinatorial context.

He beganwith an explanation of the construction of the arithmetical triangle,
explicitly including the case that with no element the selection can be made in
exactly one way. He expressed in words the general rules for the numbers of
permutations of n elements with and without repetition, and illustrated them
by the ringing of twenty-four bells, and by permuting the letters of words or the
words of verses. He mainly relied on Gerhard Johann Voss (1577–1649) and
his posthumously published book On the Four Popular Arts, on Philology, and
on theMathematical Sciences (1650). In words,Wallis rather clumsily expressed
the rule for finding the number of aliquot parts of a product

pa11 × pa22 × · · · × pann

of prime numbers pi: this is
(
(a1 + 1) × (a2 + 1) × · · · × (an + 1)

)− 1,
‘which theorem contains the main substance of the Doctrine of Aliquot Parts’.
It was, however, not new when Wallis published it in 1685: John Kersey had
already published it in 1674 in his Elements of thatMathematical Art Commonly
Called Algebra. Around 1676, Leibniz deduced it without publishing it when he
studied van Schooten’s Exercitationes, rightly saying that van Schooten did not
know such a beautiful, short, and general theorem.

Wallis did notmentionThomas Strode’s interesting Short Treatise of the Com-
binations, Elections, Permutations, and Compositions of Quantities [36], which
appeared in 1678 as the first publishedmonograph on combinations in England.
Strode referred to Tacquet’sTheory and Practice of Arithmetic (1656), to Pascal’s
Traité du Triangle Arithmétique (Treatise on the Arithmetical Triangle) (1665),
to van Schooten, and to Prestet’s Elements of Mathematics (1675), which he
falsely attributed toMalebranche. Strode taught themultiplicative calculation of

C(n, k) = n(n − 1) · · · (n − k + 1)
k!

and, like Wallis, calculated the factorials up to 24! when studying permutations
without repetition. He then deduced the number of arrangements by means of
the formula
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P(n, k) = C(n, k) × P(k, k).

The game of dice enabled him to study the distinct types of combination with
repetition when six elements (the outcomes of throwing six dice) are combined,
finding that there are eleven partitions of the number 6. He calculated the pos-
sible permutations of such types according to the division rule for permutations
with repetition. Interestingly, he also considered other regular polyhedral dice.
In his opinion, arrangementswith repetition selected fromn elements (he called
them ‘compositions’) were the easiest case: their number is nk.
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Title page of Leibniz’s Dissertatio de Arte Combinatoria.



CHAPTER 6

The origins of modern
combinatorics

eberhard knobloch

In 1654 Fermat and Pascal used combinatorial and other means tosolve theoretical questions arising from games of chance; indeed,
Pascal’s treatise on the arithmetical triangle might be called the first

modern treatise on combinatorics. Leibniz was also deeply interested
in this subject, but nearly all of his contributions to symmetric func-
tions, partitions, and determinants remained unpublished until recently.
Frénicle de Bessy’s contributions to combinatorics were also published
posthumously. JacobBernoulli’s posthumously publishedArsConjectandi
presented an exhaustive treatment of early modern combinatorics. Soon
after Bernoulli’s death, Pierre Rémond de Montmort and Abraham de
Moivre mathematically analysed card games and games of dice in terms
of derangements. James Stirling’s contributions to combinatorics were
motivated by algebraic studies.

Pierre de Fermat and Blaise Pascal

Between July and October 1654 Pierre de Fermat (1601–65) and Blaise Pascal
(1623–62) exchanged at least nine letters (two of them lost) on theoretical
questions arising from games of chance; this correspondence is now often taken
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as the beginning of the mathematical theory of probability. They mainly dis-
cussed two problems: the problem of points, and particular problems involving
games of dice. The first of these reads as follows:

Two players are playing a game, and each player needs a given number of points to win. If

they abandon the game before completing it, how should the stakes be divided between

them?

Pascal’s solution was based on the theory of finite differences. Fermat
chose a combinatorial approach that enumerated the possible cases of equal
probability – that is, he enumerated arrangements with repetition. If there
are two players and four plays left to finish the game, there are 24 such
arrangements. If there are three players and three plays left, there are
33 such arrangements. Interestingly, neither Pascal nor Pierre de Carcavi
(c.1600–84), with whom he corresponded about Fermat’s solution, immedi-
ately understood the combinatorial solution (see [1]). Fermat’s explanation
with regard to games of dice again led to well-known arrangements with
repetition: there are 63 and 64 different throws with three and four dice,
respectively.

Combinatorics played no role in Pascal’s correspondence with the Belgian
canon René François de Sluse (1622–85), even though the latter knew that
Pascal occupied himself with this subject. Pascal left behind six studies deal-
ing with combinatorial questions that were motivated by van Schooten’s
Mathematical Exercises of 1657 (see Chapter 5 and [13]), but his results
concerning permutations, combinations, and arrangements did not sur-
pass those of his many predecessors, who obviously remained unknown to
him.

Probably in 1654 Pascal had finished both a Latin version and a
partly French, partly Latin version of a collection of articles, which appeared
posthumously in 1665 under the title Traité du Triangle Arithmétique, avec
Quelques Autres Traités sur leMême Sujet (Treatise on theArithmetical Triangle,
with Some Other Treatises on the Same Subject) (see [18] and Chapter 7). One
chapter was dedicated to combinations, but the only new result wasC(n, k) = 0,
for k > n. The most important feature of Pascal’s Traité was his mathematical
presentation of well-known results, complete with proofs. Thus, the treatise
might be considered to mark ‘the beginning of modern mathematical combi-
natorics’ (see [3]).
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Gottfried Leibniz

When the German polyhistor, philosopher, and mathematician Gottfried
Wilhelm Leibniz wrote his Dissertatio de Arte Combinatoria (Dissertation on
the Combinatorial Art) [16] in 1666 at the age of 20, he still adhered to Llullism
(see Chapter 5), and especially to Athanasius Kircher, who had used the expres-
sion ‘Ars Combinatoria’ in his 1663PolygraphiaNova et Universalis ex Combina-
toria Arte Detecta (A New and Universal Writing in Many Languages Revealed
by the Combinatorial Art).

However, Leibniz’s main interest was in the ‘art of inventing’, rather than in
the mathematical discipline of ‘combinatorics’. On the title page he claimed
to have proved the existence of God with complete mathematical certainty,
because he based his arguments on definitions, axioms, and postulates; the idea
of a mathesis universalis (universal science) had been crucial to him since the
very beginning of his scientific career. Soon after this publication he began to
criticize Llullism and to develop a much broader notion of the ‘combinatorial
art’ that not only embraced algebra and the theory of numbers as subdisciplines,
but also affected all fields of mathematics known at the time.

Gottfried Wilhelm Leibniz (1646–1716).

Leibniz did not know the relevant mathematical literature when he wrote his
dissertation. Mathematically his two main sources were Christoph Clavius (see
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Chapter 5) and theHours ofMathematical and Philosophical Refreshment (1636)
by Daniel Schwenter [20]. From a modern mathematical point of view, his
treatise concerned combinations (Problems 1–3) and permutations (Problems
4–12). He himself admitted that he had given proofs for the solutions of only a
few problems, but even these few demonstrations were an essential step towards
modern combinatorics (see [9]).

In particular, he calculated the numbers of permutations, combinations, and
arrangements without repetition, and in the case of combinations used the
additive law of formation

C(n, k) = C(n − 1, k) + C(n − 1, k − 1).

His false rule for permutations with repetition invalidated his attempt to deter-
mine the number of arrangements of a certain type of repetitions, because he
multiplied the number of possible combinations of this type by the number
of permutations with repetition. Yet, his original method of determining the
number of these combinations was correct, and was necessarily identical with
Mersenne’s expression (see Chapter 5):

Let p = 1r1 + 2r2 + · · · + prp be a partition of p, the total number of selected elements;

then the number of combinations with this type of repetition is

C(n, r1) × C(n − r1 , r2) × · · · × C(n − r1 − r2 − · · · − rp−1 , rp)

= n(n − 1) · · · (n − r1 − r2 − · · · − rp + 1)

r1! r2! · · · rp! .

Several other problems that Leibniz dealt with are worth mentioning,
because he solved them for the first time. One of these is:

In a set, how many combinations of a certain size, or of all possible sizes, contain
a given subset of elements?

He called such a set a ‘caput’; Pierre Hérigone and André Tacquet had consid-
ered only the special case of a single fixed element. By choosing c objects from a
set of n objects, including the caput ofm elements, he obtained as his solutions
to the two problems 2n−m − 1 and C(n − m, c − m), respectively; for m �= 0,
the first solution should read 2n−m. Leibniz’s examples show his creation of the
terms ‘0llio’ (nullio) and ‘1nio’ (unio) as early as in his Ars Combinatoria. He
also coined the word ‘super0llio’ for C(m, k) = 0 where k > m.

Leibniz also defined partitions as subsets of combinations. There are 1
2n

(n even) or 1
2 (n − 1) (n odd) bipartitions of a number n when the order of

summands is disregarded, and n − 1 partitions otherwise. Moreover, Leibniz
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was already experimentingwith partitions involvingmore than two summands,
and partitions later became a favourite subject of his mathematical studies.
Howmany partitions contain a caput? Leibniz distinguished six possible types

of caput, according to whether it has one or several elements, whether it has
homogeneous elements that can be placed in a given position in the same way
as those already placed, or whether it is monadic (having no homogeneous
elements). Thus, in the most general case where, out of n elements, the m
elements of the caput can be permuted, the result is

(n − m)! × m! × C(i1 + a1, i1) × C(i2 + a2, i2) × · · · × C(ik + ak, ik),

where in the jth case there are ij ( j = 1, 2, . . . , k) homogeneous elements within
the caput that are uniform with aj outside it.

Finally, Leibniz correctly determined the number of cyclic permutations of
n elements as n!/n = (n − 1)! . Later on, such permutations occurred again in
his studies of determinants.

Frénicle de Bessy

The French amateur mathematician Bernard Frénicle de Bessy (c.1605–75)
left behind several writings that were posthumously published by the French
Academy of Sciences [4]. Among these were an Abrégé des Combinaisons (Syn-
opsis of Combinations) and a treatise on magic squares; the Abrégé origi-
nated from Mersenne’s books on harmony, which he cited. He first repeated
Mersenne’s rules for the numbers of permutations and arrangements without
or with repetition, and for combinations without repetition. He then declared
that the truth can be perceived by means of examples or by consideration. He
thus applied both methods, while not writing a mathematical treatise in the
modern sense.

Frénicle’s examples involved card games, games with three dice, and
compound interest. In one of these he explicitly calculated

( 21
20
)32, which is a

fraction whose numerator and denominator have 43 and 42 digits, respectively.
His rule of ‘multiple combinations’ described the principle of multiplication
of choices. Especially interesting were his linguistic examples, resulting in
permutations that are subject to certain restrictions: n letters are permuted,
but m of them must not be written side by side, or must not be written at the
beginning or end, and so on. Frénicle explained his method: the number of
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permutations that do not satisfy the restriction must be subtracted from n! .
Other examples involved the construction of secret writing, the chances of
bets, and certain games like chess.

Frénicle’s treatise on magic squares was much longer, and dealt with their
construction when the order is even and their elements can be permuted.
In particular, he included a ‘general table’, featuring all 880 4 × 4 magic
squares.

Symmetric functions, partitions,
and determinants

Leibniz filled hundreds of manuscript pages with studies of symmetric func-
tions, partitions, and determinants, without ever publishing anything on their
far-reaching results. The sixty most important sketches on the first two topics
were later published in [11], while sixty-seven studies involving the theory of
determinants appear in [8] and [12].

Leibniz’s studies of symmetric functions (or ‘forms’, as he called them)
were directly connected with his attempts to solve the general polyno-
mial equations of fifth and higher degrees algorithmically. By 1676 he had
already found his ‘polynomial theorem’ – a method for calculating the power
(a1 + a2 + · · · + ap)n. In the early summer of 1678 he corresponded inten-
sively with Ehrenfried Walther von Tschirnhaus (1651–1708) about this alge-
braic problem. Their correspondence makes evident that at this time Leibniz
disposed of the use of tables and rules to determine the number of terms of a
form, or to multiply forms with one another. Such tables still exist (see [15]).

At the same time, Leibniz often tried to reduce forms to the simplest possible
versions, and especially to elementary symmetric functions. He was convinced
that this was always possible and could be done in a uniquewaywhen only these
functions were used. By this means he formulated the fundamental theorem for
symmetric functions, which may now be stated as:

Every polynomial function of the polynomial ring R[x1, x2, . . . , xn] can be written
uniquely as a polynomial in the first n elementary symmetric functions.

For special types of forms, he discovered the laws of formation of the reduced
equations – for example,

∑
a3b2cd = δyx − 4εx2 + 9θx − 21λ − 3δz + 6εy,
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where x, y, z, δ, ε, θ , and λ denote the first seven elementary symmetric func-
tions

∑
a,
∑

ab,
∑

abc,
∑

abcd,
∑

abcde,
∑

abcdef , and
∑

abcdefg.
Around 1678–82, Leibniz occupied himself especially with the calcula-

tion of power sums – ‘combinatorial powers of a polynomial’, as he called
them – and found the rule for writing an arbitrary power sum explicitly.
Leibniz was the true discoverer of the so-called ‘Girard’s formula’, which
Edward Waring (1734–93) had published for the first time in 1762, and
which represents power sums exclusively by means of elementary symmetric
functions.

After 1700 Leibniz corresponded about this subject with the Wolfenbüttel
school principal Theobald Overbeck (d.1719). By 1714 Overbeck had written
down an interesting result:

The rule for multiplying power sums. The solution concerns the partition of sets with k

elements. Let k = 1r1 + 2r2 + · · · + krn be a partition of k. Then there are

N = k!
(1!)r1(2!)r2 · · · (k!)rk × r1! r2! · · · rk!

ways of distributing k elements so that one element at a time is put r1 times in a drawer,

two elements at a time r2 times, . . . , and k elements at a time rk times.

Overbeck also reduced the multiform symmetric functions to uniform sym-
metric functions (that is, to power sums), and discovered the first six so-called
‘formulas of Waring’, which Waring published for the first time only in 1762
(see [10]); these examples show the close connection between Leibniz’s studies
of symmetric functions and that of number-theoretical partitions.

Let pn be the number of partitions of a natural number n:

n = n1 + n2 + · · · + nm, where 1 ≤ n1 ≤ n2 ≤ · · · ≤ nm.

Let p[m, n] be the number of partitions of n into m summands, and p(n, h)
be the number of partitions of n, the smallest summand of which is h. It was
Leibniz’s main goal to determine the values of pn and p[m, n] (see Chapter 9),
from which he also hoped to deduce the number of symmetric functions of a
certain degree. In the last year of Leibniz’s life Overbeck seems to have given
him voluminous tables of partition numbers, which led him to the discovery of
several laws of recursion.

No later than 1677 Leibniz summed up his solution to p[2, n], given in hisArs
Combinatoria, as p[2, n] = 	 1

2n
. Above all, he tried to determine the value of
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p[3, n]. Around 1673 he found a rule, erroneously called the ‘universal solution’,
which can be transformed into a formula for p[3, n]. Two later attempts failed
because of false reasoning or calculation, but themethods were correct, and it is
therefore possible to bring Leibniz’s various efforts to a successful and improved
conclusion.

As early as 1673 Leibniz observed that p[n, n] = p[n − 1, n] − 1. In the
years 1712–15 he found by induction (but did not prove) interesting identities
such as

p[k, n] = p[k, n − k] + p[k − 1, n − 1]

(Euler’s rule of recurrence, published in 1751), pn = p[n, 2n], and

pn = 1 + p(n − 1, 1) + p(n − 2, 2) + · · · + p(n − 	 1
2n
, 	 1

2n
).

Before 1700, Leibniz’s attempts to divide forms into a certain number of
factors led him to the Stirling numbers of the second kind and to the solution
of special problems of permutations. James Stirling (1692–1770) republished
these numbers in 1730 (see later).

The combinatorial aspects of the theory of determinants were still so domi-
nant at the beginning of the 20th century that Netto [17] dealt with them under
the heading of ‘Combinatorics’ in the Encyclopedia of Mathematical Sciences.
Leibniz’s interest in determinants was directly connected with his paramount
interest in the combinatorial art: it provided the rules according to which char-
acters were to be manipulated to create new knowledge. After his differential
and integral calculus, his determinantal calculus is a prime example of how he
succeeded in pursuing this basic idea in mathematics. For him, the combinato-
rial art included algebra, not vice versa, as believed by most mathematicians of
his time.

Between 1678 and 1713 Leibniz laid the foundation of the theory of deter-
minants in Europe. No one could imagine what extensive studies Leibniz had
pursued on the theory of systems of linear equations and elimination theory,
with the aid of expressions that we today call determinants (see [14]). He coined
the term ‘resultans’ (resultant), invented the symbol 1 · 2 · 3 · · · n for the n × n
determinant |aij|, and introducedwell over fifty different subscript notations for
the coefficients of algebraic and differential equations. In 1684 he formulated
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(without proof) several general theorems concerning combinatorial aggregates
(resultants):

• If A is an n × n matrix and d(A) is its determinant, then d(A) consists of n!
products. Their sign rule is based on the concept of transposition, while the

modern definition takes the concept of inversion as its basis.

• When forming the determinant,we may interchange the rows and columns of A.

• If the rows (or columns) 1, 2, . . . , n of a matrix A are written as a sequence

k1 , k2 , . . . , kn , then the determinant is multiplied by the sign of this permutation.

He also anticipated Laplace’s theorem on the expansion of determinants.
Leibniz discovered important results in the theory of systems of linear

equations and elimination theory, which he expressed in the language of
determinants. In 1684 he discovered ‘Cramer’s rule’ for solving an inhomo-
geneous system of linear equations. His fundamental treatise has been pub-
lished in [8]; the Swiss mathematician Gabriel Cramer published it only in
1750.

In 1679–81 Leibniz anticipated James Joseph Sylvester’s ‘dialytic method’
by solving the resultant of two polynomials; Sylvester republished this in
1840. Around 1683–84 Leibniz obtained a method of determining the
resultant by means of auxiliary polynomials, later published by Leonhard
Euler in 1748 and by E. Bézout in 1764. By 1692–93, Leibniz already
knew the most important dimensional and homogeneity properties of the
resultant.

Jacob Bernoulli

Jacob Bernoulli was the oldest member of the famous Bernoulli family to be
associated with mathematics. With his younger brother Johann (1667–1748),
he was one of the earliest and most important propagators of Leibniz’s calcu-
lus. From his mathematical diary, the Meditationes, we know that he occupied
himself with games of chance from around 1684. By 1690 he had finished his
preparatory work for the Ars Conjectandi (Art of Conjecturing), which was
posthumously published by his nephew Nicolaus in 1713; for the genesis, his-
tory of publication, and an annotated reproduction of this treatise, see Volume 3
of his collected works [2].
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Jacob Bernoulli (1654–1705).

Aswe see inChapter 7, theArs Conjectandi is divided into four parts.The first
part is a reprint ofChristiaanHuygens’ 1657 treatiseDeRatiociniis in LudoAleae
(On Calculations in the Game of Dice) with valuable additions by Bernoulli.
The second part is exclusively dedicated to combinatorics, and the third part
deals with games of chance. The fourth part applies the calculus of probability
to questions in themoral and economic sciences, and includes Bernoulli’s proof
of his weak law of large numbers.

In 1657 Huygens discussed the throwing of two and three distinguishable
dice, respectively enumerating the ways of throwing totals of 2 up to 12, and 3
up to 18; such calculations had already been undertaken in theMiddle Ages (see
Chapter 5). Bernoulli explained how these considerations can be systematically
extended to four or more dice, so that no case is forgotten when all essentially
different cases are written down.

The second part of the Ars Conjectandi is a mathematical textbook on com-
binatorics, in the modern sense of the word. The content is clearly structured,
and the theorems are introduced by examples and rigorously proved. Bernoulli
referred to van Schooten, Leibniz, Prestet, and Wallis, showing that he was
acquainted withmuch of themathematical literature of his subject, but not with
authors such as Pascal, Mersenne, or Izquierdo.
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While permutations and arrangements with and without repetition, com-
binations without repetition, and figurate numbers form the familiar core of
combinatorial knowledge, Bernoulli seems to be the first to have investigated
more difficult questions involving combinations, obtaining the independent
expression C(n + k − 1, k) for combinations with repetition taken k at a time.
He also generalized Leibniz’s ‘caput’ theory:

If we form combinations of n elements taken c at a time, and consider a special subset ofm

elements (where m < c), how many combinations contain exactly b of these m elements?

Bernoulli obtained the answer C(n − m, c − b). Such combinations with
restricted repetition correspond to the number of divisors of a product of pow-
ers of prime numbers.

Bernoulli developed this topic by dealing with related number-theoretic
questions of van Schooten and Wallis, such as:

In how many divisors of a given number does a particular prime number occur? Howmany

divisors have the same number of prime factors?

Bernoulli proved the relation A(n + 1) = nA(n) + 1, which was already
known to Izquierdo (where, as in Chapter 5, A(n) represents the number of
arrangements without repetition of n elements taken r at a time, for r = 1,
2, . . . , n).

He also calculated power sums of the form S(nc) = 1c + 2c + · · · + nc; for
example,

S(n) = 1 + 2 + · · · + n = 1
2n(n + 1)

and

S(n2) = 12 + 22 + · · · + n2 = 1
6n(n + 1)(2n + 1).

To this end, he introduced numbers A, B, C, D, . . . , later called the Bernoulli
numbers, defined as the coefficients of n in the expressions for S(n2), S(n4),
S(n6), etc. The first four Bernoulli numbers are A = 1

6 , B = − 1
30 , C = 1

42 , and
D = − 1

30 , and the general formula reads

S(nc)= nc+1

c + 1
+ 1

2n
c+ 1

2C(c, 1)Anc−1+ 1
4C(c, 3)Bnc−3+ 1

6C(n, 5)Cnc−5+· · · .

We note that the first eleven Bernoulli numbers had already been studied by
Johann Faulhaber much earlier, between 1612 and 1619.
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The Bernoulli numbers, from the Ars Conjectandi;
the number − 1

12 at the end of S(n9) should be − 3
20 .

Pierre de Montmort and Abraham de Moivre

Pierre Rémond de Montmort (1678–1719), the French pupil of Nicolas Male-
branche, undertook a systematic exposition of the theory of games of chance
(see [23]). His Essay d’Analyse sur les Jeux de Hazard (Essay Analysing Games
of Chance) was the first mathematical treatise on this subject since Chris-
tiaan Huygens’ monograph of 1657; it appeared in 1708, five years before
the publication of Bernoulli’s Ars Conjectandi. De Montmort and Nico-
laus Bernoulli corresponded about the Essay, and their correspondence was
included in the 1713 edition, whose first chapter was entitled Treatise on
Combinations.

In his preliminary remarks de Montmort observed that he had collected the
theorems on combinations that were scattered throughout the first edition of
the work. Since his main interest concerned card games and games of dice,
he did not present a pure account of the subject. His combinatorial explana-
tions were guided by this interest, but he always endeavoured – in contrast to
the first edition – to demonstrate the theorems, even though his proofs were
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sometimes rather cumbersome. In total, there are eighteen theorems and many
corollaries.

He first explained the arithmetical triangle, or ‘Pascal’s triangle’, and espe-
cially its use for finding the number of combinations. He included the mul-
tiplicative law of formation for the numbers C(n, k), and emphasized their
connectionwith the figurate numbers. He also showed how to calculate the sum
of the squares, cubes, fourth powers, etc., of the first n natural numbers, and
how to find P(n, k), arguing that the coefficients in the expansion of (a + b)n

must equal the number of different ways in which the white and black faces
in a gambling game can appear if n counters have been thrown, each counter
having one black and one white face. The multinomial theorem is dealt with as
a generalization of the binomial theorem.

An illustration from de Montmort’s Essay d’Analyse sur les Jeux de Hazard.

De Montmort’s games of chance included the following:

• There are thirteen white, black, red, and blue cards. In how many ways can one draw

four cards, one of each colour?

• Given p dice, each with f faces, how many different throws are there?

(The answer f p concerns arrangements with repetition. This question had been

already raised by Tartaglia, and de Montmort showed the connection between its

answer and the diagonals of the arithmetical triangle.)

• In how many ways is the sum of the numbers on the dice equal to a given number n?

(If n − p = s, then the required number is
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p(p + 1) · · · (p + s − 1)

s! − p
p(p + 1) · · · (p + s − f − 1)

(s − f )!

+p(p − 1)

2! · p(p + 1) · · · (p + s − 2f − 1)

(s − 2f )! − · · · ,

where the series continues as long as all the factors are positive.)

The third of these problems and its solutionwere additions to the second edition
and led to a priority dispute with Abraham de Moivre, who had published the
problem in 1711 and its solution in 1730. However, de Montmort already knew
it by 1710, as confirmed by a letter he had sent to Johann Bernoulli.

De Montmort’s discussion of the card game Treize is especially worth
mentioning, because it concerns derangements, or permutations in which no
coincidence occurs (see also Chapter 13): in a permutation of 1, 2, . . . , n, a
coincidence occurs at the ith place if the ith element is i. In 1708 de Montmort
had stated without proof (see [6]) that

Dn = (n − 1)(Dn−1 + Dn−2), for n ≥ 2,

whereDn is the number of permutations of 1, 2, . . . , n in which no coincidence
occurs. He concluded that

Dn = n!
(
1 − 1/1! + 1/2! − 1/3! + · · · + (−1)n/n!

)
.

In his second edition de Montmort gave two demonstrations which he
had received from Nicolaus Bernoulli [6, pp. 301–2]. His first proof used the
method of inclusion–exclusion (see Chapter 13); for a detailed discussion see
Takács [22], and de Montmort’s combinatorial contributions are discussed by
Henny [7].

Abraham de Moivre (1667–1754) was one of many Protestants who emi-
grated from France to England following the revocation of the Edict of Nantes
in 1685. In 1711 he published his Latin written treatise De Mensura Sortis;
expanded versions in English appeared in 1718, 1738, and 1756, under the title
The Doctrine of Chances. It was his most important work and was the third
systematic treatise on probability, after those of Huygens and de Montmort; de
Moivre was acquainted with both of them. As for combinatorics, he said in his
preface to the first English edition:

One of the principal Methods I have made use of . . . has been the Doctrine of Com-

binations, taken in a sense somewhat more intensive, than as it is commonly understood.

The Notion of Combinations being so well fitted to the Calculation of Chance, that it
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naturally enters the Mind whenever any Attempt is made towards the Solution of any

Problem of that kind …The general theorem invented by Sir Isaac Newton, for raising a

Binomial to any Power given, facilitates infinitely the Method of Combinations, representing

in one view the combination of all the chances, that can happen in any given number

of times.

In other words, de Moivre was even more interested than de Montmort in
combinatorics applied to games, rather than in the combinatorics itself.

The ninety problems of the second edition (1738) ofTheDoctrine of Chances
were preceded by ten cases dealing with, among other things, the probability of
throwing one or two 1s in two, three, or four dice throws, or of throwing one 1
and nomore in four dice throws. As a consequence, he had to count the chances
of such events – that is, to solve combinatorial problems.

Referring to his Latin treatise, but without mentioning de Montmort, he
inserted a lemma after his third problemwhich determined the number of ways
of throwing a given number of points with any number of dice. Combinations
without repetition, and arrangements with and without repetition, arose in the
context of finding the probability of making an unordered or ordered selection
of elements from a given set of elements that may be repeated.

Without hinting at de Montmort or Nicolaus Bernoulli, de Moivre discussed
the card game Treize in greater generality than his predecessors, thereby deriv-
ing the above formula for the number Dn of derangements of n objects by
the principle of inclusion–exclusion (see Chapter 13 and [5, pp. 95–103]). De
Moivre’s life and work are discussed in [19].

James Stirling

In 1730 the Scottish mathematician James Stirling (1692–1770) published his
Methodus Differentialis (Method of Differentials), which deals with the sum-
mation and interpolation of infinite series. Under the heading ‘On the form
and reduction of series’, he explained how to express powers of a variable z in
terms of multiples of z − 1, z − 2, . . . , and z − n + 1; for example,

z3 = z + 3z(z − 1) + z(z − 1)(z − 2).

The numerical coefficients were later called Stirling numbers of the second kind.
They form ‘Stirling’s triangle’, which he himself called his ‘first table’ (see [21,
p. 8]):
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n = 1 2 3 4 5 6 · · ·
m = 1 1 1 1 1 1 1 · · ·

= 2 1 3 7 15 31 · · ·
= 3 1 6 25 90 · · ·
= 4 1 10 65 · · ·
= 5 1 15 · · ·
= 6 1 · · ·

Wedenote them by S(n,m), the number of partitions of n objects intom classes;
for example, S(4, 2) = 7, because there are seven partitions of the four elements
a, b, c, d into two classes:

a|bcd, b|acd, c|abd, d|abc, ab|cd, ac|bd, and ad|bc.

Stirling himself did not speak of any combinatorial context, nor did he mention
the recursion law

S(n + 1, k) = S(n, k − 1) + kS(n, k).

Leibniz had discovered these numbers earlier, but without identifying them.
There is just as little combinatorial context with regard to Stirling’s discovery

of his numbers of the first kind (see [21, p. 10]):

k = 1 2 3 4 5 · · ·
n = 1 1

= 2 1 1
= 3 2 3 1
= 4 6 11 6 1
= 5 24 50 35 10 1
= 6 · · · · · · · · · · · · · · · · · ·

Stirling introduced them in order to express the inverted powers of z, such as
1/z2:

1
z2

= 1
z(z + 1)

+ 1
z(z + 1)(z + 2)

+ 2
z(z + 1)(z + 2)(z + 3)

+ 6
z(z + 1)(z + 2)(z + 3)(z + 4)

+ · · · .

These Stirling numbers of the first kind, denoted by s(n, k), are now defined as
the coefficients of the polynomal [x]n of degree n:

[x]n = s(n, 0) + s(n, 1)x + s(n, 2)x2 + · · · + s(n, k)xn,
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where

s(k + 1, k) = s(n, k − 1) − ns(n, k);

thus, they are alternately positive and negative:

k = 1 2 3 4 5 · · ·
n = 1 1

= 2 −1 1
= 3 2 −3 1
= 4 −6 11 −6 1
= 5 24 −50 35 −10 1
= 6 · · · · · · · · · · · · · · · · · ·

Modern combinatorics came into being during the roughly eighty-year
period between 1654 and 1730. Fermat and Pascal’s correspondence took place
in 1654, and Stirling’sMethodus Differentialis appeared in 1730, while Leibniz’s
own life, from 1646 to 1716, spanned much of this developmental period. In
general, apart from Jacob Bernoulli, mathematicians of this era did not yet
study combinatorics for its own sake, but only did so in order to solve problems
regarding games of chance and card games, or algebra and differential calculus.
Furthermore, many results were not even published during the lifetime of the
authors. This was especially true of Leibniz, who anticipated many mathemati-
cal achievements that were then rediscovered many decades after his death.
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Pascal’s original arithmetical triangle, as it appears in the frontispiece of his Traité du Triangle
Arithmétique, written in 1654 and published posthumously in 1665.



CHAPTER 7

The arithmetical triangle
a. w. f. edwards

The arithmetical triangle is themost famous of all number patterns.
Apparently a simple listing of the binomial coefficients, it con-
tains the triangular and pyramidal numbers of ancient Greece,

the combinatorial numbers that arose in the Hindu studies of arrange-
ments and selections, and (barely concealed) the Fibonacci numbers from
medieval Italy. It reveals patterns that delight the eye, raises questions that
tax the number-theorists, and amongst the coefficients ‘There are somany
relations present that when someone finds a new identity, there aren’t
manypeoplewho get excited about it anymore, except the discoverer!’ [1].

Permutations and combinations

As we have seen in earlier chapters, many combinatorial enumeration problems
involve the combinatorial numbersC(n, r), for n = 1, 2, . . . and r = 0, 1, . . . , n,
because these enumerate both the combinations of r things selected from n dif-
ferent things, and the arrangements or permutations of r things of one kind and
n − r of another kind. The notation indicates that these numbers are both com-
binatorial numbers and binomial coefficients, and a moment’s reflection shows
the connection between them, for when we expand the binomial expression
(a + b)n the coefficient of arbn−r enumerates the number of arrangements of r
as and n − r bs.
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When the coefficients are arranged in successive rows for each n, the arrange-
ment is known as the arithmetical triangle, after the title of Pascal’s book Traité
du Triangle Arithmétique (Treatise on the Arithmetical Triangle). The common
arrangement shown below is not the one that Pascal used as the frontispiece
to his book, where the coefficients for each n are displayed as diagonals, but
it has nevertheless become customary to refer to it as Pascal’s triangle. As we
have seen, there is no implication in this usage that Pascal was the earliest
to record it; the eponym arises rather because Pascal was the first author to
explore its properties in a systematic manner, identifying the binomial and
combinatorial numbers with the figurate numbers (natural numbers, triangular
numbers, tetrahedral numbers, . . . ) of antiquity. For more information about
the arithmetical triangle, see [2].

1

1

1

1

1

1

1

1 7 21 35 35 21 7

1

4

5

6

510

15 20

10

15 6 1

1

6 4 1

13 3

2 1

1

. . . . . . . . . .

The usual form of Pascal’s triangle.

The combinatorial numbers in India

The connection between the arithmetical triangle and combinatorial problems
was first made in India. As we saw in the Introduction and Chapter 1, Piṅgala,
a writer on prosody who flourished around 200 bc, gave a rule, by all accounts
very cryptically, for finding the number of combinations of n syllables, each of
which could be either short or long, when these are taken one at a time, two
at a time, three at a time, . . . , all at a time. It seems to have amounted to the
observation that the natural numbers give the answers to the first question for
successive values of n, the triangular numbers give the answers to the second
question, the tetrahedral numbers give the answers to the third question, and
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so on, through the ascending orders of the figurate numbers. The successive
orders of the figurate numbers are given by the rows of Pascal’s format for the
arithmetical triangle, each row being formed from its predecessor by summa-
tion, implying the well-known addition rule for binomial coefficients,

C(n + 1, r + 1) = C(n, r) + C(n, r + 1).

Piṅgala’s rule, known as the meru prastāra (the holy mountain), was most
succinctly given by his commentator Varāhamihira, who in ad 505 wrote:

It is said that the numbers are obtained by adding each with the one which is past the one

in front of it, except the one in the last place.

In the 10th century, Halayudha explained the rule in a way that corresponds
to the usual modern form of the arithmetical triangle:

Draw a square. Beginning at half the square,draw two other similar squares below it; below

these two, three other squares, and so on. The marking should be started by putting 1 in

the first square. Put 1 in each of the two squares of the second line. In the third line put 1
in the two squares at the ends and, in the middle square, the sum of the digits in the two

squares lying above it. In the fourth line put 1 in the two squares at the ends. In the middle

ones put the sum of the digits in the two squares above each.Proceed in this way. Of these

lines, the second gives the combinations with one syllable, the third the combinations with

two syllables, etc.

This rule therefore develops the arithmetical triangle, using the addition for-
mula to give the number of permutations of r things of one kind and n − r of
another.

The rule for the number of combinations of r things taken from n different
things,

C(n, r) = n
1

× n − 1
2

× n − 2
3

× · · · × n − r + 1
r

,

was given algorithmically by the Jain mathematician Mahāvı̄ra in Gan. itasāra-
saṅgraha (Epitome of the Essence of Calculation), written in 850. This rule
was repeated in the famous Lı̄lāvat̄ı of the Hindu mathematician Bhāskara II
in 1150, who took n = 6 as an example: six tastes that are to be combined in
all possible ways (sweet, pungent, astringent, sour, salty, and bitter). To apply
the rule he set down the numbers 1, 2, 3, 4, 5, 6, forwards and backwards in the
pattern

6 5 4 3 2 1
1 2 3 4 5 6,
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and by successive application of the rule found the numbers of preparations that
combine these six tastes to be 6, 15, 20, 15, 6, and 1, respectively. In so doing he
listed the row of the arithmetical triangle for n = 6, lacking only the initial 1
corresponding to tastelessness. In another example he generated the row for
n = 8.

Bhāskara also knew thatC(n, r) gives the number of permutations of r things
of one kind and n − r of another, using as an example the enumeration of the
arrangements of six syllables of which a given number are short and the remain-
der long, and in this case he noted that we must not forget the arrangement ‘all
short’, making 64 arrangements in all. But he did not give the additive rule of the
meru prastāra, and thus did not reveal how to generate a row of the arithmetical
triangle from its predecessor.

However, another commentator, Bhat.t.otpala (1068), gave an example involv-
ing the combination of sixteen things, explicitly generating the arithmetical
triangle, and added that the number of combinations could be found by either
rule – that is, by successive additions, or by the above ‘multiplicative formula’
for C(n, r). Not until 1570 was this connection to be noted in the West. Here is
Bhat.t.otpala’s example illustrating themeru prastāra rule (this table also appears
in Chapter 1 as given by Varāhamihira):

Taken two Taken three Taken four
at a time at a time at a time

16
15 120
14 105 560
13 91 455 1820
12 78 364 1365
11 66 286 1001
10 55 220 715
9 45 165 495
8 36 120 330
7 28 84 210
6 21 56 126
5 15 35 70
4 10 20 35
3 6 10 15
2 3 4 5
1 1 1 1
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By the start of the second millennium, therefore, we find in India the
combinatorial numbers derived for the two simplest problems of permuta-
tions and combinations by the two algorithmic routes of multiplication and
addition, the latter method generating the arithmetical triangle. In Lı̄lāvat̄ı
Bhāskara went further, giving the multinomial coefficient for the number
of arrangements when there are more than two kinds of things to choose
from.

Combinatorial numbers in the West before
Pascal

As we saw in Chapter 4, Levi ben Gerson, who lived in France, wrote on permu-
tations and combinations in 1321, and gave in words the multiplicative formula
forC(n, r) for the number of combinations of n things taken r at a time, deriving
the result directly from the number of arrangements ofn things taken r at a time,
divided by the number of arrangements of r things. Before then, there had been
several examples of Islamic arithmetical triangles (see Chapter 3). But it was
not until the 16th century that the arithmetical triangle made its combinatorial
debut in theWest, in theGeneral Trattato di Numeri et Misure (General Treatise
on Numbers and Measures) of Niccolò Tartaglia.

Tartaglia sought the number of possible combinations when a number of
six-sided dice are thrown. Occasional earlier enumerations had not revealed
the essential structure of the solution, but Tartaglia found the connection
with the figurate numbers ‘on the first day of Lent, 1523, in Verona’, as he
proudly tells us, ‘having thought about the problem all night’. His General
Trattato was published in 1556, and gives the solution as the first six columns
of an arithmetical triangle in Pascal form. Tartaglia probably obtained his
result by a clever ordering of the possibilities which facilitated a systematic
enumeration, leading to the figurate numbers. He clearly knew the addition
rule and the identity between the figurate numbers and the binomial coef-
ficients. He gave the more usual form of the arithmetical triangle for them
later in his book; in Italy, ‘Pascal’s triangle’ is sometimes known as ‘Tartaglia’s
triangle’.

the ar ithmet ical tr iangle | 171



Tartaglia’s arithmetical triangle.

Meanwhile, in Germany, in 1544, Michael Stifel had presented a form of the
arithmetical triangle based on the figurate numbers in connection with the
extraction of roots, for which he needed to find the binomial numbers. His
method was to write the natural numbers 1, 2, 3, 4, . . . in the first column.Then,
in the second column, beginning next to the 3, he wrote the triangular numbers
3, 6, 10, 15, . . . (and he explicitly named them as such). For the third column,
next to the 10, he then wrote the tetrahedral numbers 10, 20, 35, 56, . . . – and
so on, using the additive procedure for the triangle.

Stifel’s triangle of figurate numbers.
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From 1570, when Cardano’s Opus Novum de Proportionibus Numerorum
(NewWork on the Proportions of Numbers) appeared, the combinatorial appli-
cation of the arithmetical triangle entered the mainstream of mathematics.
Cardano gave the rule for getting from C(n, r − 1) to C(n, r), known to the
Hindus, thus generating the multiplicative formula as well as the identification
with the figurate numbers and their additive property.

Cardano’s arithmetical triangle.

Mersenne’s arithmetical table.
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By 1636 Father Marin Mersenne had learnt everything that Cardano had
written on combinations, and in hisHarmonicorum Libri XII (Twelve Books of
Harmonic Principles) published the largest arithmetical triangle extant: twenty-
five rows and twelve columns. Mersenne was familiar with the multiplicative
formula and with its combinatorial derivation given by ben Gerson and, as we
saw in Chapter 5, applied his combinatorial knowledge to the permutations and
combinations of musical notes. The Pascals, father and son, visited him, and it
is not surprising that Blaise Pascal’s format for the arithmetical triangle is the
same as Mersenne’s, as Cardano’s, and ultimately as Tartaglia’s. To Pascal’s use
of the arithmetical triangle we now turn.

Pascal’s Traité du Triangle Arithmétique

Pascal’s treatise on the arithmetical triangle is recognizably modern. He first
established the properties of the binomial coefficients (as the entries of the
arithmetical triangle are now universally called) and then, in several appen-
dices, he showed how they could be used to solve a number of mathematical
problems. The Traité was written in 1654, but was not distributed until 1665,
after Pascal’s death, when the printed sheets were found amongst his papers; a
complete description of Pascal’s book is given in [2, Ch. 6 and 7]. The appendix
that concerns us is ‘Usage du triangle arithmétique pour les combinaisons’ (Use
of the arithmetical triangle for combinations). It is preceded by an account of
the figurate numbers, and is followed by Pascal’s famous solution to the problem
of points – a gambling problem concerning the division of stakes between two
players when a game is left unfinished (see Chapter 6), thus introducing the
notion of expectation.

Blaise Pascal (1623–1662).
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Title page of Pascal’s Traité du Triangle Arithmétique.

Pascal starts:

The word Combination has been used in many different senses, so that to avoid ambiguity

I am obliged to say what I mean by it

– and he gives its modern meaning. After some further preliminary remarks he
presented his important Lemma 4:

the number of combinations of n + 1 things taken r + 1 at a time is equal to the sum of

the number of combinations of n things taken r at a time and the number of combinations

of n things taken r + 1 at a time

– that is,

C(n + 1, r + 1) = C(n, r) + C(n, r + 1).

For, said Pascal, using an example,

consider any particular one of the n + 1 things: C(n, r) gives the number of combinations

that include it whilst C(n, r + 1) gives the number that exclude it,the two numbers together

giving the total.
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Pascal may well have seen the first part of this reasoning in Pierre Hérigone’s
Cours Mathématique (Course in Mathematics) of 1634.

Having thus established the addition formula by a direct combinatorial argu-
ment, Pascal pointed out that the same formula generates the arithmetical
triangle, since the initial conditions correspond as well, and therefore that the
triangle can be used to solve combinatorial problems.

Conclusion: By the rapport [Pascal’s word] which exists between the elements of the arith-

metical Triangle and combinations, it is easy to see that everything which has been proved

for the one applies to the other in like manner, as I shall show in a little treatise I have done

on Combinations.

This is presumably his associated Latin treatise Combinationes, the first part of
which is a Latin version of the above, whilst the remainder interprets someof the
‘consequences’ of the arithmetical triangle given in the first part of the Traité du
Triangle Arithmétique in the language of combinations. Although it contains no
surprises, it stands as the first systematic application of the arithmetical triangle
to combinatorial problems.

Pascal’s solution to the problem of points follows as the next section of his
Traité. Although it involves the arithmetical triangle, its great importance in
the history of probability is not due to the solution of any further combinatorial
problems (see [2, Appendix 1]).

It is interesting to note that Pascal seemed averse to using any argument
involving n! as the number of permutations of n different things; it is almost
as though he felt that he had a mission to develop the theory of combinations
without using it, and he certainly never gave it. When his friend M. de Gaig-
nières challenged him to find an explanation of the multiplicative formula, he
said that because of the difficulty he thought it proper to leave the demonstra-
tion to him; ‘however, thanks to the Arithmetical Triangle, an easy way was
opened up’, and he pointed out the identity in one of the ‘consequences’ of
his book.

De Montmort and Jacob Bernoulli

It is from Pierre de Montmort that Pascal probably acquired the credit for the
arithmetical triangle, for de Montmort’s book Essay d’ Analyse sur les Jeux de
Hazard (Essay on the Analysis of Games of Chance), whose principal edition is

176 | combinator ics : anc ient and modern



dated 1713, starts with a seventy-two page Traité des Combinaisons (Treatise on
Combinations)which relies on Pascal’sTraité. In his introduction, deMontmort
wrote that

Pascal has proceeded furthest, as is clear from his treatise The Arithmetical Triangle,which is

full of observations and discoveries on the figurate numbers of which I believe him to be

the originator, since he does not cite any other person.

Already in its first edition in 1708, de Montmort had given the combinato-
rial explanation for C(n, r), which we earlier attributed to ben Gerson. Unlike
Pascal, de Montmort proceeded by revealing patterns of enumeration that
enabled him to identify numbers of combinations with the figurate numbers
(and hence the arithmetical triangle), but much of his Traité was devoted to
combinatorial problems that cannot easily be solved in terms of the numbers
in the triangle. One problem that did lead to the triangle was Tartaglia’s dice
problem, which de Montmort solved by enumeration, describing it as ‘curious
enough, it seems to me’, and which is the same problem as finding the number
of terms in the power of a multinomial.

Title page of Jacob Bernoulli’s Ars Conjectandi.
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Part Two of Jacob Bernoulli’s Ars Conjectandi (Art of Conjecturing) of 1713
isDoctrina de Permutationibus&Combinationibus (A Treatise on Permutations
and Combinations), which was written in apparent ignorance of Pascal’s Traité.
The arithmetical triangle makes its appearance in Chapter III as the solution
to the number of combinations, enumeration being along the same lines as de
Montmort’s. Bernoulli waxed lyrical about it:

This Table has truly exceptional and admirable properties; for besides concealing within

itself the mysteries of combinations, as we have seen, it is known by those expert in the

higher parts of mathematics also to hold the foremost secrets of the whole of the rest of

the subject.

He then listed twelve ‘wonderful properties’ of the triangle, rather as Pascal had
done, concluding with a proof of the multiplicative formula which is longer and
less elegant than Pascal’s. Like Pascal, he failed to provide a direct combinatorial
proof.

The outstanding contribution of Part Two is the derivation of the coefficients
of the polynomials for the sums of the powers of the integers, with which
Bernoulli ended Chapter III (see Chapter 6). Although this relies on the figurate
numbers, the argument is not combinatorial; further information can be found
in [2, Ch. 10 and Appendix 3].

In the remaining chapters of Part Two of his Ars Conjectandi, Bernoulli
dealt with a number of combinatorial problems in ways by now familiar, but
mention may be made of the arithmetical triangle that appears in Chapter IV
in connection with the problem of points. Bernoulli here added nothing to
Pascal’s solution. In Chapter V there is another arithmetical triangle, this time
presenting the number of combinations of r things from n different kinds of
things, repeats being allowed. The result was obtained by a clever systematic
enumeration that demonstrates the applicability of the addition rule for figurate
numbers, and Bernoulli then gave a combinatorial explanation for this rule.The
problem is identical to that solved by Tartaglia, which we discussed earlier. In
Chapter VIII Bernoulli remarked, like de Montmort, that it is also the solution
to the problem of finding the number of terms in the power of a multinomial:

It is proper here to note the peculiar sympathy between combinations and powers of

multinomials.

In the introduction to Part Two, Bernoulli mentioned the names of van
Schooten, Leibniz, Wallis, and Prestet as having preceded him. Amongst these
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authors we remark only that Leibniz, in his youthfulDissertatio de Arte Combi-
natoria of 1666, repeated the combinatorial argument that (unknown to him)
Pascal had already used in his Traité to obtain the addition relation in the
arithmetical triangle. Leibniz presented a table of the triangle up to n = 12; the
many further contributions he made to combinatorial theory were discussed in
Chapter 6.

From binomials to multinomials

The arithmetical triangle naturally generalizes to more dimensions, corre-
sponding to the generalization of binomial coefficients to multinomial coeffi-
cients. The rule is that the number of permutations of a things of one kind, b of
a second kind, c of a third kind, and so on, n things all told, is equal to

n!
a! b! c! · · · .

This rule first appeared in theWest in the work ofMersenne in 1636, and was
later explained byWallis in 1685. Aswementioned earlier, Bhāskara had already
given it in the East in his Lı̄lāvat̄ı. On 16 May 1695 Leibniz wrote to Johann
Bernoulli announcing a ‘wonderful rule’ for the coefficients of the powers of a
multinomial, to which Bernoulli replied on 8 June giving the above formula and
adding

It would be a pleasure to see your rule and it would be well to test whether they agree;

yours is possibly simpler.

(In fact it was slightly more complicated.) De Moivre published this multino-
mial coefficient in 1698, observing simply that it gives the number of permuta-
tions of the elements making up a given term.

Notes

1. D. E. Knuth, The Art of Computer Programming, Vol. I, Fundamental Algorithms
(2nd edn.), Addison-Wesley (1973), 53.

2. For a full history of the arithmetical triangle and its influence in the development of
mathematics in general, and for references to all the writers mentioned in this chap-
ter, see A. W. F. Edwards, Pascal’s Arithmetical Triangle, Johns Hopkins University
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Press (2002). This second edition contains an epilogue and a third appendix not
present in the first edition (Charles Griffin & Co., Ltd, and Oxford University Press
(1987)).

The epilogue lists a number of books and articles that had appeared since
1987, or which were earlier than 1987 but originally overlooked. The most sig-
nificant oversight was the excellent translation of Pascal’s Traité and his corre-
spondence with Fermat in Great Books of the Western World 33: The Provincial
Letters, Pensées, Scientific Treatises by Blaise Pascal (Encyclopaedia Britannica, 1955,
1963). Cambridge University Library has digitized one of its copies of the Traité at
www.lib.cam.ac.uk/RareBooks/PascalTraite/.

Appendix 3 is a commentary on the Introduction andChapters I–III of Bernoulli’s
Ars Conjectandi, Part Two: The theory of permutations and combinations, and in
particular contains descriptions of some of the proofs in Bernoulli’s Chapter III. In
2006 the first complete translation into English of Ars Conjectandi was published:
J. Bernoulli, The Art of Conjecturing, together with Letter to a Friend on Sets in
Court Tennis, translated with an introduction and notes by Edith Dudley Sylla
(Johns Hopkins University Press). Some remarks relevant to combinatorics are in
A. W. F. Edwards’s review of this translation in The Mathematical Intelligencer 29
(2007), 70–2.
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PART III

MODERN COMBINATORICS



J. J. Sylvester’s chemical trees.



CHAPTER 8

Early graph theory
robin wilson

T he origins of graph theory are humble, even frivolous.Whereas many branches

of mathematics were motivated by fundamental problems of calculation,motion,

and measurement, the problems which led to the development of graph theory

were often little more than puzzles, designed to test the ingenuity rather than to stimulate

the imagination.But despite the apparent triviality of such puzzles,they captured the interest

of mathematicians,with the result that graph theory has become a subject rich in theoretical

results of a surprising variety and depth.

So begins the book Graph Theory 1736–1936 [3], which chronicles the
history of graph theory from Euler’s treatment of the Königsberg bridges
problem in the 1730s to the explosion of activity in the area in the 20th
century. In this chapter, and in Chapter 14, we present this story [1].

The Königsberg bridges problem

On 26 August 1735 Leonhard Euler lectured on ‘the solution of a problem relat-
ing to the geometry of position’ to his colleagues at the Academy of Sciences in
St Petersburg, where he had worked since 1727. In his account, Euler presented
his solution of the Königsberg bridges problem, which he believed to be widely
known, and which asked whether it was possible to find a route crossing each
of the seven bridges of Königsberg once and only once. More generally, given
any division of a river into branches and any arrangement of bridges, is there a
general method for determining whether such a route is possible?
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A 17th-century map of Königsberg.

In 1736 Euler communicated his solution to his friend Carl Ehler, Mayor of
Danzig, and to the Italian mathematician Giovanni Marinoni (see [18], [37]).
He also wrote up his solution for publication in the Commentarii Academiae
Scientiarum Imperialis Petropolitanae under the title ‘Solutio problematis ad
geometriam situs pertinentis’ (On the solution of a problem pertaining to the
geometry of position) [11]. Although dated 1736, it did not appear until 1741,
and was later republished in the new edition of the Commentarii (Nova Acta
Commentarii . . . ), which appeared in 1752.

Königsberg, from Euler’s 1736 paper.
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Euler’s paper is divided into twenty-one numbered paragraphs, of which
paragraphs 2–9 show the impossibility of solving the Königsberg bridges prob-
lem and the rest are concerned with the general situation. He first described
the problem as relating to the geometry of position, a branch of mathematics
first mentioned by Leibniz and concerned with aspects of position rather than
the calculation of magnitudes; some interpretations that have been put on this
phrase are discussed by Pont [32]. Euler then reformulated the problem as one
of trying to

Find a sequence of eight letters A, B, C, or D (the land areas) such that the pairs
AB and AC are adjacent twice (corresponding to the two bridges betweenA and
B and between A and C), and the pairs AD, BD, and CD are adjacent just once
(corresponding to the other bridges).

He then showed why this is impossible.
In discussing the general problem, Euler observed that

The numbers of bridges written next to the letters A,B,C, etc. together add up to twice the

total number of bridges. The reason for this is that, in the calculation where every bridge

leading to a given area is counted, each bridge is counted twice, once for each of the two

areas that it joins.

This is the earliest statement of what graph-theorists now call the handshaking
lemma. The paper continues with Euler’s main conclusions:

If there are more than two areas to which an odd number of bridges lead, then such a

journey is impossible.

If, however, the number of bridges is odd for exactly two areas, then the journey is

possible only if it starts in either of these two areas.

If, finally, there are no areas to which an odd number of bridges lead, then the required

journey can be accomplished starting from any area.

Euler then remarked:

When it has been determined that such a jouney can be made, one still has to find how it

should be arranged. For this I use the following rule … .

However, he did not prove that his rule can always be carried out. A valid
demonstration did not appear until a related result was proved by Carl Hier-
holzer [17] in 1873. Hierholzer’s discussion was given in the language of
diagram tracing, to which we now turn.
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Diagram-tracing puzzles

In 1809 the French mathematician Louis Poinsot wrote a memoir on polygons
and polyhedra [29] in which he described the four non-convex regular polyhe-
dra and posed several geometrical problems, including the following:

Given some points situated at random in space, it is required to arrange a single flexible

thread uniting them two by two in all possible ways, so that finally the two ends of the

thread join up, and so that the total length is equal to the sum of all the mutual distances.

For example, we can arrange a thread joining the seven points 0 to 6 in the order

0→1→2→3→4→5→6→0→2→4→6→1→3→5→
0→3→6→2→5→1→4→0.

Poinsot noted that a solution is possible only for an odd number of points, and
gave an ingenious method for joining the points in each such case.

0

6

5 2

34

1

Joining seven points.

In fact, there are millions of solutions, as was later observed by M. Reiss
[35] in the context of determining the number of ways that one can lay out a
complete set of dominoes in a ring; the above ordering corresponds to the ring
of twenty-one dominoes

0–1, 1–2, 2–3, 3–4, 4–5, 5–6, 6–0, 0–2, 2–4, 4–6, 6–1,

1–3, 3–5, 5–0, 0–3, 3–6, 6–2, 2–5, 5–1, 1–4, 4–0,

to which the seven doubles (such as 2–2) are then added.
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Puzzles that require one to draw a given diagram in the smallest possible
number of connected strokes, without any overlapping, have been of interest
for many hundreds of years – see, for example, some early African examples in
Ascher [2]. In particular, it was observed in 1844 that four strokes are needed
to draw the following diagram.

In 1847 Johann Benedict Listing wrote a short treatise entitledVorstudien zur
Topologie [24], in which he investigated a number of non-metrical geometrical
problems and discussed the solution of diagram-tracing puzzles; these included
the above example and a much more complicated diagram (below) that can be
drawn in a single stroke. His treatise is noteworthy for being the first place that
the word ‘topology’ appeared in print. Listing had first coined the word in 1836
in a letter to his former schoolteacher.

Listing’s diagram.

As mentioned above, Hierholzer gave an account of the theory of diagram-
tracing puzzles, proving in particular that:

If a line-system can be traversed in one path without any section of line being traversed

more than once, then the number of odd nodes is either zero or two.

He also proved the converse result:

If a connected line-system has either no odd node or two odd nodes, then the system can

be traversed in one path.
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The precise connection between Euler’s bridge-crossing problems and the
tracing of diagrams was not made until the end of the 19th century. Euler’s
discussion of such problems had been popularized through a French translation
of E. Coupy [8] that included an application to the bridges over the River Seine,
and by a lengthy account in Volume 1 of E. Lucas’s Récréations Mathématiques
[26], but it seems to have been W. W. Rouse Ball [36] who first represented
the four land areas by points and the bridges by lines joining the appropriate
pairs of points, thereby producing the well-known four-point diagram. Euler
never drew such a picture or discussed the Königsberg bridges problem in these
terms.

A

a

c
d

b

B

D

f

e

g

C

The graph of the Königsberg bridges.

Such a diagram is now called a connected graph, the points are vertices, the
lines are edges, and the number of edges appearing at a vertex is the degree of
that vertex; thus, the above graph has three vertices of degree 3 and one vertex
of degree 5. It follows from the above results that:

A connected graph has a path that includes each edge just once if and only if there
are exactly 0 or 2 vertices of odd degree.

When there are no vertices of odd degree, the graph is called an Eulerian graph,
even though the concept of such a graph did not make its first appearance until
many years after the solution by Euler that inspired it.

Hamiltonian graphs

A type of graph problem that is superficially similar to the Eulerian problems
described above is that of finding a cycle that passes just once through each vertex,
rather than just once along each edge; for example, if we are given the graph of
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the cube, then it is impossible to cover each edge just once, because there are
eight vertices of degree 3, but we can find a cycle (shown below with solid lines)
passing through each vertex just once. Such graphs are now calledHamiltonian
graphs, and the cycles are Hamiltonian cycles, although, as we shall see, this is
perhaps not the most appropriate name for them.

A Hamiltonian cycle on a cube.

An early example of a Hamiltonian cycle problem is the celebrated knight’s
tour problem. The problem is to find a succession of knight’s moves on a
chessboard visiting each of the sixty-four squares just once and returning to
the starting point. The connection with Hamiltonian graphs may be seen by
regarding the squares as vertices of a graph, and joining two squares whenever
they are connected by a single knight’s move.

A knight’s tour on a chessboard.

Solutions of the knight’s tour problem have been known for many hundreds
of years, including solutions by deMontmort and deMoivre in the 17th century,
but it was not until the mid 18th century that the problem was subjected to
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systematicmathematical analysis, by Leonhard Euler [13]; Euler showed in par-
ticular that no solution is possible for the analogous problem on a chessboard
with an odd number of squares. Shortly afterwards, A.-T. Vandermonde [42]
analysed the problem, referring to Euler’s solution as follows:

whereas that great geometer presupposes that one has a chessboard to hand, I have

reduced the problem to simple arithmetic.

Many mathematicians have since attempted to generalize the problem to
other types of board or to find solutions that satisfy extra conditions; for exam-
ple, Major Carl von Jaenisch [19] wrote a three-volume account of the knight’s
tour problem, and included an ingenious solution in which successive number-
ing of the squares in a knight’s tour yields a semi-magic square in which the
entries in each row or column add up to 260.

In 1855 the Royal Society of London received a paper by the Revd Thomas
Penyngton Kirkman [21] that asked:

For which polyhedra can one find a cycle passing through all the vertices just once?

– for example, a cube (in flattened form) has the cycle given earlier. Kirkman
claimed to have a sufficient condition for the existence of such a cycle, but his
reasoning was faulty. However, he did explain why any polyhedron with even-
sided faces and an odd number of vertices can have no such cycle, and gave as
an example the polyhedron obtained by ‘cutting in two the cell of a bee’.

Kirkman’s ‘cell of a bee’.

A polyhedron is cubic if exactly three faces meet at each vertex. In 1884 the
natural philosopher P. G. Tait asserted that every cubic polyhedron has a cycle
passing through every vertex. If true, this assertion would have yielded a simple
proof of the four-colour theorem (see later), but it was eventually disproved
by W. T. Tutte [41], who in 1946 presented a cubic polyhedron with forty-six
vertices and no Hamiltonian cycle.
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Another mathematician who was intrigued with cycles on polyhedra was Sir
William RowanHamilton (see [15]). Arising from his work on quaternions and
non-commutative algebra, Hamilton was led to the icosian calculus, in which he
considered cycles of faces on an icosahedron – or, equivalently, cycles of vertices
on a dodecahedron.Hamiltonian subsequently invented the icosian game, based
on a dodecahedron whose vertices were labelled with the twenty consonants B
to Z, standing for Brussels, Canton, . . . , Zanzibar.The object of the gamewas to
find cycles through all the vertices according to certain specified instructions.
Hamilton sold the game for £25 to a gamesmanufacturerwhomarketed it under
the name ‘A voyage round the world’; not surprisingly, it was not a commercial
success.

Hamilton’s icosian game.

Because of Hamilton’s prominence, his name has become associated with
such cycle problems and with the corresponding Hamiltonian graphs, even
though Kirkman considered these problems in greater generality and had pre-
ceded him by a few months. Unlike the Eulerian problem, no necessary and
sufficient condition has been discovered for the existence of aHamiltonian cycle
in a general graph.
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Euler’s polyhedron formula

In this section we investigate the origins of the polyhedron formula for both
polyhedra and planar graphs, and show how one of its generalizations led to
the work of Listing and, ultimately, Poincaré.

Although the Greeks were familiar with the five regular solids (the tetrahe-
dron, cube or hexahedron, octahedron, dodecahedron, and icosahedron) and
several other polyhedra, there is no evidence that they knew the simple formula
relating the numbers of vertices, edges, and faces of such a polyhedron – namely,

(number of faces) + (number of vertices) = (number of edges) + 2;

for example, a cube has six faces, eight vertices, and twelve edges, and
6 + 8 = 12 + 2. In the 17th century, René Descartes also missed the formula:
he obtained a formula for the sum of the angles in all the faces of a polyhedron,
fromwhich the above result can be deduced, but he nevermade the deduction. It
was Euler, in a letter toChristianGoldbach in 1750, who introduced the concept
of an edge and stated the above result.

Part of Euler’s letter to Goldbach, presenting his ‘polyhedron formula’.
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In his letter Euler considered a solid polyhedron and obtained various results
concerning equalities and inequalities about the numbers of faces, solid angles
(vertices), and joints where two faces come together (edges). In particular,
denoting them respectively by H (hedrae), S (anguli solidi), and A (acies), he
asserted that:

6. In every solid enclosed by plane faces the aggregate of the number of faces and

the number of solid angles exceeds by two the number of edges, or H + S =
A + 2 . . .

11. The sum of all plane angles is equal to four times as many right angles as there

are solid angles, less eight, that is = 4S − 8 right angles…

I find it surprising that these general results in solid geometry have not previously been

noticed by anyone, so far as I am aware; and furthermore, that the important ones,

Theorems 6 and 11, are so difficult that I have not yet been able to prove them in a

satisfactory way.

Euler verified these results for several families of polyhedra and two years later
presented a dissection proof [12], but this was deficient. The first valid proof
was a metrical one, given in 1794 by A.-M. Legendre [22].

Euler’s formula also holds for any connected planar graph, such as the map
obtained by stereographically projecting a polyhedron onto a plane, provided
that we remember to include the ‘infinite’ (unbounded) face. In 1813 Augustin-
Louis Cauchy [4] used a triangulation process to give topological proofs of both
versions of Euler’s formula, and deduced that there are only four regular non-
convex polyhedra, as Poinsot had predicted.

Around the same time Simon-Antoine-Jean Lhuilier [23] gave a topologi-
cal proof that there are only five regular convex polyhedra, and anticipated
the idea of duality by remarking that four of them occur in reciprocal pairs
(cube–octahedron and dodecahedron–icosahedron), while the tetrahedron is
self-dual. He also found three types of polyhedra for which Euler’s formula fails
– those with an interior cavity, those with indentations in their faces, and ring-
shaped polyhedra drawn on a torus (that is, polyhedra containing a ‘tunnel’).
For ring-shaped polyhedra, he obtained the formula

(number of vertices) − (number of edges) + (number of faces) = 0.

He then extended his discussion to prove that if g is the number of ‘tunnels’ in
a surface on which a polyhedral map is drawn, then

(number of vertices) − (number of edges) + (number of faces) = 2 − 2g.
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The number g is now called the genus of the surface, and the quantity 2 − 2g is
its Euler characteristic; these numbers depend only on the surface on which the
polyhedron is embedded, and not on the map itself.

Lhuilier’s results were the starting point for an extensive investigation by
Listing [25], entitled Der Census räumliche Complexe (The Census of Spatial
Complexes). These complexes are built up from simpler pieces, and Listing
studied the question of how their topological properties are related to the above
versions of Euler’s formula.

Listing’s ideas proved to be influential in the subsequent development of
topology, andwere soon taken up by othermathematicians. In particular, Henri
Poincaré developed them in his papers of 1895 to 1904 that laid the foun-
dations of algebraic topology. Like Listing, Poincaré developed a method for
constructing complexes from basic ‘cells’, such as 0-cells (vertices) and 1-cells
(edges). In order to fit these cells together, he adapted a technique of Gustav
Kirchhoff from the theory of electrical networks, replacing sets of linear equa-
tions by matrices.These matrices could then be studied from an algebraic point
of view.

Poincaré’s work was an instant success, and appeared in M. Dehn and
P. Heegaard’s article (1907) on analysis situs (the analysis of position) in the
Encyklopädie der Mathematischen Wissenschaften. His ideas were subsequently
developed further by Oswald Veblen in a series of colloquium lectures for the
American Mathematical Society on analysis situs; these lectures were delivered
in 1916 and published in book form six years later [43]. The subject subse-
quently became known as topology.

Trees

We are all familiar with the idea of a family tree. Mathematically, a tree is a
connected graphwith no cycles; the following figure illustrates the possible trees
with six vertices.

The trees with six vertices.
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The concept of a tree appeared implicitly in 1847 in the work of Kirchhoff,
who used them in the calculation of currents in an electrical network. Here,
however, our concern is mainly with the problem of enumerating certain types
of chemical molecule. Such problems can be reduced to the counting of trees
and were investigated by Arthur Cayley and James Joseph Sylvester. We outline
their contributions and indicate how their ideas were developed in the first half
of the 20th century.

By 1850 it was already known that chemical elements combine in fixed
proportions, and chemical formulas such as H2O (water) and C2H5OH (etha-
nol) were well established. But it was not understood exactly how the various
elements combine to form these substances. The breakthrough occurred in
the 1850s when August Kekulé in Germany, Edward Frankland in England,
A. M. Butlerov in Russia, and A. S. Couper in Scotland proposed what is now
the theory of valency; in this theory, each atom has several bonds by which it
is linked to other atoms: carbon atoms have four bonds, oxygen atoms have two,
and hydrogen atoms have one.

As the idea of valency became established, it became increasingly necessary
for chemists to find a method for representing molecules diagrammatically.
Various people tried and failed, including some of those mentioned above, and
it was not until the 1860s that Alexander Crum Brown [9] proposed what is
essentially the form we use today. In his system, each atom is represented by
a circled letter and the bonds are indicated by lines joining the circles. The
following figure shows Crum Brown’s representation of ethanol, the present-
day representation with the circles omitted, and the associated chemical tree
with vertices corresponding to atoms and edges representing bonds.

H HC C O

H

H H

HH

H HC C O

H

H H

Various representations of ethanol.

Crum Brown’s ‘graphic notation’, as it came to be called, was quickly adopted
by Frankland, who used it in his Lecture Notes for Chemical Students [14]. Its
great advantage was that its use explained, for the first time, the phenomenon
of isomerism, whereby there can exist pairs ofmolecules (isomers) with the same
chemical formula but different chemical properties. The following figure shows
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a pair of isomers, each with chemical formula C4H10; note how the atoms are
arranged in different ways inside the molecules.

H

H

H C C C C H

H H H

HHH

H

H

H

H H H

H C C C H

H

C H

n-butane and 2-methylpropane.

This idea leads naturally to problems of isomer enumeration, in which we
determine the number of different molecules with a given chemical formula.
Themost celebrated of these problems is that of enumerating the alkanes (paraf-
fins), which have chemical formula CnH2n+2; the following table gives the
numbers of such molecules with up to eight carbon atoms:

Formula CH4 C2H6 C3H8 C4H10 C5H12 C6H14 C7H16 C8H18

Number 1 1 1 2 3 5 9 18

In 1874 Cayley observed that the diagrams corresponding to the alkanes all
have a tree-like structure, and that removing the hydrogen atoms yields a tree
in which each vertex has degree 1, 2, 3, or 4; thus, the problem of enumerating
such isomers is the same as that of counting trees with this property.

Cayley had been interested in tree-counting problems for some time. In 1857,
while trying to solve a problem inspired by Sylvester related to the differential
calculus, he wrote a paper [5] in which he enumerated rooted trees – that is, trees
in which one particular vertex has been singled out as the ‘root’ of the tree. As
described in greater detail in Chapter 12, Cayley’s method was to remove the
root, thereby obtaining a number of smaller rooted trees.

At around the same time that Cayley was enumerating isomers, his friends
Sylvester and William Clifford were trying to establish a link between the study
of chemicalmolecules and the algebraic topic of invariant theory. Each chemical
atom was to be compared with a ‘binary quantic’, a homogeneous expression in
two variables such as

ax3 + 3bx2y + 3cxy2 + dy3,
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and a chemical substance composed of atoms of various valencies was to be
comparedwith an ‘invariant’ of a systemof binary quantics of the corresponding
degrees. Indeed, profoundly influenced by Frankland’s Lecture Notes, Sylvester
was later to write [39]:

The more I study Dr Frankland’s wonderfully beautiful little treatise the more deeply I

become impressed with the harmony or homology . . .which exists between the chemical

and algebraical theories. In travelling my eye up and down the illustrated pages of “the

Notes,” I feel as Aladdin must have done in walking in the garden where every tree was

laden with precious stones . . .

Both Cayley and Sylvester had made important contributions to the theory of
invariants, and Sylvester and Clifford tried to introduce the ‘graphic notation’ of
chemistry into the subject; indeed, our use of the word graph for such a diagram
arose from one of Sylvester’s papers [38] in this area.

Some of Clifford’s drawings of binary quantics.

Unfortunately, the ‘chemico-algebraic’ ideas of Sylvester and Clifford proved
to be less useful than their originators had hoped – two largely unrelated ideas
linked by a notation that was only superficially similar. Invariant theory quickly
became submerged in the work of David Hilbert and others, while the theory of
graphs increasingly took on a life of its own (see Chapter 14). Perhaps Sylvester
feared this all along; in a letter to Simon Newcomb, he nervously admitted
that:
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I feel anxious as to how it will be received as it will be thought by many strained and over-

fanciful. It is more a ‘reverie’ than a regular mathematical paper . . . [Nevertheless,] it may

at the worst serve to suggest to chemists and Algebraists that they may have something to

learn from each other.

In 1889 Cayley tackled another tree-counting problem – that of determining
the number t(n) of labelled trees with n vertices; for example, if n = 4, the
number of such trees is 16. Unlike the earlier problems we considered, this one
has a very simple answer – namely, t(n) = nn−2. Cayley [7] stated this result
and demonstrated it for n = 6, but Heinz Prüfer [33] was the first to publish a
complete proof, in 1918.
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The sixteen labelled trees with four vertices.

It was not until the 1920s and 1930s that any substantial theoretical progress
was made in the counting of chemical molecules. In 1927 J. H. Redfield [34]
produced a paper that foreshadowed the later work of George Pólya, but it was
written in obscure language and overlooked for many years. Shortly afterwards,
A. C. Lunn and J. K. Senior [27] recognized that the theory of permutation
groups was appropriate to the enumeration of isomers, and their ideas were
considerably developed in a fundamental paper of Pólya [30] (translated in
[31]), in which the classical method of generating functions is combined with
the idea of a permutation group in order to enumerate graphs and molecules
and many other configurations arising in mathematics. Details of the work of
Redfield and Pólya are given in Chapter 12.

The four-colour problem

The earliest known reference to the ‘four-colour problem’ on the colouring of
maps occurs in a letter dated 23October 1852, fromAugustus DeMorgan to Sir
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William Rowan Hamilton. In this letter (see [44]), De Morgan described how
one of his students had asked himwhether everymap can be colouredwith only
four colours:

A student of mine asked me today to give him a reason for a fact which I did not know was

a fact – and do not yet. He says that if a figure be anyhow divided and the compartments

differently coloured so that figures with any portion of common boundary line are differ-

ently coloured – four colours may be wanted, but not more . . . Query cannot a necessity

for five or more be invented.

The student was later identified as Frederick Guthrie, who claimed that the
problem was due to his brother Francis; the latter had formulated it while
colouring the counties of a map of England.

In his letter,DeMorgan observed that four colours are needed for somemaps;
for example, if there are four neighbouring countries, then each countrymust be
coloured differently from its neighbours. But four colours may be needed even
if four neighbouring countries do not appear, as the following example shows:

A map that needs four colours.

De Morgan quickly became intrigued by the problem and communicated it
to several other mathematicians, so that it soon became part of mathematical
folklore. In 1860 he stated it, in rather obscure terms, in an unsigned book
review [10] in the Athenaeum, a scientific and literary journal. For many years
this was believed to be the first printed reference to the problem, but an earlier
Athenaeum reference, dated 1854 and signed ‘F.G.’ , was recently found by Bren-
dan McKay [28]. De Morgan’s review was read in the USA by the logician and
philosopher C. S. Peirce, who subsequently presented an attempted proof to a
mathematical society at Harvard University.

It was not until afterDeMorgan’s death in 1871 that any progress wasmade in
solving the four-colour problem. On 13 June 1878, at a meeting of the London
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Mathematical Society, Cayley enquired whether the problem had been solved,
and soon afterwards wrote a short paper [6] for the Royal Geographical Society
in which he attempted to explain in simple terms where the difficulties lie. He
also proved that one can make the simplifying assumption that exactly three
countries meet at each point – that is, the map is cubic.

In 1879 there appeared one of the most famous fallacious proofs in mathe-
matics. Its author was Alfred Bray Kempe, a London barrister who had studied
with Cayley at Cambridge, had attended the London Mathematical Society
meeting, and had become well known for his work on linkages. On learning
of this proof, Cayley suggested that Kempe submit it to the American Journal of
Mathematics, newly founded and edited by Sylvester.

Although Kempe’s paper [20] contained a fatal flaw, it included some impor-
tant ideas that were to feature in many subsequent attempts on the problem.
His proof was in two parts. He first showed, using Euler’s polyhedron formula,
that every map necessarily contains a digon (a two-sided country), a triangle, a
quadrilateral, or a pentagon, as shown below.

digon triangle quadrilateral pentagon

Kempe then took each of these configurations in turn and showed that any
colouring containing it can be extended to the whole map. Now, it is simple to
prove that this process can be carried out for the digon and triangle. To prove
that it can also be done for a quadrilateral, Kempe looked at a two-coloured
piece of the map – for example, the part of the map containing countries
coloured red and green – and he showed how to interchange the colours so
as to enable the original colouring to be extended to the whole map as required.
To prove that the above process can also be carried out for a pentagon, Kempe
did it twice, making two colour interchanges simultaneously. Since all possible
cases had been considered, the proof was believed complete.

Kempe’s argument was greeted with enthusiasm, and he published two fur-
ther papers indicating various simplifications. In 1880 Tait [40] reformulated
the result in terms of the colouring of ‘boundary’ edges (rather than countries),
believing that such considerations would simplify the proof still further. The
headmaster of a famous school set the problem as a challenge problem to his
pupils, Frederick Temple (Bishop of London, later Archbishop of Canterbury)
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produced a ‘proof ’ during a lengthy meeting, and Lewis Carroll reformulated
the problem as a game between two players.

In 1890 Percy Heawood, who had learned of the problem while a student at
Oxford University, published a paper [16] that pointed out Kempe’s error. Fur-
thermore, Heawood gave a specific example to show that, whereas one colour
interchange is always permissible, we cannot carry out two interchanges at the
same time; thus, Kempe’s treatment of the pentagon was deficient.

Percy Heawood and his example.

Heawood managed to salvage enough from Kempe’s argument to prove that
everymap can be colouredwith five colours (itself a remarkable result), but hewas
unable to fill the gap. How this was eventually done is described in Chapter 14
and in [44].
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CHAPTER 9

Partitions
george e. andrews

While Leibniz appears to have been the earliest to consider the
partitioning of integers into sums, Euler was the first person
to make truly deep discoveries. J. J. Sylvester was the next

researcher tomakemajor contributions, followed by Fabian Franklin.The
20th century saw an explosion of research with contributions from L. J.
Rogers, G. H. Hardy, Percy MacMahon, Srinivasa Ramanujan, and Hans
Rademacher.

Introduction

Gottfried Leibniz was apparently the first person to ask about partitions. In
a letter of 1674 [45, p. 37] he asked Jacob Bernoulli about the number of
‘divulsions’ of integers; in modern terminology, he was asking the first question
about partitions of integers. He observed that there are three partitions of 3
(3, 2 + 1, and 1 + 1 + 1) as well as five of 4 (4, 3 + 1, 2 + 2, 2 + 1 + 1, and
1 + 1 + 1 + 1). He then went on to observe that there are seven partitions
of 5 and eleven of 6. This suggested that the number of partitions of any n
might always be a prime; however, this exemplum memorabile fallentis induc-
tionis is found out once one computes the fifteen partitions of 7. So even this
first tentative exploration of partitions suggested a problem that is still open
today:
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Are there infinitely many integers n for which the total number of partitions of n
is prime? (Put your money on ‘yes’.)

From this small beginning we are led to a subject with many sides and many
applications: the theory of partitions. The starting point is precisely that of
Leibniz, put in modern notation.

Let p(n) denote the number of ways in which n can be written as a sum of
positive integers. A reordering of summands is not counted as a new partition,
so 2 + 1 + 1, 1 + 2 + 1, and 1 + 1 + 2 are considered the same partition of 4.
As Leibniz noted,

p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11, p(7) = 15.

A number of questions can be asked about p(n). How fast does it grow?What
is its parity? Does it have special arithmetical properties? Are there efficient
ways for computing p(n)? Is p(n) prime infinitely often?

To give some order to an account of these questions, we organize the sub-
ject around the contributions of the great partition theorists: Euler, Sylvester,
MacMahon, Rogers, Hardy, Ramanujan, and Rademacher. Each of these played
a seminal role in the development of one or more themes in the history of
partitions.

Euler and generating functions

In a letter from Philippe Naudé [27], Euler was asked to solve the problem
of partitioning a given integer n into a given number of parts m. In partic-
ular, Naudé asked how many partitions there are of 50 into seven distinct
parts.

The correct answer of 522 is not likely to be obtained by writing out all the
ways of adding seven distinct positive integers to get 50. To solve this problem
Euler used generating functions. Following Euler’s lead, but usingmodern nota-
tion, we let D(m, n) denote the number of partitions of n into m distinct parts.
Then

∑
m,n≥0

D(m, n)zmqn = (1 + zq1)(1 + zq2)(1 + zq3) · · · =
∞∏
j=1

(1 + zqj) . (1)
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This identity becomes clear as we consider what happens when we multiply the
terms on the right together. A typical term is

(zqi1)(zqi2) · · · (zqij) = zjqi1+i2+···+ij ,

which arises precisely from the partition with j distinct parts i1 + i2 + · · · + ij.
Noting that

∞∏
j=1

(1 + zqj) = (1 + zq)
∞∏
j=1

(1 + (zq)qj),

we can obtain a functional equation for the generating function of D(m, n):

∑
m,n≥0

D(m, n)zmqn = (1 + zq)
∑
m,n≥0

D(m, n)zmqn+m.

Comparing the coefficients of zmqn on both sides, we find that

D(m, n) = D(m, n − m) + D(m − 1, n − m).

This equation allows an easy computation of the values of D(m, n). Indeed, the
following table is easily extended to include D(7, 50) = 522:

m \ n 0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1
2 0 0 0 1 1 2 2 3
3 0 0 0 0 0 0 1 1

Euler was naturally led from Naudé’s question to an even more fundamental
one. What is the generating function for p(n), the total number of partitions
of n? Here he applied the same principle that was so effective in computing
D(m, n) – namely,

∞∑
n=0

p(n)qn = (1 + q1+ q2+ q3+ q4+ · · · ) × (1 + q2+ q4+ q6+ q8+ · · · )
× (1 + q3 + q6 + q9 + q12 + · · · ) × · · ·

=
∞∏
n=1

(1 + qn + q2n + q3n + q4n + · · · ) =
∞∏
n=1

1
1 − qn

.
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At this point, Euler realized that a power series expansion for the product∏∞
n=1(1 − qn) would be essential for simplifying the computation of p(n). He

discovered empirically that

∞∏
n=1

(1 − qn) = 1 − q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − · · ·

=
∞∑

n=−∞
(−1)nqn(3n−1)/2 .

Some years after his empirical discovery, Euler managed to provide a proof of
this himself; a modern exposition of his proof is given in [10]. This formula
is now known as Euler’s pentagonal number theorem. We shall examine Fabian
Franklin’s proof of it [29] in the next section.

Combining the pentagonal number theoremwith the generating function for
p(n), one sees that( ∞∑

n=−∞
(−1)nqn(3n−1)/2

) ∞∑
n=0

p(n)qn = 1 .

Comparing the coefficients of qN on both sides of this last identity, Euler found
the following recurrence for p(N): p(0) = 1, and

p(N) = p(N − 1) + p(N − 2) − p(N − 5) − p(N − 7) + · · · , for N > 0.

No one has ever found a more efficient algorithm for computing p(N). It com-
putes a full table of values of p(n) for n ≤ N in time O(N3/2).

Euler’s use of generating functions was the most important innovation in the
entire history of partitions. Almost every discovery in partitions owes some-
thing to Euler’s beginnings. Extensive accounts of the use of generating func-
tions in the theory of partitions can be found in [5, Ch. 13], [9, Ch. 1, 2], [34,
Ch. 7], [40, Ch. 19], and [54, Sect. 7, pp. 29–69]. In addition, a paper-by-paper
summary of the entire history of partitions up to 1918 is found in Volume II of
Dickson’s History of the Theory of Numbers [25].

Sylvester and the intrinsic study of partitions

From themid 18th century until themid 19th century, little happened of signif-
icance in the study of partitions. Meanwhile, much was happening elsewhere in
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mathematics. Subjects such as the theory of complex variables and the theory
of elliptic functions were born, and these would turn out to affect partitions
profoundly. Great mathematicians such as Legendre, Gauss, Cauchy, and others
would make new discoveries in their explications of Euler’s work.

In the century between 1750 and 1850, the primary focus of research con-
cerned explicit formulas for pk(n), the number of partitions of n into at most k
parts. P. Paoli, A. De Morgan, J. F. W. Herschel, T. Kirkman, and H. Warburton
studied pk(n) for small fixed values of k, and each produced a number of explicit
formulas. We shall say more about these in a later section.

James Joseph Sylvester (1814–97).

James Joseph Sylvester was the next mathematician to provide truly new
insight. In his magnum opus of 1884–6, ‘A constructive theory of partitions,
arranged in three acts, an interact, and an exodion’ [68], Sylvester began with
these words:

In the new method of partitions it is essential to consider a partition as a definite thing,

which end is attained by regularization of the succession of its parts according to some

prescribed law. The simplest law for the purpose is that the arrangement of parts shall be

according to their order of magnitude.
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After considering several ways in which a partition may be given some sort
of geometrical image, he asserted that the partition 5 + 5 + 4 + 3 + 3, ‘… may
be represented much more advantageously by the figure

* * ** *
* * ** *
* ** *
** *
** * ’

This representation Sylvester called the Ferrers graph of the partition, after
N. M. Ferrers, a Cambridge mathematician.

Sylvester noted immediately that one can count points in columns instead
of rows; here this produces the partition 5 + 5 + 5 + 3 + 2. The two partitions
produced from such a graph are called conjugates. Thus, within the first two
pages of his 83-page paper, Sylvester had inaugurated a brand new approach to
partitions.

To appreciate the value of this new line of thought, we present Fabian
Franklin’s proof [29] of Euler’s pentagonal number theorem. Franklin was one
of Sylvester’s students at Johns Hopkins University, and his proof illustrates the
power of Sylvester’s idea.

We begin by noting (as did Legendre) that the pentagonal number theorem
can be reformulated purely as an assertion about partitions. If we set z = −1 in
equation (1), we see that

∞∏
j=1

(1 − qj ) =
∑
m,n≥0

(−1)mD(m, n)qn.

Thus the coefficient of qn is the difference between the number of partitions of n
into an even number of distinct parts (say, �e(n)) and the number of partitions
of n into an odd number of distinct parts (say, �o(n)). So Euler’s pentagonal
number theorem is equivalent to the assertion that

�e(n) − �o(n) =
{

(−1)j, if n = 1
2 j(3j ± 1) ,

0, otherwise.
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Franklin’s idea for proving this was to find a one-to-one mapping between
the partitions of nwith an even number of parts (all distinct) and the partitions
of n with an odd number of parts (all distinct). Of course, for the assertion to
be valid, this mapping must run aground on an occasional exceptional case.

We proceed to examine partitions π with distinct parts. We define s(π) to be
the smallest summand inπ , and σ(π) to be the length of the longest sequence of
consecutive integers appearing in π beginning with the largest part. For exam-
ple, if π is 9 + 8 + 7 + 5 + 4 + 2, then s(π) = 2 and σ(π) = 3 (corresponding
to the sequence 9, 8, 7). We can provide images of s(π) and σ(π) when we look
at the Ferrers graph of π :

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗

∗

∗
∗
∗

∗
∗

s(p)

s(p)

Franklin then defined a transformation of partitions with distinct parts:

Case 1: s(π) ≤ σ(π). In the Ferrers graph of π , move the points in s(π) to the
end of the first s(π) rows. Thus the transformed partition arising when this
move is applied to 9 + 8 + 7 + 5 + 4 + 2 is 10 + 9 + 7 + 5 + 4:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗
∗ ∗

∗ ∗ s(p)

Case 2: s(π) > σ(π). In the Ferrers graph of π , move the points in σ(π) so that
they form the smallest part of the transformed partition. Thus, if we consider
the partition 10 + 9 + 7 + 5 + 4, we see that σ(π) = 2 and s(π) = 4, and the
transformed partition is 9 + 8 + 7 + 5 + 4 + 2.

Note that Franklin’s map changes the parity of the number of parts, and it
appears not only to be one-to-one, but indeed to be an involution. If it really
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were both of these things, then we would have proved that the right-hand side
of the formula for �e(n) − �o(n) must always be 0.

However, Franklin’s map gets into trouble whenever the two sets of points in
the Ferrers graph defining s(π) and σ(π) are not disjoint. If they are disjoint,
Franklin’s map gives no problems: indeed, if s(π) < σ(π) in Case 1 or s(π) >

σ(π) + 1 in Case 2, everything still works.

Exceptional case 1: s(π) = σ(π), and the defining sets for s(π) and σ(π) are
not disjoint. For example,

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗
∗

∗

s(p) = j

s(p) = j

Clearly we cannot do the transformation required in Case 1.Thus, the partition
with j distinct parts

j + (j + 1) + (j + 2) + · · · + (2j − 1) = 1
2 j(3j − 1)

has no image under Franklin’s mapping.

Exceptional case 2: s(π) = σ(π) + 1, and the defining sets for s(π) and σ(π)

are not disjoint. For example,

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗

s(p) = j + 1

s (p) = j
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Now we cannot do the transformation required in Case 2. Thus, the partition
with j distinct parts

( j + 1) + ( j + 2) + · · · + 2j = 1
2 j(3j + 1)

has no image under Franklin’s mapping.
We conclude that �e(n) − �o(n) is 0, except when n is either 1

2 j(3j − 1) or
1
2 j(3j + 1), in which case it is (−1)j. In other words, we have proved the formula
for �e(n) − �o(n), and consequently Euler’s pentagonal number theorem.

Hans Rademacher termed Franklin’s work the first major achievement of
American mathematics. It may be viewed as the starting point for a variety of
deep combinatorial studies of partitions.

Issai Schur’s first proof [62, Sect. 3] of the (unknown to him) Rogers–
Ramanujan identities owes much to Franklin; these identities form a major
topic in our later section on Ramanujan. More recently, building on Schur’s
work, A. Garsia and S. Milne in 1981 produced a pure one-to-one correspon-
dence proof of the Rogers–Ramanujan identities [30].

Perhaps the most striking achievement of this nature is the 1985 proof by D.
Zeilberger and D. Bressoud [72] of the q-Dyson conjecture – namely, if

∏
1≤i<j≤n

ai−1∏
h=0

(
1 − xiqh

xj

)(
1 − xjqh+1

xi

)

is fully expanded, then the terms involving only powers of q but no xis sum to
the polynomial

(1 − q)(1 − q2)(1 − q3) · · · (1 − qa1+a2+···+an )
n∏
i=1

{(1 − q)(1 − q2) · · · (1 − qai)}
.

Further accounts of these ideas and related work can be found in [6] and [11,
Ch. 6 and 7].

Partitions representing other mathematical
objects

It should not be surprising that partitions have a life outside their own intrinsic
interest. After all, it is clear that whenever some set of n objects is grouped into
subsets in which only the size of each subset is of significance, then the object of
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interest is a partition of n. For example, when Cauchy [21] first studied what in
effect were the conjugacy classes of the symmetric group in 1845, their enumer-
ation required classification by sizes of cycles. Thus, there are p(n) conjugacy
classes of the symmetric group Sn.

Classical invariant theory, as practised by Cayley [23], Sylvester [67],
MacMahon [50, Vol. 2, Ch. 18] and others, bulges with the theory of partitions.
For example, Stroh [65] solved a problem that had been considered extensively
by Cayley, Sylvester, andMacMahon, when he showed that the generating func-
tion for perpetuants of a given degree θ (> 2) is

q2θ−1−1

(1 − q2)(1 − q3) · · · (1 − qθ )
.

Most important in this period was the realization that this external use of
partitions was mutually beneficial. For example, from the work of Cauchy [20],
Gauss [31], and others, it was determined that, for non-negative integers n and
m, the expression

[
n + m
n

]
= (1 − qn+1)(1 − qn+2) · · · (1 − qn+m)

(1 − q)(1 − q2) · · · (1 − qm)

is actually a reciprocal polynomial in q of degree nm. Indeed, the coefficient of
qj is the number of partitions of j into at mostm parts, each of which is less than
or equal to n. These polynomials have come to be called Gaussian polynomials
or q-binomial coefficients.

Empirically one finds that they are all unimodal; in fact, the coefficients of qj

form a non-decreasing sequence for j ≤ 1
2nm, and a non-increasing sequence

for j ≥ 1
2nm. For example,

[
4
2

]
= 1 + q + 2q2 + q3 + q4,

[
7
3

]
= 1 + q + 2q2 + 3q3 + 4q4 + 4q5 + 5q6 + 4q7 + 4q8

+ 3q9 + 2q10 + q11 + q12 .

While this is an appealing oddity, viewed merely as a fact about partitions, it
was of great importance in invariant theory – witness Sylvester’s unbounded
enthusiasm as he introduced his proof [66]:
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I am about to demonstrate a theoremwhich has been waiting proof for the last quarter of a

century and upwards. It is the more necessary that this should be done,because the theory

has been supposed to lead to false conclusions, and its correctness has consequently been

impugned. But, of the two suppositions that might be made to account for the observed

discrepancy between the supposed consequences of the theorem and ascertained facts –

one that the theory is false and the reasoning applied to it correct, the other that the

theorem is true but that an error was committed in drawing certain deductions from it

(to which one might add a third of the theorem and the reasoning upon it being both

erroneous) – the wrong alternative was chosen.An error was committed in reasoning out

certain supposed consequences of the theorem; but the theorem itself is perfectly true, as

I shall show by an argument so irrefragable that it must be considered for ever hereafter

safe from all doubt or cavil. It lies as the basis of the investigations begun by Professor

Cayley in his Second Memoir on Quantics, which it has fallen to my lot, with no small labour

and contention of mind, to lead to a happy issue, and thereby to advance the standards

of the Science of Algebraical Forms to the most advanced point that has hitherto been

reached. The stone that was rejected by the builders has become the chief corner-stone

of the building.

The Gaussian polynomials were also observed by Dickson [26, p. 49] to
count the total number of vector spaces of dimension n over a finite field of
q elements (where q is now a prime power). Dickson proved this directly, but
Knuth [43] was the first to point out exactly how the underlying partitions
fit in.

To do this, Knuth considered all possible canonical bases for the k-
dimensional subspaces of Vn, the vector space of dimension n over GF(q), the
Galois field of order q. Denoting the elements of Vn by (x1, x2, . . . , xn), for
xi ∈ GF(q), we see that a canonical basis for some subspace U consists of m
vectors of the form

ui = (ui1, ui2, . . . , uin), for 1 ≤ i ≤ k,

satisfying

uini = 1 , uij = 0 for j > ni, and ulni = 0 for l < i and 1 ≤ i ≤ k,

where n ≥ n1 > n2 > · · · > nk ≥ 1. He then gave an example that revealed
everything. If n = 9, k = 4, n1 = 8, n2 = 5, n3 = 3, and n4 = 2, then the
canonical basis of U is {u1, u2, u3, u4}, where
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u1 = (u11, 0, 0, u14, 0, u16, u17, 1, 0) ,

u2 = (u21, 0, 0, u24, 1, 0, 0, 0, 0) ,

u3 = (u31, 0, 1, 0, 0, 0, 0, 0, 0) ,

u4 = (u41, 1, 0, 0, 0, 0, 0, 0, 0) .

The pattern of the uij – namely,

∗
∗

∗ ∗ ∗
∗

∗
∗

– is the Ferrers graph of the partition 4 + 2 + 1 + 1. So each uij appearing
above may be filled in q4+2+1+1 = q8 ways. By this means we see clearly the
correspondence with each partition with at most k parts being at most n − k,
and Knuth’s observation is clear.

Near the turn of the 19th century, the Revd Alfred Young, in a series of
papers [71] on invariant theory, introduced partitions and variations thereof
(now calledYoung tableaux) in what would come to be called the representation
theory of the symmetric group (see [64]).

In the second half of the 20th century, applications mushroomed. J. W. B.
Hughes [42] developed applications (in both directions) between Lie algebras
and partitions. J. Lepowsky and R. L. Wilson [46] showed how to interpret
and prove the Rogers–Ramanujan identities in Lie algebras, and a number of
applications of partitions have arisen in physics (see [16]). Perhaps themost sat-
isfying (andmost surprising) was Rodney Baxter’s solution of the hard hexagon
model [14]; in simple terms, this work says that the Rogers–Ramanujan iden-
tities are crucial in studying the behaviour of liquid helium on a graphite plate
[15]. It is fitting to close this section by noting that K. O’Hara [52] has discov-
ered a purely partition-theoretic proof of Sylvester’s theorem that the Gaussian
polynomials are unimodal.
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Asymptotics

One of the greatest surprises in the history of partitions was the formula of
Hardy and Ramanujan [39] and Rademacher [55] for p(n). However, it was not
the first formula found for partition functions.

Cayley [22] and Sylvester [67] (anticipated by J. Herschel [41]) gave a number
of formulas for pk(n) for small k, where pk(n) is the number of partitions of n
into at most k parts (or, by conjugation, the number of partitions of n into parts
each of which is at most k). For example,

p2(n) = ⌊ 1
2 (n + 1)

⌋
and p3(n) = { 1

12 (n + 3)2
}
,

where 	x
 is the largest integer not exceeding x, and {x} is the nearest integer
to x.

Such results are fairly easy to prove, using nothing more powerful than the
binomial series. For example,

∞∑
n=0

p3(n)qn = 1
(1 − q)(1 − q2)(1 − q3)

= 1
6 (1 − q)−3 + 1

4 (1 − q)−2 + 1
4 (1 − q2)−1 + 1

3 (1 − q3)−1

= 1
12

∞∑
n=0

(n+ 2)(n+ 1)qn+ 1
4

∞∑
n=0

(n+ 1)qn+ 1
4

∞∑
n=0

q2n+ 1
3

∞∑
n=0

q3n

=
∞∑
n=0

( 1
12 (n + 3)2 − 1

3
)
qn + 1

4

∞∑
n=0

q2n + 1
3

∞∑
n=0

q3n .

So p3(n) must be an integer that is in absolute value within 1
3 of 1

12 (n + 3)2.
Thus, the above formula for p3(n) is valid. An extensive account of such results
and their history is given in [35].

In perhaps their most important joint paper [39], Hardy and Ramanujan
found an asymptotic series for p(n). The simplest special case of their result
is the assertion that, as n → ∞,

p(n) ∼ 1
4n

√
3
eπ

√
2n/3,

a result found independently by Uspensky [69] a few years later.
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Hardy and Ramanujan’s exact formula for p(n).

In 1937 Rademacher [55] improved the formula of Hardy and Ramanujan so
that a convergent infinite series was found for p(n) – namely,

p(n) = 1
π

√
2

∞∑
k=1

Ak(n)k1/2
⎡
⎣ d
dx

⎛
⎝ sinh

(
(π/k)

( 2
3
(
x − 1

24
))1/2 )

(
x − 1

24
)1/2

⎞
⎠
⎤
⎦
x=n

,

where

Ak(n) =
∑

h mod k
(h,k)=1

e−2π inh/k+iπ s(h,k)
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with

s(h, k) =
k−1∑
μ=1

(
(μ/k) − 	μ/k
 − 1

2
) (

(hμ/k) − 	hμ/k
 − 1
2
)
.

Now, this is not one of those mathematical formulas that elicits the response
‘Just as I expected!’ Indeed, it is really astounding: the proof consists of sheer
wizardry. The contributions of both Hardy and Ramanujan were summarized
as follows by J. E. Littlewood [48]:

We owe the theorem to a singularly happy collaboration of two men, of quite unlike gifts,

in which each contributed the best,most characteristic, and most fortunate work that was

in him. Ramanujan’s genius did have this one opportunity worthy of it.

Godfrey Harold Hardy (1877–1947) and Srinivasa Ramanujan (1887–1920).

Rademacher [55] also proved that if the series in the above equation for p(n)
is truncated after N terms, then the error is bounded in absolute value by

2π 2

9
√

3
eπ

√
2n/3 /(N+1) 1

N1/2 ,

which tends to 0 as N → ∞. This bound is quite crude; twenty-six terms of
the series are required to get within one unit of the correct value of p(200) =
3 972 999 029 388, a value calculated by hand byMacMahon. Actually, the result
is within 0.004 of the correct answer after only eight terms are evaluated (see [59,
p. 284]).
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Percy MacMahon’s table of partition numbers, up to p(200).
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It would be hard to overstate the impact of this result on number theory in the
20th century. After Ramanujan’s death in 1920,Hardy and Littlewood published
a series of papers (see [38]) with the title Some problems of Partitio Numero-
rum (originally used by Euler for Chapter 16 of his Introductio in Analysin
Infinitorum [28]). These papers gave deep results on sums of squares, Waring’s
problem, twin primes, the Goldbach conjecture, etc. After Rademacher made
his contribution to p(n), he and many of his school used his refinements and
alternative work using Ford circles (see [56]) to prove a myriad of asymptotic
theorems for the coefficients of modular forms and related functions.

The Rogers–Ramanujan identities

The history of partitions is filled with starts and stops. Euler’s penetrating study
of partitions stood for more than a hundred years before others made signif-
icant advances. One of the strangest stories surrounds two easily understood
partition theorems: the Rogers–Ramanujan identities.

The partitions of n into summands that differ from each other by at least 2 are equinumer-
ous with the partitions into parts of the forms 5m + 1 and 5m + 4.
The partitions of n into summands each larger than 1 that differ from each other by at least
2 are equinumerous with the partitions into parts of the forms 5m + 2 and 5m + 3.

Wemay express these results first as identities of the related generating func-
tions:

1 +
∞∑
n=1

qn2

(1 − q)(1 − q2) · · · (1 − qn)
=

∞∏
n=0

1
(1 − q5n+1)(1 − q5n+4)

and

1 +
∞∑
n=1

qn2+n

(1 − q)(1 − q2) · · · (1 − qn)
=

∞∏
n=0

1
(1 − q5n+2)(1 − q5n+3)

.

These latter two identities appeared in 1894 in a paper by L. J. Rogers that
appeared in the Proceedings of the London Mathematical Society, hardly an
obscure journal. The paper was entitled ‘Second memoir on the expansion of
certain infinite products’ [61]. Apparently the mathematical public had lost
interest somewhere in the first memoir on the Expansion of Some Infinite
Products [60]. In any event, the paper was quite forgotten when nineteen years
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later an unknown Indian clerk, Srinivasa Ramanujan, sent these identities to
G. H. Hardy.

At first glance these formulas look very much like ones that Euler had found,
connected with the products that we described earlier. However, Hardy found
that he was completely unable to prove them. He communicated them to Lit-
tlewood, MacMahon, and Perron, and no one could prove them. None of them
thought of sending them to Rogers. MacMahon was the person who saw the
series as generating functions for the two partition theorems, and he stated that
(see [49, Vol. 2, p. 33]):

This most remarkable theorem has been verified as far as the coefficient of q89 by actual

expansion so that there is practically no reason to doubt its truth; but it has not yet been

established.

Let us now turn toHardy’s account of themoment of illumination [37, p. 91]:

The mystery was solved, trebly, in 1917. In that year Ramanujan, looking through old

volumes of the Proceedings of the London Mathematical Society, came accidentally across

Rogers’s paper. I can remember very well his surprise, and the admiration which he

expressed for Rogers’s work. A correspondence followed in the course of which Rogers

was led to a considerable simplification of his original proof. About the same time I. Schur,

who was then cut off from England by the war, rediscovered the identities again. Schur

published two proofs, one of which is “combinatorial” and quite unlike any other proof

known.

Hardy wrote these words in 1940. For a while it seemed that these results
were isolated curiosities. Fourteen years later, basing his remarks on the work
of Lehmer [44] and Alder [1], Rademacher [57, p. 73] was to say ‘It can be
shown that there can be no corresponding identities for moduli higher than
5’. This turned out to be false. In 1961, B. Gordon [32] made the first step
towards a full exploration of results of this type, by proving the following
theorem.

Gordon’s theorem. Let Ak,a(n) denote the number of partitions of n into parts
not congruent to 0, or ±a(mod 2k + 1). Let Bk,a(n) denote the number of
partitions of n into parts of the form b1 + b2 + · · · + bj, where bi ≥ bi+1 and
bi − bi+k−1 ≥ 2 and at most a − 1 of the bi are 1. Then, for 0 < a ≤ k and each
n ≥ 0, Ak,a(n) = Bk,a(n).
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Gordon’s theorem led to an explosion of results (see [2], [7], [8]). D. Bressoud
made the first major combinatorial breakthroughs in the study of partition
identities (see [18]). In recent years, K. Alladi and his collaborators [3] have
found a substantial combinatorial theory of weighted words related to such
results.

Ramanujan made many contributions to mathematics, which were care-
fully surveyed by Hardy in his book [37]. However, we should not fail to
mention one more aspect of Ramanujan’s discoveries; he discovered a num-
ber of divisibility properties of p(n). Most notable are the following three
[59, p. 210]:

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

There are many other such results. Ramanujan conjectured infinite families
of congruences, and these conjectures were proved (after the removal of some
false ones) by Watson [70] and Atkin [13]. Most recently, K. Ono (in [53],
among many other papers) has given us a picture of the depth and scope of
these problems.

Other types of partitions

Earlier we alluded to some variations of partitions. The first mild variation is
composition. A composition is a partitionwherein different orders of summands
count as different compositions. Thus, there are eight compositions of 4 –
namely,

4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1.

In 1876, Cayley [24] proved the first non-trivial theorem on compositions:

Cayley’s theorem. Let Fn be the nth Fibonacci number. Then the number of com-
positions of n not using any 1s is Fn−1.
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Major Percy Alexander MacMahon (1854–1929).

MacMahon gave compositions their name and scrutinized them thoroughly
in [50, Vol. 1, Ch. 5]. As he developed his study of partitions, we can observe
him almost blindly stumbling onto another form of partition, the plane parti-
tions (see [50, pp. 1075–80]). Up to now, partitions have been linear or single-
fold sums of integers: n = ∑j

i=1 ai, where ai ≥ ai+1. However, MacMahon
found many intriguing properties associated with plane (or two-dimensional)
partitions:

n =
∑
i,j≥1

aij , where ai,j ≥ ai,j+1 and ai,j ≥ ai+1,j.

Usually plane partitions are most easily understood when pictured as an array.
For example, the six plane partitions of 3 are

3, 21, 2, 111, 11, 1
1 1 1

1.

Much to his surprise, MacMahon discovered (see [48, Vol. 1, p. 1071]), and
proved seventeen years later (see [48, Vol. 1, Ch. 12]), that
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∞∑
n=0

M(n)qn =
∞∏
n=1

1
(1 − qn)n

.

At first MacMahon believed that comparably interesting discoveries awaited
higher-dimensional partitions. However, he later noted that such hopes were
in vain (see [50, Vol. 1, p. 1168]).

Many subsequent discoveries have been made for plane partitions. A beauti-
ful development of recent work has been given byRichard Stanley, in two papers
[63] and an excellent book [64].

Further leads to the history

A short chapter like this must slight much of the history of partitions. Many
favourite topics have received little or no attention. So in this final section we
mention some historical sources where one may find a more detailed treatment
of various aspects of the history of partitions.

First and foremost is Chapter III of Volume 2 of L. E. Dickson’sHistory of the
Theory ofNumbers [25], which cites every paper onpartitions knownup to 1916.
H. Ostmann’sAdditive Zahlentheorie, Volume 1, Chapter 7 [54] contains a fairly
full account of progress in the first half of the 20th century. Reviews of all papers
on partitions from 1940 to 1983 can be found in [47] and [36], in Chapter P.
Inasmuch as MacMahon was a seminal and lasting influence in partitions, one
should examine Volume 1 of his Collected Papers [50, Vol. 1]; partitions were
used in his Combinatory Analysis [49], and each chapter is introduced with
some history and a bibliography of work since his death in 1930.

Besides these major works, there have been a number of survey articles
with extensive histories. H. Gupta provided a general survey in [33]. Partition
identities are handled in [2], [4], [7], and [12]. Richard Stanley gave a history
of plane partitions in [63]. Applications in physics are discussed by Berkovich
and McCoy in [16] (see also [11, Ch. 8]).

Finally, there are books that have some of the history of partitions.
Andrews [9] is devoted entirely to partitions, and theNotes sections concluding
each chapter have extensive historical references. Bressoud [19] has recently
published the history of the alternating signmatrix conjecture, an appealing and
well-told tale that is tightly bound upwith the theory of partitions. Ramanujan’s
amazing contributions to partitions (as well as many other aspects of number
theory) have been chronicled by G. H. Hardy [37], and most thoroughly by
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B. Berndt in five volumes [17]. Books with chapters on partitions include those
of Gupta [34, Ch. 7–10], Hardy and Wright [40, Ch. 19], Macdonald [51, Ch. 1,
Sect. 1], Rademacher [57, Parts I and III], Rademacher [58, Ch. 12–14], and
Stanley [64, Ch. 7].
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The Revd Thomas Penyngton Kirkman (1806–95).



CHAPTER 10

Block designs
norman biggs and robin wilson

This chapter outlines the origins of design theory, with particular
reference to the ‘Steiner triple systems’, the pioneering work of
Thomas Kirkman, and early contributions by a number of writers

on the ‘fifteen schoolgirls problem’. Connections are also made with finite
projective planes and with the design of experiments [1].

Triple systems

In the Lady’s and Gentleman’s Diary for 1844 the editor, Wesley Woolhouse,
posed the following problem:

Prize Quest. (1733); by the Editor.Determine the number of combinations that can be made

out of n symbols, p symbols in each; with this limitation, that no combination of q symbols,

which may appear in any one of them shall be repeated in any other.

The Diary was

designed principally for the amusement and instruction of students in mathematics: com-

prising many useful and entertaining particulars, interesting to all persons engaged in that

delightful pursuit,

and its readers were invited to send in solutions of the questions posed. Prize
Question 1733 is about arranging things: we are asked to arrange a number (n)

block des igns | 231



of symbols into groups of p elements in such a way that a particular condition
is satisfied.

Unfortunately, Woolhouse’s problem can be interpreted in various ways, and
just two solutions were received. One misunderstood the problem altogether,
while the other, by Septimus Tebay of theGasWorks in Preston, gave the answer
C(n, q) /C(p, q); if it is assumed that the arrangement is possible (which is not
always the case), this is the correct number.

Because thiswas not the interpretation thatWoolhouse had intended, in 1846
he duly presented his readers with a simplified challenge, corresponding to the
specific case p = 3, q = 2:

Question 1760. How many triads can be made out of n symbols, so that no pair of symbols

shall be comprised more than once amongst them?

Here is an example for n = 7, where the seven symbols are the numbers 1, 2,
3, 4, 5, 6, 7, and the triads (triples) are arranged vertically:

1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

The condition to be satisfied is that no pair of numbers may occur together
more than once. In this example, each pair appears exactly once – for example,
the numbers 3 and 5 appear together in the second triple, while the numbers 2
and 6 appear together in the sixth triple.

Such arrangements of numbers are now usually called Steiner triple systems,
for reasons that will be explained shortly.We shall denote a Steiner triple system
with n symbols by S(n).The example S(7) given above is easy to construct, since
from the first triple (1, 2, 4)we obtain each successive triple by adding 1 to each
number, always following 7 by 1; such systems are called cyclic systems.

Another example of a triple system, an S(9), is shown below; it has nine
symbols and twelve triples. Again, each pair of numbers appears in exactly
one triple – for example, the numbers 3 and 8 appear together in the eighth
triple:

1 1 1 1 2 2 2 3 3 3 4 7
2 4 5 6 4 5 6 4 5 6 5 8
3 7 9 8 9 8 7 8 7 9 6 9

Forwhich values ofndo such Steiner triple systems exist?Note that, in a triple
system with n symbols, each number appears f = 1

2 (n − 1) times, because the
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other n − 1 numbers appear in pairs with it. Also, when there are t triples, the
total number of entries in the system is 3t = nf , so t = 1

6n(n − 1). Since this is
an integer, nmust be one of the numbers in the sequence

7, 9, 13, 15, 19, 21, 25, 27, . . . ;

these are the numbers of the form 6k + 1 and 6k + 3, where k is an integer.
Initially it was not clear whether a triple system can be constructed for each
such number n, but this is indeed the case: there is essentially one system for
n = 7 and for n = 9, and there are two systems for n = 13, eighty for n = 15,
and millions for all higher values (n = 19, 21, 25, 27, . . . ).

For future reference, we call a triple system resolvable if its triples can be
rearranged into subsystems, each containing all n numbers. For example, the
above system S(9) can be rearranged into four sets of three triples, each set
containing all nine numbers:

1 4 7
∣∣∣ 1 2 3

∣∣∣ 1 2 3
∣∣∣ 1 2 3

2 5 8
∣∣∣ 4 5 6

∣∣∣ 6 4 5
∣∣∣ 5 6 4

3 6 9
∣∣∣ 7 8 9

∣∣∣ 8 9 7
∣∣∣ 9 7 8

Such an arrangement is possible only when n is divisible by 3, whichmeans that
nmust be of the form 6k + 3.

Triple systems first appeared in the work of the German geometer Julius
Plücker. In his 1835 book on analytic geometry [38] he observed that ‘a gen-
eral plane cubic curve has 9 points of inflection that lie in threes on 12
lines’; moreover, ‘given any two points of the system, exactly one of the lines
passes through them both’; this is just a description of the system that we
have called S(9). Plücker presented the system explicitly, and in a footnote he
observed that:

If a system S(n) of n points can be arranged in triples, so that any two points lie in just one

triple, then n has the form 6k + 3 . . . .

In a later book [39] he corrected his mistake, adding the possibility n = 6k + 1.
It is amatter of speculation as to howWesleyWoolhouse became interested in

triple systems, but one possibility is that James Joseph Sylvester, who had a life-
long interest in combinatorial systems and wrote a paper [44] on ‘combinatorial
aggregation’ in 1844, knew of Plücker’s work and mentioned it to Woolhouse.
We shall have more to say about Sylvester later.
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Kirkman’s 1847 paper

The Revd Thomas Penyngton Kirkman was a keen mathematician who had
studied in Dublin, and was rector of the small parish of Croft-with-Southworth
in Lancashire. His parochial duties took up little of his time, and he concen-
trated much effort on his mathematical researches, especially on algebraic and
combinatorial topics, being elected to a Fellowship of the Royal Society in the
process.

On 15 December 1846 Kirkman read a paper to the Literary and Philosoph-
ical Society of Manchester, entitled ‘On a problem in combinations’. In this
pioneering paper, published the following year in the Cambridge and Dublin
Mathematical Journal [21], he showed how to construct a Steiner triple system
S(n) for each positive integer n of the form 6k + 1 and 6k + 3, a substantial
achievement.

In order to do this, Kirkman introduced a supplementary system D(2m),
which is an arrangement into 2m − 1 columns of theC(2m, 2) pairs of 2m sym-
bols; these systems had earlier been considered by Sylvester in his 1844 paper.
Kirkman’s system D8 is shown below; it can also be regarded as a colouring of
the edges of the complete graph K8 with vertices h, i, k, l,m, n, o, p, where the
columns list those sets of four edges that are assigned the same colour:

hi hk hl hm hn ho hp
kl il ik in im ip io
mn mo mp ko kp mk nk
op np no lp lo nl ml

He then gave two constructions, in which he used these systems to extend
smaller Steiner systems to larger ones.

• From a Steiner triple system S(n) and a supplementary system D(n + 1) he con-

structed a Steiner triple system S(2n + 1). For example, from the system S(7) and

the above design D(8) he constructed a system S(15).

• From a triple system S(2n + 1) he removed two symbols and some triples to

obtain a partial system S∗(2n − 1) in which certain pairs do not appear; then,

from a partial system S∗(m + 1) he constructed a triple system S(2m + 1). For

example, from the system S(7) he successively obtained S∗(5) and S(9).

By combining these constructions, Kirkman was able to construct a Steiner
triple system with n symbols for every n of the form 6k + 1 or 6k + 3.
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The contributions of Steiner

In 1853 the Swiss geometer Jakob Steiner wrote a short note [43] on triple
systems, a topic that he had probably encountered while studying Plücker’s
work. In this note Steiner correctly observed that triple systems with n points
can exist only when n has the form 6k + 1 or 6k + 3. He also asked whether
triple systems could be constructed for all such numbers, unaware that Kirkman
had completely solved this problem six years earlier. This lack of awareness
may have arisen from the fact that the Cambridge and Dublin Mathematical
Journal, though well known in Britain, was little known on the Continent. The
situation was further complicated when M. Reiss [41] solved Steiner’s problem
using methods very similar to those of Kirkman, causing the latter to complain
sarcastically [28]:

. . . how did the Cambridge and Dublin Mathematical Journal . . . contrive to steal so

much from a later paper in Crelle’s Journal, Vol. LVI., p. 326, on exactly the same problem in

combinations?

The term ‘Steiner triple system’ was coined much later by Ernst Witt [52].
Thus, not only did Kirkman fail to gain the credit for ‘Hamiltonian’ graphs,
which should rightly have been named after him (see Chapter 8), but he also
missed out on receiving the credit for his fundamental work on the construction
of triple systems.

Kirkman’s schoolgirls problem

While preparing his 1847 paper, Kirkman noticed that the thirty-five triples of
his system S(15) can be split into subsystems, each containing all fifteen points –
that is, it is a resolvable triple system. In the Lady’s and Gentleman’s Diary for
1850 [22], intermingled with challenges on the sons of Noah and the origins
of April Fool’s Day, he proposed a recreational form of this observation, now
known as Kirkman’s schoolgirls problem:

Fifteen young ladies in a school walk out three abreast for seven days in succession: it is

required to arrange them daily, so that no two shall walk twice abreast.

If there had been only nine young ladies, we could have used the resolvable
system S(9) displayed earlier. The four subsystems correspond to four days: on
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the first day, 1 walks with 2 and 3, 4 walks with 5 and 6, and 7 walks with 8 and
9; on the second day, 1 walks with 4 and 7, and so on; and no two young ladies
walk together more than once.

The problem of the fifteen young ladies also appeared in the Educational
Times ‘thus versified by a lady’ [3]:

A governess of great renown
Young ladies had fifteen,

Who promenaded near the town,
Along the meadows green.

But as they walked
They tattled and talked,
In chosen ranks of three,

So fast and so loud,
That the governess vowed
It should no longer be.

So she changed them about,
For a week throughout,
In threes, in such a way

That never a pair
Should take the air

Abreast on a second day;
And how did the governess manage it, pray?

A solution of the fifteen schoolgirls problem, listing the five triples for each
day, is shown below.

Monday: 1–2–3 4–5–6 7–8–9 10–11–12 13–14–15

Tuesday: 1–4–7 2–5–8 3–12–15 6–10–14 9–11–13

Wednesday: 1–10–13 2–11–14 3–6–9 4–8–12 5–7–15

Thursday: 1–5–11 2–6–12 3–7–13 4–9–14 8–10–15

Friday: 1–8–14 2–9–15 3–4–10 6–7–11 5–12–13

Saturday: 1–6–15 2–4–13 3–8–11 5–9–10 7–12–14

Sunday: 1–9–12 2–7–10 3–5–14 6–8–13 4–11–15

Notice that, as before, any two schoolgirls walk together exactly once; for exam-
ple, schoolgirls 3 and 10 walk together on Friday.

236 | combinator ics : anc ient and modern



The Lady’s and Gentleman’s Diary for 1850.

The schoolgirls problem proved to be more successful than the 1844 Prize
Question, and two solutions appeared in the Diary for 1851: one by Kirkman
himself, and one supposedly obtained independently by Mr Bills of Newark,
Mr Jones of Chester, Mr Wainman of Leeds, and Mr Levy of Hungerford; how
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they all produced exactly the same solution is unclear. Kirkman claimed that
his own solution was ‘the symmetrical and only possible solution’, but he was
wrong; another symmetrical solution, different from his, had been obtained a
few months earlier by Arthur Cayley [11].

Kirkman himself described several variations of the problem [24]. He solved
the corresponding problem for nine young ladies, believed it to be impossible
for twenty-one young ladies, and asserted the following results:

Sixteen young ladies can all walk out four abreast, till every three have once walked abreast;

so can thirty-two, and so can sixty-four young ladies; so can 4n young ladies.

In 1852 Spottiswoode [42] extended the problem to 22n − 1 young ladies, walk-
ing in threes over 22n−1 − 1 days – that is, to 15, 63, 225, 1023, 4095, . . . young
ladies, where the numbers of days are 7, 31, 127, 511, 2047, . . . , respectively.

Also in 1852 a new type of solutionwas produced by the Revd Robert Anstice
[4], who had studied mathematics in Oxford. Unlike the previous somewhat
ad hoc attempts, he sought systems that involved some structure, and succeeded
in finding a cyclic solution. He also found solutions for any n = 2p + 1, where
p is a prime number of the form 6k + 1.

Anstice’s solution for the case n = 15 is given below, with the schoolgirls
denoted by 0–6 in normal type, 0–6 in bold face, and the symbol ∞ (infin-
ity). Notice that once we have the arrangement for Monday, we can obtain the
arrangement for each successive day by adding 1, always following 6 by 0, and
leaving ∞ unchanged.

Monday: ∞–0–0 1–2–3 1–4–5 3–5–6 4–2–6

Tuesday: ∞–1–1 2–3–4 2–5–6 4–6–0 5–3–0

Wednesday: ∞–2–2 3–4–5 3–6–0 5–0–1 6–4–1

Thursday: ∞–3–3 4–5–6 4–0–1 6–1–2 0–5–2

Friday: ∞–4–4 5–6–0 5–1–2 0–2–3 1–6–3

Saturday: ∞–5–5 6–0–1 6–2–3 1–3–4 2–0–4

Sunday: ∞–6–6 0–1–2 0–3–4 2–4–5 3–1–5

Further cyclic solutionswere produced by theAmericanmathematicianBen-
jamin Peirce [37]. Indeed, he showed that there are just three types of cyclic
solution, the ones obtained respectively by Anstice, Kirkman, andCayley.These
three types are determined by their Monday schedules, as follows.
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Anstice: ∞–0–0 1–2–3 1–4–5 3–5–6 4–2–6

Kirkman: ∞–0–0 1–3–4 2–4–5 3–5–6 1–2–6

Cayley: ∞–0–0 1–5–6 3–4–6 1–2–4 3–2–5

The contributions of Sylvester

At this point we must refer again to the brilliant but eccentric James Joseph
Sylvester, whose chequered career, on both sides of the Atlantic, culminated
in his election as the Savilian Professor of Geometry in Oxford at the age of
69. As noted earlier, Sylvester had written about combinatorial systems in 1844
and, in a paper of 1861 [45], he tried to claim priority for the idea of the
schoolgirls problem in his own inimitable, but somewhat incomprehensible,
way:

. . . in connexion with my researches in combinatorial aggregation . . . I had fallen upon

the question of forming a heptatic aggregate of triadic synthemes comprising all duads

to the base 15, which has since become so well known, and fluttered so many a gentle

bosom, under the title of the fifteen school-girls’ problem; and it is not improbable that

the question, under its existing form, may have originated through channels which can no

longer be traced in the oral communications made by myself to my fellow-undergraduates

at the University of Cambridge long years before its first appearance, which I believe was

in the Ladies’ Diary for some year which my memory is unable to furnish.

Kirkman quickly dismissed these claims [27]:

My distinguished friend Professor Sylvester . . . volunteers en passant an hypothesis as to

the possible origin of this noted puzzle under its existing form. No man can doubt, after

reading his words, that he was in possession of the property in question of the number

15 when he was an Undergraduate at Cambridge. But the difficulty of tracing the origin

of the puzzle, from my own brains to the fountain named at that university, is considerably

enhanced by the fact that, when I proposed the question in 1849, I had never had the

pleasure of seeing either Cambridge or Professor Sylvester.

Then, after citing his own paper, Kirkman concluded:

No other account of it has, so far as I know, been published in print except this guess of

Prof. Sylvester’s in 1861.
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Sylvester also proposed that:

It were much to be desired that some one would endeavour to collect and collate the

various solutions that have been given of the noted 15-school-girl problem by Messrs

Kirkman, . . . , Moses Ansted [presumably Robert Anstice] . . . , by Messrs Cayley and

Spottiswoode, . . . , and Professor Pierce [Peirce], the latest and probably the best . . . .

This was eventually done in a paper of F. N. Cole [13] in 1922. It turns out
that there are essentially seven different solutions of the schoolgirls problem.
A bibliography of early papers relating to the problem was given by Eckenstein
[16].

But Sylvester did make one significant contribution to the subject. As
reported by Cayley [11] in 1850, Sylvester noticed that there are C(15, 3) =
455 = 13 × 35 possible triples of schoolgirls, and asked whether it is possible
to produce thirteen disjoint solutions to the schoolgirls problem, so that each
of these 455 triples occurs just once in the quarter-year (thirteen weeks). In
1850 Kirkman [23] claimed (incorrectly) to have a solution, and the problem
remained unsolved for over a hundred years until 1971 when R. Denniston [14]
used a computer to construct a solution.

Around the same time, the general schoolgirls problem for larger numbers
of schoolgirls, in which 6n + 3 schoolgirls walk in threes over 3n + 1 days, was
solved by Ray-Chaudhuri and Wilson [40]. In fact, an independent solution
had been found a few years earlier by Lu Xia Xi, a schoolteacher from Inner
Mongolia. However, the extension of Sylvester’s problem for 6n + 3 schoolgirls,
where we are required to split the set of all C(6n + 3, 3) triples into 6n + 1
disjoint solutions of the schoolgirls problem, remains unsolved to this day.

It is sad that Kirkman’s name should be remembered primarily for the school-
girls problem, because hismathematical papers entitle him to be regarded as the
founding father of the general theory of what are now called block designs, rather
than the author of an amusing puzzle.We now consider his contributions in this
area and show how they led to other important discoveries in mathematics. A
fuller discussion of Kirkman’s life and work can be found in Biggs [7].

Projective planes

Plücker’s version of the system S(9), described above, was based on a geometri-
cal configuration of points and lines. A pictorial representation is shown below,
with lines corresponding to the blocks of S(9).
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S(9), represented as a geometry.

The geometrical terminology can be applied more generally. The starting
point is the observation that in plane geometry any two points determine a
unique line. This is apparent in our picture of S(9), although some of the lines
have had to be ‘bent’ in order to represent all the relationships correctly. The
‘dual’ property, that any two lines meet in a single point, does not quite hold in
ordinary geometry or in S(9), because two linesmay be parallel and thus have no
point of intersection. However, geometers eventually became dissatisfied with
this awkward exception, and invented a new kind of geometry, called projective
geometry, in which every pair of lines meet in exactly one point.

Formally, we define a projective plane to be a set of ‘points’ and a set of ‘lines’
with the following incidence properties:

• each pair of points is incident with a unique line;

• each pair of lines is incident with a unique point.

(In order to avoid trivial complications, we also assume that not all the points
lie on a single line.) It can shown (see below) that a projective plane with a
finite number of points must have s2 + s + 1 points and s2 + s + 1 lines, for
some positive integer s (called its order). Furthermore, each line is incident with
exactly s + 1 points and each point is incident with exactly s + 1 lines. In fact,
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we have already met such an object with s = 2: the system S(7), which can be
represented pictorially as follows. Here, too, one of the lines has been bent in
order to display the correct incidences.

2

3

6

4
7

5

1

The seven-point plane (Fano plane).

Kirkman [23] was the first to study finite projective planes. He did not
use geometrical language, but he described a method that produces projective
planes for each prime value of s. A later paper in a little-known publication, the
Transactions of the Historical Society of Lancashire and Cheshire [26], contained
explicit constructions for projective planes for s = 2, 3, and 5, as well as for
s = 4 and s = 8. Significantly, Kirkman failed to obtain a construction in the
case s = 6, nor was he able to prove that no such configuration can exist.

It was only gradually that geometers became aware that their subject could
be studied when the number of points is finite. The idea can be traced back to
von Staudt [48], andwas developed by the Italian geometer Gino Fano [17] who
described finite geometries of various dimensions and, in particular, the above
seven-point plane that now bears his name. Shortly afterwards, new algebraic
methods were introduced by the American mathematician E. H. Moore, in a
paper entitled ‘Tactical memoranda I–III’ [36]. The crucial fact is that all the
standard algebraic operations (those that we now use to define a field) can be
defined on a finite set of objects if and only if the size of the set is a power of
a prime. This observation enabled Moore to set up a method involving latin
squares (see Chapter 11) which is equivalent to constructing a projective plane
for each prime-power value of s.
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In 1906 a paper of Veblen and Bussey [49] continued the work of Fano
and Moore. They showed that a famous geometrical theorem of Desargues (on
triangles in perspective from a point) holds in any projective plane defined
by a finite field. The question of whether there might be projective planes
in which Desargues’s theorem does not hold was settled almost immediately
afterwards, when Veblen andWedderburn [50] described in some detail a non-
Desarguesian plane with s = 9.

The Veblen–Wedderburn plane is not defined over a field, but its order s is a
prime power. So the question arises:

Is the order of a finite projective plane necessarily a power of a prime?

Recall that Kirkman had failed to construct a plane of order 6, and indeed the
impossibility in this case was proved explicitly byMacInnes [33]. (It also follows
from results on latin squares described inChapter 11.)Amajor step forwardwas
made by Bruck and Ryser [9], who applied some results on integer matrices to
the incidence matrix of a projective plane. In this way they proved the non-
existence of projective planes of order s for infinitely many values of s, and in
particular when s = 2p, where p is a prime of the form 4k + 3.

The outstanding problem that remained was the existence of a plane of order
10, where the complications are immense; indeed, the problemwas not resolved
until electronic computers could be harnessed to the work. An approach by
means of coding theory was suggested by MacWilliams et al. [34]. As a result
of extensive computer searches, the ‘weight enumerator’ (which would exist if
a plane existed) was completely determined by Lam et al. [30] in 1986. Finally,
at the end of 1988, Lam and his colleagues announced that a projective plane of
order 10 does not exist (see [29] and [31]).

2-designs

In the 1920s the study of combinatorial configurations received another boost,
as a result of the work of the statisticians R. A. Fisher and F. Yates. They wanted
to design agricultural experiments in such a way that v varieties of wheat (say)
are tested in blocks of fixed size k, and each pair of varieties is compared the
same number (λ) of times.This led Yates [53] to study systems of ‘symmetrized
incomplete randomized blocks’, which are now known simply as 2-designs.

Formally, a 2-design with parameters (v, k, λ) consists of a set X of size v,
and a collection of subsets of X called blocks, each of size k, with the property
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that each pair of members of X is contained in exactly λ blocks. All of the
configurations discussed earlier are 2-designs: the system S(n) is a 2-designwith
parameters (n, 3, 1), a projective plane of order s is a 2-design with parameters
(s2 + s + 1, s + 1, 1), and there are many other examples. The following table
shows the blocks of a 2-design with parameters (10, 4, 2); you may like to check
that the pair {4, 7} (for example) appears in exactly two blocks.

0 1 2 3 0 1 4 5 0 2 4 6 0 3 7 8 0 5 7 9

0 6 8 9 1 2 7 8 1 3 6 9 1 4 7 9 1 5 6 8

2 3 5 9 2 4 8 9 2 5 6 7 3 4 5 8 3 4 6 7

It is straightforward to prove that, as a consequence of the definition, a
2-design must have another regularity property: each variety appears the same
number of times, say r. Indeed we have a simple formula for r, and also one for
b, the number of blocks:

r = (v − 1) / (k − 1), b = vr/k;

in the above table, you can check that r = 6 and b = 15. Since the numbers r
and bmust be integers, these formulas tell us that we cannot just write down any
triple of numbers (v, k, λ) and hope to construct a corresponding design; for
example, there cannot be a 2-design with parameters (8, 3, 1), because r = 7

2 ,
which is not an integer.

R. A. Fisher (1890–1962) and Frank Yates (1902–94).
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In 1938 Fisher and Yates published a book [19] containing a list of the
2-designs that were known at that time, but many sets of parameters satisfying
the elementary conditions were omitted. Around the same time Bose published
a long paper [8] describing several new methods of construction. But it was
already clear that the above elementary conditions are not sufficient; for exam-
ple, there is no projective plane of order 6, so the parameters (43, 7, 1) cannot
be realized. The problem of finding further necessary conditions was therefore
an important one.

In 1940 Fisher [18] showed that the condition b ≥ v is a necessary condition
for the existence of a 2-design; surprisingly, this is a non-trivial constraint.
Chowla and Ryser [12] applied methods similar to those used by Bruck and
Ryser for projective planes to designs with v = b and λ ≥ 1, obtaining sig-
nificant new conditions. In general, it remains an unsolved problem to find
a complete set of necessary and sufficient conditions for the existence of a
2-design with parameters (v, k, λ), although R. M. Wilson [51] has shown that
the elementary conditions given above are sufficient for existence, provided that
v is large enough.

t-designs, for t ≥ 3

The above designs all satisfy the requirement that every set of two points has
a certain property. It is easy to extend the definition to sets of t points, where
t ≥ 3. For example, the following table shows a collection of subsets of size 4
of the set {1, 2, 3, 4, 5, 6, 7, 8} with the property that each set of size 3 occurs in
exactly one of the blocks.

1 2 3 5 1 2 4 8 1 2 6 7 1 3 4 6 1 3 7 8 1 4 5 7 1 5 6 8

2 3 4 7 2 3 6 8 2 4 5 6 2 5 7 8 3 4 5 8 3 5 6 7 4 6 7 8

Generally, we define a t-design with parameters (v, k, λ) to be a collection
of subsets (blocks) of size k of a set of size v, with the property that every set
of size t occurs in exactly λ blocks. (In order to avoid trivial complications,
we assume that the blocks do not comprise all the subsets of size k, and that
no block appears more than once.) The above figure shows a 3-design with
parameters (8, 4, 1), first discovered by Kirkman [25]; in fact, in his paper he
gave a general construction for 3-designs with parameters (2n, 4, 1), for any
value of n.
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In spite of this early advance, and a few others, it soon became apparent that
3-designs are not plentiful. The situation regarding designs with t > 3 seemed
even worse. In 1869, a 4-design with parameters (11, 5, 1) was constructed by
Lea [32], and Barrau [6] later showed how it could be extended to form a
5-design with parameters (12, 6, 1). These two designs can be obtained from
some remarkable finite groups that were first constructed by Claude-Louis
Mathieu in the 1860s, but the connection was not properly recognized until
much later, when the designs were studied extensively by Carmichael [10] and
Witt [52]. These authors also studied two other remarkable designs obtained
from Mathieu’s groups – a 4-design with parameters (23, 7, 1) and a 5-design
with parameters (24, 8, 1). Such designs are interesting not only because of
their scarcity, but also because they form the basis for several other important
mathematical discoveries; for example, Golay [20] used them to construct two
perfect codes. These objects are very unusual – indeed, it has been shown that
there can be none besides those that are currently known. For a readable account
of this exciting area of mathematics, see Thompson [47].

For many years no new 4-designs or 5-designs were found, and this led
to speculation that no others exist, and that for t > 5 there are no t-designs
whatever. That state of affairs would have been remarkable, implying a deep
prejudice against high levels of regularity within a very basic part of finite
mathematics. However, in due course some new 4-designs and 5-designs were
discovered, by Alltop [2], Assmus and Mattson [5], and Denniston [15]. The
suspicion that t = 5might be an absolute limit was then dispelledwhenMagliv-
eras and Leavitt [35] found several 6-designs with parameters (33, 8, 36). Soon
afterwards, Teirlinck [46] surprised the mathematical community by showing
that t-designs can be constructed for all values of t. His designs are enormous,
and no practical applications have yet been found for them. Nevertheless, there
is still considerable interest in the explicit construction of designs with t ≥ 4.
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The cover of Georges Perec’s book La Vie Mode d’Emploi. This book has one hundred

chapters that correspond to a knight’s tour through a 10 × 10 array consisting of two

superimposed orthogonal latin squares of order 10.



CHAPTER 11

Latin squares
lars døvling andersen

A latin square of order n is an n× n array with entries from a set
of n symbols, arranged in such a way that each symbol appears
exactly once in each row and exactly once in each column. From

this simple starting point, the theory of latin squares has developed into
an interesting discipline in its own right, as well as an important tool in
design theory in general.

Introduction

1

1

1

2

2

2

3

3

3

Latin squares of orders 3, 4, and 5.

Consider the three latin squares above. The 3 × 3 latin square is a cyclic latin
square because the symbols appear in the same cyclic order in each row and
column. It is clear that cyclic latin squares exist for all orders n: write the n
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symbols in any order in the top row; for the second row shift each symbol one
column to the left, placing the first symbol in the last column; then continue in
this fashion row by row, always shifting by one column to the left. An equivalent
way to think of this construction, assuming that the symbols are the integers 1
to n, is that each new row is formed by adding 1 to every number in the previous
row modulo n. The two other latin squares above are original examples of early
latin squares.

The first known occurrences of latin squares seem to have been in their use
on amulets and in rites in certain Arab and Indian communities from perhaps
the year 1000: the nature of the sources makes the dating difficult. Most similar
amulets contain not a latin square, but amagic square – ann × n array filledwith
the symbols 1, 2, . . . , n2 for which the sum of the numbers in any row, column,
or main diagonal is the same. The latin square amulets, like the magic square
ones, were worn to fight evil spirits, show reverence for gods, celebrate the Sun
and the planets, etc.; in medieval books on magic and latin squares, they are
often framed by fanciful ornamental structures (see [1]).

A silver amulet from Damascus. On one side is a latin square, and on the other side are

the names of the Seven Sleepers,who, according to legend, slept in a cave for two hundred

years from about the year 250.
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But the use of such squares was not restricted to amulets or talismans. The
following picture shows how a latin square (here called a magic square) was
considered, together with a magic circle, to have powers for casting out devils
(see [2]); instructions for their use were given as:

Magic circles, squares, and figures, are sketched in the ground, or on a plank, with various

coloured powders,bhubhoot [cow-dung ashes],charcoal,or sundul;and the demoniac being

seated in the centre of it, the afsoon [incantation] is read. Around these diagrams are

placed various kinds of fruits, flowers, pan-sooparee, sheernee, sometimes sayndhee, taree,

nariellee [intoxicating liquors], daroo [ardent spirits], etc. Some sacrifice a lamb in front of

the circle, sprinkle blood around it, set up the head in front,placing a lamb upon it, lighted up

with a puleeta [charm-wick];or they merely slay a fowl, and sprinkle its blood around.Some

give a rupee or two, according to their means, into the hands of the person possessed by

the devil, to deposit therein.

The entries of the latin square, the numbers 2, 4, 6, and 8, were considered
throughout the Islamic Orient to have magic powers when occurring together,
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in which case they could be associated with an often-used magic word. It is
significant that they also occur on both diagonals and in the four corners of the
square.

Tracing such occurrences of latin squares back in history leads to a famous
book, Shams al-Ma’arif al-Kubra (The Sun of Great Knowledge) [3], which was
written by Ah.mad ibn ’Al̄ı ibn Yūsuf al-Būnı̄, an Arab Sufi believed to have died
in 1225.This book containsmany latin squares (in addition tomanymoremagic
squares), including the above 5 × 5 square (the first latin square of the book, and
thus possibly the oldest known latin square) and a description of a talisman con-
taining seven latin squares, each associated with both a weekday and a planet.

One of seven latin squares of a talisman from al-Būnı̄ ’s book, associated with Thursday and

Jupiter. The first entry is in error, and although the structure of each square is obvious, only

three of them are correct.

The latin squares of al-Būnı̄ seem to serve two purposes: first, they have
certainmagic powers in their own right, some of thembeing related to a specific
planet; and secondly, and mathematically very interestingly, they seem to be
crucial in the construction of magic squares. In fact, there is strong evidence
[4] that al-Būnı̄ and other early Arab authors knew of methods for this that
were later taken up by 18th-century mathematicians, among them Leonhard
Euler.

Likewise, a book from 1356 on Indian mathematics [5] contains latin
squares with a clear focus on their use in certain constructions of magic
squares. Thus, Hindu mathematics also anticipated what Euler later formalized
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and developed, as we see below. In the succeeding centuries, more texts
contained such applications.

In the 13th century the Catalan mystic and philosopher Ramon Llull con-
structed latin squares in his efforts to explain theworld by combinatorialmeans;
the 4 × 4 square at the beginning of this chapter is taken from a larger drawing
of Llull’s (see Chapter 5).

An ancient card problem asks for the sixteen court cards in an ordinary pack
of playing cards to be arranged in a 4 × 4 array so that each row, each column,
and each main diagonal contains an ace, a king, a queen, and a jack, all of
different suits; thus, both the suits and the values form latin squares. From the
early 18th century or earlier, this problem featured regularly in collections of
mathematical problems of a recreational nature [6].

Two solutions to the card puzzle.

A latin square also appears on a brass plate in StMawganChurch inCornwall.
It takes the form of a poem commemorating a certain Hanniball Basset, who
died in 1709:

Shall wee all dye
Wee shall dye all
All dye shall we
Dye all wee shall

Like much of design theory, latin squares have applications in statistics, in
experimental design. The earliest known example is by the French agricultural
researcher François Cretté de Palluel, who presented a paper to the Royal Agri-
cultural Society of Paris on 31 July 1788 [7]. His purpose was to show that one
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might just as well feed sheep on root vegetables during winter – this was much
cheaper and easier than the normal diet of corn and hay – and he described an
experiment of feeding sixteen sheep with different diets and comparing their
weight gains.

Although no latin square appears in his published paper, the layout of his
sheep experiment amounted to a 4 × 4 latin square with four breeds of sheep
as rows, four different diets as columns, and four different slaughtering times as
symbols.

A page from the English translation of Cretté de Palluel’s 1788 paper.
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More recently, latin squares have featured in a number of artistic situations.
In Gonville and Caius College, Cambridge, there is a stained-glass window
commemorating their former student R. A. Fisher. It is a colourful 7 × 7 latin
square by the artist Maria McClafferty; another window, by the same artist,
commemorates John Venn. It also happens that some postage stamps are issued
in square sheets of n2 stamps, arranged as a latin square (see [8]).

The latin square window at Gonville and Caius College.

Euler and latin squares

Shortly before de Palluel’s paper appeared, latin squares were introduced to the
mathematical community by Leonhard Euler: he gave them their name, and
seems to have been the first to define them using mathematical terminology
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and to investigate their properties mathematically. Although he had known and
used them a little earlier, he first published latin squares in a paper that began
with his famous ‘thirty-six officers problem’, presented to the St Petersburg
Academy of Sciences in 1779 and published in 1782. He thereby launched a
more complicated concept: orthogonal Latin squares.

The introductory question in Euler’s paper.

Euler explained that the contents of the paper were inspired by a strange
question about a collection of thirty-six officers, of six different ranks and from
six different regiments, who should line up in a square in such a way that in
each line, both horizontal and vertical, were six officers both of different ranks
and from different regiments. He added that he had come to realize that such
an arrangement was impossible, but could not prove it.

Euler clarified the officers problemby denoting the regiments by Latin letters,
a, b, c, d, e, f , and the ranks byGreek letters,α,β , γ , δ, ε, ζ . He explained that the
task was to arrange the thirty-six pairings of a Latin and aGreek letter in a 6 × 6
array so that each row and column contained each Latin and Greek letter just
once: the 36 cells would then contain every possible pairing of a Latin symbol
and a Greek one.

He stated that since he had not been able to solve this problem, he
would generalize it to pairs from n Latin and n Greek letters for an arbi-
trary whole number n. He then worked with the numbers 1, 2, . . . , n, instead
of Latin and Greek letters, and introduced the concept of a latin square:
it was called a latin square because its numbers could be Latin letters in
what might have a counterpart with Greek letters satisfying the all-pairings
property!
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The first latin square to go by this name.On the left is a square of pairs: each number from

1 to 7 occurs exactly once in each row and each column, both in line and as an exponent,

and each ordered pair occurs exactly once.Referring to his earlier usage of Latin and Greek

letters,Euler called the in-line numbers ‘Latin numbers’ and the exponents ‘Greek numbers’.

He then dropped the exponents, obtaining the latin square on the right.

We now say that two latin squares of the same order are orthogonal if they
have the property that whenever two places have the same entry in one square,
then they have distinct entries in the other; it follows that if the two squares are
superimposed, then the n2 cells contain each possible pairing of a symbol from
the first square and one from the second.Thus, the officers problem asks for two
orthogonal latin squares of order 6. In the figure above, the square to the left
shows two orthogonal latin squares of order 7, showing that Euler could solve
the corresponding forty-nine officers problem. In the same way, if we ignore
the condition on the diagonals, the above card problem asks for two orthogonal
latin squares of order 4, and the solution presented shows that such orthogonal
latin squares exist.

Euler’s 1782 paper was called ‘Recherches sur une nouvelle espèce de quarrés
magiques’ (Research on a newkind ofmagic square). It contains a few references
to magic squares, showing how orthogonal latin squares can be used for con-
structing them. However, there is more evidence that Euler came to consider
latin squares through an interest in magic squares. These were well known at
the time, and he seems to have worked on them at an early age and returned
to them fifty years later. In his mathematical notebooks there is a brief piece
on magic squares, believed to be from 1726, and in 1776 he presented a long
paper on the topic to the Academy of Sciences of St Petersburg. Both were
published posthumously, and both were entitled ‘De quadratis magicis’ (On
magic squares).
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Wefind the evidence in his 1776 paper. In this paper Euler’s first construction
is of a 3 × 3 magic square. He explained that he needed the Latin letters a, b, c
and the Greek letters α,β , γ to be given numerical values. He then displayed
the square

a b c
b c a
c a b

with Latin letters and noted that each row and column has the same sum.Thus,
this square has constant row, column, and diagonal sums if and only if a + b +
c = 3c – that is, 2c = a + b.

He wished to obtain his magic square by adding to the above square a similar
one with Greek letters:

γ β α

α γ β

β α γ ,

giving the square array

a + γ b + β c + α

b + α c + γ a + β

c + β a + α b + γ .

Thismethod requires that the same two letters are not added twice, so the square
obtained by combining the first two squares,

a γ bβ cα

bα c γ aβ

cβ aα b γ ,

also displayed by Euler, must have the property that all nine pairings of letters
occurring are distinct. Letting a, c, b and α, γ ,β be arithmetic progressions, one
with difference 1 and the other with difference 3 (the size of the square), we
readily produce a magic square. Euler put (a, c, b) = (0, 3, 6) and (α, γ ,β) =
(1, 2, 3) and obtained the magic square

0 6 3 2 3 1 2 9 4
6 3 0 + 1 2 3 = 7 5 3
3 0 6 3 1 2 6 1 8.
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What he has done here, without using this terminology, is to find two orthogonal
3 × 3 latin squares and use them to construct a 3 × 3 magic square.

Neither in his 1776 paper, nor in his 1782 paper, did Euler use the phrase
‘orthogonal latin squares’. He also never used the term Graeco-Latin square for
a pair of orthogonal latin squares, a term frequently attributed to him – and
certainly not the name Euler square, also used later.

Euler then discussed the same method for 4 × 4 squares. Here he found
two orthogonal Latin squares, both with the property that each diagonal also
contains all the symbols. The combined square that he displayed is

aα b δ cβ dγ
d β c γ bα aδ
b γ aβ d δ cα
c δ d α a γ bβ .

This has the sum property for a magic square, no matter what values are given
to the letters. Euler noted that if a, b, c, d are assigned the values 0, 4, 8, 12
(in any order), and if α,β , γ , δ are assigned the values 1, 2, 3, 4 (in any
order), then all the integers from 1 to 16 are obtained as pair sums and a
magic square is obtained. He was thereby able to obtain 4! × 4! = 576 dis-
tinct magic squares of side 4; in fact, other assignments are possible, giving
furthermagic squares. Euler also found orthogonal latin squares of order 5, each
with distinct symbols on both diagonals, thereby obtaining 5! × 5! = 14 400
distinct magic squares of order 5.

We now return to the old ways of making magic squares by means of latin
squares, mentioned earlier. A Hindu method for combining squares can be
described as follows [9]:

• take a cyclic latin square of odd order with the numbers in the middle column

appearing in natural order;

• place next to it a copy where all the entries are multiplied by the order of the

square;

• flip the second square on top of the first, as if closing a book, and add the numbers

in corresponding cells.

The result is a magic square formed from numbers beginning with one more
than the order of the square; subtracting the order from each entry then gives
an ordinarymagic square. For example, theHindumethod can be used to create
a magic square of order 5, as follows:
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4 5 1 2 3
∣∣∣ 20 25 5 10 15

5 1 2 3 4
∣∣∣ 25 5 10 15 20

1 2 3 4 5
∣∣∣ 5 10 15 20 25

2 3 4 5 1
∣∣∣ 10 15 20 25 5

3 4 5 1 2
∣∣∣ 15 20 25 5 10

19 15 6 27 23 14 10 1 22 18

25 16 12 8 29 20 11 7 3 24

−→ 26 22 18 14 10 −→ 21 17 13 9 5

7 28 24 20 11 2 23 19 15 6

13 9 30 21 17 8 4 25 16 12

The construction works because the latin square obtained from a cyclic one of
odd order by interchanging left and right is orthogonal to the original square.
For two orthogonal latin squares obtained in this way, the method is exactly the
same as that of Euler.

An analysis of the magic squares in al-Būnı̄’s book shows that these could
have been formed by a similar method and thus be based on orthogonal latin
squares [10]. The method was taken up in later writings about magic squares
before Euler, and books by de la Loubère (1691) and Poignard (1704) and a
paper by la Hire (1705) led in 1710 to Joseph Sauveur publishing a text contain-
ing many orthogonal latin squares [11], as he had conceived the same idea as
Euler for constructing magic squares.

Sauveur used upper and lower case Latin letters where Euler later used Latin
and Greek letters; in the next section we present an illustration from his paper
where Greek letters appear as well, because here he needed three alphabets (de
la Loubère had already introduced Greek letters in his work on magic squares).
But although Sauveur discussed orthogonal latin squares in an abstract way over
sixty years before Euler did, he did not extract the idea of a single latin square:
nowhere in his paper is there an ordinary latin square with a single symbol
in each cell. On the other hand, the book by Poignard contained many such
squares, of orders 3 –10, 12, and 16, and with numbers as entries [12].

We should also note that a pair of orthogonal latin squares of order 9
appeared in the early 18th century in Korea, in a publication in Chinese by
Choe Sŏk-chŏng [13]. These can be seen as being based on one latin square of
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order 9 consisting of nine 3 × 3 subsquares, and the other 9 × 9 square being
orthogonal to the first and obtained from it by interchanging left and right as in
the Hindu case described above.

In the final section of his 1776 paper Euler consideredmagic squares of order
6, but here, as we have seen, he was not able to produce a pair of orthogonal latin
squares. Instead, he presented a similar construction (which he also introduced
for 4 × 4 squares) where the entries are still sums of a Latin letter and a Greek
letter, but where the squares formed by each type individually are no longer
latin squares (in fact, there was an error in his construction). Such methods for
constructing magic squares, by adding the entries of two auxiliary squares that
are not both latin squares, were also known to the earlier authors mentioned
above.

On 8 March 1779 Euler publicly announced such considerations in his St
Petersburg lecture on the officers problem, and in his 1782 paper he proceeded
to consider orthogonal latin squares in general. In discussing these, Euler intro-
duced another important concept for latin squares: a transversal (in Euler’s
paper, ‘une formule directrice’) in a latin square of side n is a set of n distinct
entries occurring in distinct rows and distinct columns. He explained that for a
latin square of side n to have a latin square orthogonal to it (in modern termi-
nology, an orthogonal mate), it must have nmutually disjoint transversals, each
corresponding to the occurrences of a particular symbol in the other square.
Euler actually stated that the search for transversals was the main object of the
paper, but added that he had no method for finding them.

First, he looked for transversals in cyclic latin squares, and he proved that a
cyclic latin square of side n has no transversals when n is even; more precisely,
he proved only that there is no transversal containing the first entry of the cyclic
square, but this generalizes easily. For the proof, he assumed that there is such
a transversal, and that its entries are 1 in the first column, a in the second, b in
the third, and so on. If these occur in rows 1,α,β , . . . , then, by the definition
of the cyclic square and calculating modulo n, we have

a = α + 1, b = β + 2, c = γ + 3, etc.

(Note the ease with which Euler let the distinction between Latin and Greek
letters serve a different purpose from that at the outset of the paper.) Since
{a, b, c, . . . } = {α,β , γ , . . . } = {2, 3, . . . , n}, he obtained

S = a + b + · · · = (α + 1) + (β + 2) + · · · = S + 1
2n(n − 1),
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which is true if and only if n is odd. A consequence is that

Cyclic latin squares of even order do not have orthogonal mates.

For odd n, the main diagonal is a transversal, and from the cyclic property it
is easy to find a set of n disjoint transversals. Thus,

Cyclic latin squares of odd order have orthogonal mates,

and consequently,

Orthogonal latin squares exist for all odd orders.

Euler noted this, and also gave rules for finding many other transversals from a
given one.

In the next three sections of his long paper, Euler investigated the existence
of transversals in latin squares built cyclically from cyclic 2 × 2, 3 × 3, and
4 × 4 squares. Along the way, he found new examples of latin squares without
transversals. He also proved that

There are orthogonal latin squares of all orders n divisible by 4.

The orthogonal latin squares of odd order based on the diagonal transversals
were exactly those relevant to the Hindu method we saw earlier, and the Indi-
ans had also been aware of the existence of orthogonal latin squares of orders
divisible by 4.

In conclusion, Euler offered the now famous Euler conjecture on orthogonal
latin squares:

Conjecture: There is no pair of orthogonal latin squares of side n, for n ≡ 2
(mod 4)

– that is, for n = 2, 6, 10, 14, 18, . . . . Euler knew this to be true for n = 2, but (as
we shall see in the next section) it tookmore than a century before Gaston Tarry
proved it true for n = 6, thereby settling the officers problem in the negative.
Almost two centuries elapsed before R. C. Bose, E. T. Parker, and S. Shrikhande
proved it to be false for all other values of n ≡ 2(mod 4).

The final pages of Euler’s remarkable paper contained some pointers to future
developments. He observed that a pair of orthogonal latin squares of side n
can be described by a list of n2 quadruples, each consisting of a row number, a
column number, the number in this position in the first square, and the number
in the same position in the second square; this anticipated the later notion of
an orthogonal array. Euler realized that the meaning of the positions in the
quadruples is interchangeable, so that given one pair of orthogonal latin squares
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of a given side, there could be twenty-four such pairs – although he knew that
these may not all be distinct. He also stated that he considered the problem of
enumerating latin squares to be very important, but also very difficult.

As can be seen from this discussion, magic squares do not play a promi-
nent role in Euler’s 1782 paper, and yet he chose to put their name in the
title. Whatever the reason for this – to attract readers, perhaps, because magic
squares were popular – it seems clear that the then unpublished paper from
his 1776 lecture contained important preliminary work. It was, however, the
concept of ‘orthogonality’ that was to prove fruitful for future combinatorial
advances.

Mutually orthogonal latin squares

As we have seen, Euler’s ‘officers problem’ and his more general conjecture
remained unresolved for a long time. The problem seems to have been well
known, at least in the late 19th century, when several papers on it appeared.
Euler’s paper was reissued in 1849, and this may have helped to arouse interest.

In 1900 Tarry [14] proved the conjecture true when n = 6, the officers case;
this is the earliest preserved proof known, although possibly not the first to be
conceived. (Among those publishing false proofs was the Danish mathemati-
cian Julius Petersen, whose paper appeared after Tarry’s.) Tarry partitioned the
set of 6 × 6 latin squares into seventeen classes and did a case-by-case analysis
of these.

Remarkably, there is an 1842 letter [15] from Heinrich Schumacher to Carl
FriedrichGauss informinghim that the astronomerThomasClausenhad solved
the question by reducing it to seventeen cases, but there is no known written
work from Clausen on this. Schumacher and Gauss discussed Euler’s general
conjecture without mentioning Euler, writing ‘Clausen vermuthet, dass es für
jede Zahl von der Form 4n + 2 unmöglich sei . . . ’ (Clausen suspects that for
numbers of the form 4n + 2 it is impossible . . . ).

Since Tarry’s case-by-case solution appeared, people have continued to look
for simpler proofs of the officers case, and a number have been found. Notable
examples of these are by Fisher and Yates (1934) [16], Betten (1983) [17], and
Stinson (1984) [18].

It is possible for more than two latin squares of the same order to be mutu-
ally orthogonal; for example, any two of the following three latin squares are
orthogonal:
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1 2 3 4 1 2 3 4 1 2 3 4
2 1 4 3 3 4 1 2 4 3 2 1
3 4 1 2 4 3 2 1 2 1 4 3
4 3 2 1 2 1 4 3 3 4 1 2

Such sets of ‘mutually orthogonal latin squares’ are now referred to as MOLS.
Before further progress on the Euler conjecture was made, H. F. MacNeish

(1922) mentioned a possible generalization of Euler’s conjecture to larger sets
of MOLS (see [19]). For any positive integer n, let N(n) be the maximum
number ofMOLS of order n; for example,N(4) = 3. It is not difficult to see that
N(n) ≤ n − 1 for all n > 1, since all the first rows can be assumed to be
1, 2, . . . , n, and the latin squaresmust then have different symbols (other than 1)
in the first cell of the second row. In his 1710 paper [11], Sauveur published three
MOLS of order 7 without using this terminology; this shows that N(7) ≥ 3.

Sauveur’s three mutually orthogonal latin squares of order 7.

In 1922 MacNeish defined an Euler square of order n and degree k to be a
square array of n2 k-tuples with properties corresponding to the entries defining
kMOLS; he also said that such an Euler square has index (n, k). Thus, Sauveur’s
diagram shows an Euler square of index (7, 3) consisting of forty-nine triples.
He required that k ≤ n − 1, so was obviously aware of this necessary condition.

MacNeish stated two basic results. The first is that

If q is a prime power, then there exist q − 1MOLS of order q
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– that is, there exists an Euler square of index (q, q − 1).
The second, in present-day language, is that

There is a direct product construction for combining k MOLS of order m and k
MOLS of order n to give k MOLS of order mn.

He mentioned that this construction extends a method that is similar to ‘the
method for combining two magic squares’ used by Tarry for index 2.

MacNeish’s arguments were not always watertight (his paper also included
an erroneous proof of the Euler conjecture) and, as Parker later observed, the
construction was ‘put on an algebraic foundation by H. B. Mann’ (although
Moore had done it earlier, and Bose had done it before Mann). Still, MacNeish
is usually credited with the following more general result, which follows from
the above statements:

If the prime factorization of n is pr11 p
r2
2 · · · prtt , then

N(n) ≥ min(pr11 , pr22 , . . . , prtt ) − 1.

MacNeish mentioned the possibility that the bound in this statement is actually
the true value ofN(n), as is the case when n is a prime power. If n ≡ 2(mod 4),
then one of the prime powers in the product is 2, so the conjectured value
for N(n) is 1, in agreement with Euler’s conjecture. He did not explicitly state
this as a conjecture in his paper, but wrote that the proof of this result ‘is
a generalization of the Euler problem of the 36 officers which has not been
proved’.

For a third of a century, both Euler’s conjecture and MacNeish’s generaliza-
tion of it remained open, and there were even published results lending support
to both conjectures. But in 1958–59, both conjectures fell. First, Parker discov-
ered fourMOLS of order 21, thereby disprovingMacNeish’s conjecture (his con-
struction yielded other counter-examples as well). Then Bose and Shrikhande
constructed two MOLS of order 22 and five MOLS of order 50, and after that
Parker found two MOLS of order 10; it was mentioned in these papers that
there are infinitely many numbers n for which Euler’s conjecture does not
hold. Finally, Bose, Shrikhande, and Parker [20] disproved the conjecture for all
n ≡ 2(mod 4), other than n = 2 and 6. The methods used by these so-called
‘Euler’s spoilers’ (a phrase coined byMartin Gardner [21]) had a general feature
that is so often useful: that of creating new designs from old ones in clever
ways.

lat in squares | 267



By this time, the problem had become so famous that on 26 April 1959 its
solutionwas announced on the front page ofTheNewYork Times in a news story
‘Major Mathematical Conjecture Propounded 177 Years Ago Is Disproved’.
When two orthogonal latin squares of order 10 were found, the November 1959
cover of themagazine ScientificAmerican reproduced a painting by its staff artist
Emi Kasai illustrating the squares with colours. In the following year, Mrs Karl
Wihtol made a needlepoint rug from the painting.

Two orthogonal latin squares of order 10 as a needlepoint rug.

Moreover, when the French author Georges Perec wrote his masterpiece La
Vie Mode d’Emploi (Life: A User’s Manual) in 1978, he thrust upon himself
a number of restrictions of a mathematical nature. One of these was that its
one hundred chapters should correspond to a knight’s tour through a 10 × 10
array consisting of two superimposed orthogonal latin squares of order 10. He
achieved this by letting the physical locations of the chapters be different parts of
a nine-storey building with a basement; the illustration that opens this chapter
gives a hint of this.

In 1960 four consecutive papers in the Canadian Journal of Mathematics
contained notable contributions to the theory of MOLS. The third of these
was the above-mentioned paper by Bose, Shrikhande, and Parker, showing the
falsity of Euler’s conjecture for all n ≡ 2(mod 4) other than n = 2 and 6. The
fourth paper was also remarkable: S. Chowla, P. Erdős, and E. G. Straus showed
thatN(n) → ∞ as n → ∞.This disproved Euler’s conjecture with a vengeance,
and yet their proof was based only on the MacNeish results, a single recursive

268 | combinator ics : anc ient and modern



construction due to Bose and Shrikhande, and some number theory. Since then,
much more has been revealed about the properties of N(n) (see [22]).

A simple direct construction for a pair of orthogonal latin squares of order
3k + 1 (such as 10 and 22) was given by Menon [23] in 1961: this was basically
a reformulation of a construction in the Bose, Shrikhande, and Parker paper,
but presented in very simple terms.

MOLS and projective planes

It is noteworthy that some of the results that could be used for the disproof of
the Euler and MacNeish conjectures had already been available for a long time.
In 1896 E. H. Moore [24] published a paper entitled ‘Tactical memoranda I–III’
which contained several results about MOLS, although they were not formu-
lated in that language (see Chapter 10). They were subsequently rediscovered
by later authors, unaware of their existence or the scope of their contents.

One such result was that

If n is a prime power, then there exists a set of n − 1MOLS of order n;

this preceded MacNeish’s publication of the same result by twenty-six years.
The product construction used by MacNeish also appeared in Moore’s paper.
Curiously, there is a reference to Moore’s ‘Tactical memoranda’ at the end of
MacNeish’s paper, as a place to find information about the application of Euler
squares to contests between k teams of n members each – but there are no
references to Moore in the part of the paper where MacNeish presents, in the
language of Euler squares, the results also found in Moore’s paper but with
different terminology!Moreover,Moore’s proofs and constructionswere clearer
than those of MacNeish, but for a long while it was MacNeish who was referred
to in later work.

Such complete sets of MOLS (where N(n) attains its maximum value of
n − 1) are particularly important as they are equivalent to ‘projective planes
of order n’. A finite projective plane (see Chapter 10) is a geometry consisting of
a finite number of points and lines, with the property that each pair of points
lies on exactly one line, and each pair of lines meets in exactly one point (hence
‘projective’: even parallel lines meet, if projected to infinity); furthermore, to
avoid trivial cases, there must exist at least four points, no three of which lie on
a line.
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The seven-point and thirteen-point geometries.

As we saw in Chapter 10, it can be shown that in a finite projective plane,
each line contains the same number s + 1 of points; such a plane is said to be of
order s. Using finite fields, one can prove that

A projective plane of order n exists whenever n is a prime power;

in this case, each line contains n + 1 points, each point lies on n + 1 lines, and
the total numbers of points and lines are eachn2 + n + 1. AlthoughMoore used
finite fields in his construction of complete sets ofMOLS, projective planes over
finite fields had already been treated by K. G. C. von Staudt in 1856, and by 1850
ThomasKirkman had proved the existence of projective planes of order n, when
n = 4 or 8 or a prime number.

In 1936, in the second of two papers introducing balanced incomplete block
designs, Frank Yates [25] explained how to obtain affine and projective planes
from complete sets of MOLS; he referred to these as completely orthogonalized
latin squares (hyper-Graeco-Latin squares). Yates noted that these exist for
prime orders and for orders 4, 8, and 9, ‘but higher non-primes have not been
investigated’. Unaware of the results of Moore and MacNeish, Yates referred
to R. A. Fisher’s book Design of Experiments (the second edition from the
same year) for this information. In later editions, Fisher noted that in 1939
W. L. Stevens had proved the existence for prime powers.

There is a record of Fisher’s delight in this result. In a report inNature in 1938
about a British Association meeting in Cambridge, with talks also by Norton,
Youden, and Yates, Fisher wrote the following:
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Mr.W.L. Stevens had a surprise in store, in the form of a demonstration of the fact that for

any power of a prime a completely orthogonal square exists.

But it was a 1938 paper by Bose that was to prove the equivalence between
projective planes of order n and sets of n − 1 MOLS of order n:

N(n) = n − 1 if and only if there exists a projective plane of order n.

Since projective planes of prime-power orders were well known, the result
implied the existence of complete sets of MOLS of such orders. But Bose also
gave a direct construction of complete sets ofMOLS using finite fields: his proof
of this result and his version of Moore and MacNeish’s prime-power construc-
tion are quite similar to those used inmost textbooks nowadays. Bose began his
paper by stating that it was a conjecture of Fisher that a complete set of MOLS
of order n exists for every prime power n, and he wrote that the constructions of
affine and projective planes from such sets correspond exactly to those of Yates.

In 1949 H. Bruck and H. J. Ryser proved that if a projective plane of order n
exists, where n ≡ 1 or 2(mod 4), then nmust be the sumof two perfect squares.
This gives the non-existence of projective planes for n = 14, 21, 22, . . . (and for
n = 6, but this was already known from Tarry’s result). Their result was gener-
alized the next year to give the celebrated Bruck–Ryser–Chowla theorem [26].

This connection between MOLS and projective planes makes it possible to
relate a number of further results about projective planes, such as non-existence
results, toMOLS.We note that, so far, no projective planes of non-prime-power
order are known, so it could well be true that N(n) = n − 1 if and only if
n is a prime power. After a long computer search based on coding-theoretic
considerations, Lam [27] concluded that no projective plane of order 10 exists,
so the value n = 12 is currently the smallest for which this statement is in doubt.

The influence from experimental design

In spite of Cretté de Palluel’s 1788 application, little use was made of latin
squares in experimental design until R. A. Fisher’s boost to this area in the
1920s. Fisher was chief statistician at Rothamsted Experimental Station inHert-
fordshire, UK, from 1919 to 1933, and later a professor in London, and wrote
numerous papers on various aspects of statistics.
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Fisher also conducted many experiments, often in agriculture, and took a
great interest in the design of experiments, writing his classic book, Design of
Experiments, in 1935. Many subjects from this area, including latin squares
in field experiments, also appear in 1925 in his first book, and in 1926 he
specifically wrote about the use of latin squares, and mutually orthogonal ones
in particular, in experiments [28]. Moreover, Yates began his 1936 paper (men-
tioned earlier) with the observation

Most biological workers are probably by now familiar with the methods of experimental

design known as randomized blocks and the Latin square.These were originally developed

by Prof. R.A. Fisher,when Chief Statistician at Rothamsted Experimental Station, for use in

agricultural field trials.

In his Design of Experiments, Fisher mentioned earlier uses of latin squares in
design. In particular, in a subsection of his latin square chapter on random-
ization, he warned against the use of systematic squares – that is, a preferred
layout (latin square) used repeatedly. He displayed a specific square of order 5
with constant diagonals, and noted that if this square were used for elimination
of soil differences in an agricultural experiment (as apparently it had been), it
would fail as far as diagonal fertility differences were concerned.

Fisher also noted that this shortcoming had been realized by many others,
and went on to mention the square below, ‘known in Denmark since about
1872’, as dealing with this difficulty.

A B C D E

C D E A B

E A B C D

B C D E A

D E A B C

Although this square had been previously published in Denmark several times,
it was credited to the Norwegian Knut Vik, who presented it in 1924.

Its apparent advantages notwithstanding, Fisher was not happy with the
systematic use of this square, and while it is safe to say that a reference to
the Knut Vik square is to the above square, there is confusion about the
generalization of this terminology. All diagonals (including ‘broken’ diagonals)
of the square are transversals, and squares with this property are now called
Knut Vik designs; they exist if and only if n is not a multiple of 2 or 3. His square
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also happens to be an example of a knight’s move square, because all the cells
with the same symbol can be visited by a chess knight with allowable moves.

It seems, however, that the theory of latin squares has been more influenced
by statisticians than by statistics. Certainly, some of the pioneers in the area of
statistical design of experiments, although naturally interested in the practical
uses of designs and in their enumeration, have also contributed significantly
to the underlying theory. Some statisticians have actually warned against too
much emphasis on latin squares in practice! Donald Preece has written that the
prominent feature of latin squares in textbooks has ‘led to their uncritical use’,
and even Fisher had an interesting remark:

This experimental principle is best illustrated by the arrangement known as the Latin square,

a method which is singularly reliable in giving precise comparisons,

adding

when the number of treatments to be compared is from 4 to 8.

Still, in a standard work on statistical tables first published in 1938, Fisher and
Yates provided tables of pairs of orthogonal Latin squares of orders 3 to 12
(except 6 and 10 – with a pair of order 10 included in later editions) as well
as complete sets of MOLS of order 3, 4, 5, 7, 8, and 9, while on the topic of
complete sets of MOLS Bose wrote that

The work of Fisher and Yates has shown that such squares are of fundamental importance

in experimental design.

Other results

Euler’s 1782 paper left open several immediate challenges. In addition to his
conjecture, he introduced such topics as enumeration and transversals. Natu-
rally, new questions have come to light since then, and research on latin squares
has both broadened anddeepened.We continue this chapter by describing some
of the more prominent recent developments.

Enumeration

A latin square of order n on symbols 1, 2, . . . , n is reduced if both the first row
and the first columnare 1, 2, . . . , n in order. Amuch-used enumeration function
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(see [29]) is l(n), the number of reduced latin squares of order n; the total
number of distinct latin squares on these symbols is then n!(n − 1)! l(n). Euler
determined l(n) for n ≤ 5: the values are 1, 1, 1, 4, and 56.

A latin rectangle is a rectangular array of symbols in which no symbol occurs
twice in any row or column. We let l(k, n) denote the number of k × n latin
rectangles on n symbols with first row 1, 2, . . . , n and first column 1, 2, . . . , k.
A result of Marshall Hall asserts that

Any latin rectangle of size k × n on n symbols can be completed to a latin square
of order n.

Thus, it is interesting to examine l(k, n), for all k, with a view to determining the
specific value l(n, n) = l(n).

For k = 2, Euler found the recursion

l(2, n) = (n − 2) l(2, n − 1) + (n − 3) l(2, n − 2).

Hewrote down the first ten values of l(2, n), but apparently did not recognize the
problem of derangements here. However, Arthur Cayley made the connection
in 1890, referring to the ‘well-known problem’ and stating the solution

l(2, n) = n!
(
1 − 1

1! + 1
2! − · · · ± 1

n!
)/

(n − 1).

In the same paper, Cayley recalculated Euler’s values of l(n), for small n.
In 1890 M. Frolov correctly stated that l(6) = 9408, but gave a value for l(7)

that was about thirteen times too large. In a series of papers from 1949–51,
A. Sade showed that l(7) = 16 942 080, at the same time correcting earlier mis-
takes of S. M. Jacob and H. W. Norton. In 1969 M. B. Wells determined l(8) to
be 535 281 401 856. The value of l(9) was found in 1975 by S. E. Bammel and
J. Rothstein, and in 1995 B. D. McKay and E. Rogoyski determined l(10); their
paper also contains a listing of l(k, n) for all k ≤ n ≤ 10. In 2005 l(11) and the
corresponding numbers of rectangles were found by McKay and I. M. Wanless;
l(11) has 48 digits. In 1981 Smetaniuk proved that the number of latin squares of
a given order is strictly increasing, and the parameters determined in later years
showed the possibilities and limitations of computers for all these enumeration
problems.

Attempts at finding algebraic descriptions for latin square and rectangle enu-
meration have resulted in formulas that are impractical for calculation. Asymp-
totic results and bounds exist, however. In 1969, before the van der Waerden
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conjecture was proved (posed in 1926, this conjecture says that the permanent
of ann × n doubly stochasticmatrixA satisfies perA≥ n!/nn), Ryser [30] noted
that its truth would imply that

l(n) ≥ (n!)2n−2

nn2
,

and in their 1992 textbook J. van Lint and R. M.Wilson proved that this bound
is asymptotically of the right order of magnitude.

Transversals and partial transversals

As we have seen, transversals were important in Euler’s 1782 paper – indeed,
he considered them to be the first and foremost object of his paper, which con-
tained the first results on latin squares without transversals. This line of inves-
tigation was continued in connection with research on orthogonality, since a
latin square with no transversals cannot have an orthogonal mate. On the other
hand, there are situations (for example, if the latin square is the multiplication
table of a group) where the existence of just one transversal is enough to imply a
decomposition into transversals, and thus the existence of an orthogonal mate.
Euler had already exploited this.

In 1894 E. Maillet generalized Euler’s findings that, within a certain class of
latin squares, those of order n = 2(mod 4) have no transversals. A latin square
of order mq is of q-step type if it can be obtained by replacing each individual
entry in a cyclic latin square of orderm by a latin square of order q, in such away
that these are on the same set of symbols if they replace the same symbol, and
on disjoint sets of symbols otherwise. Maillet then proved that a latin square of
order mq of q-step type has no transversals when m is even and q is odd; his
proof is similar to the one given by Euler for q = 1, only more complicated.

While it has been known since Euler’s time that there are latin squares with
no transversals, two related problems have remained unanswered. In 1967Ryser
conjectured that every latin square of odd order has a transversal: this is true for
latin squares coming from groups and for symmetric latin squares, where the
main diagonal is a transversal. It has also been conjectured (by R. A. Brualdi,
S. K. Stein, and probably others) that every latin square of order n has a partial
transversal of length at least n − 1; that is, a set of cells in distinct rows, in
distinct columns, and containing distinct symbols: this conjecture prompted
people to search for long partial transversals. Since K. Koksma proved in 1969
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that a latin square of order n ≥ 7 has a transversal of length at least 1
3 (2n + 1),

there have been a number of improvements; for example, in 2008 Hatami
and Shor [31] proved the existence of a partial transversal of length at least
n − 11.1(log n)2.

Quasigroups, completion, and critical sets

The Cayley table (or multiplication table) of any finite group is a latin square,
so when group theory began to flourish in the second half of the 19th century
there were plenty of latin squares to study. It seems, however, that few of the
leading group-theorists were interested in this aspect, Cayley himself being one
of them.

Not every latin square bordered by (say) its first row and column is the
Cayley table of a group, since associativitymay not hold. Instead, it corresponds
exactly to the concept of a quasigroup, an algebraic structure with a binary
operation for which the equation x · y = z has unique solutions for x (given
y and z) and for y (given x and z). Quasigroups were essentially introduced by
E. Schröder in the 1870s, but did not achieve general attention until the 1930s.
Since then, many results on latin squares have been first formulated in terms of
quasigroups.

One particular area that has often been discussed in terms of quasigroups
is that of the completion of partial structures. In terms of latin squares, the
typical question is whether a partial latin square (a square array, possibly
with empty cells, whose entries do not violate the latin square conditions)
can be completed to a latin square. A conjecture that was posed in 1960,
known as the Evans conjecture, was proved true by Smetaniuk in 1981. It
states that a partial latin square of order n with at most n − 1 non-empty
cells can always be completed. In quasigroup terminology, such problems are
often formulated with extra conditions, such as idempotency, commutativ-
ity, etc.

A partial latin square is a critical set if it can be completed in exactly one way
to a latin square of the same order, and if the deletion of any entry destroys
this uniqueness. The problem of sizes of critical sets is a topic with many open
questions, and may recently have become especially popular because of its
connections with sudoku puzzles.
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Sudoku

Since around 2005, sudoku puzzles have been challenging crosswords as the
favourite pastime offered by newspapers and magazines all over the world,
and multiple collections of sudokus have been issued in many countries.
A completed sudoku is a latin square of order 9with symbols 1, 2, . . . , 9, with the
additional condition that each of the nine natural 3 × 3 subsquares contains all
nine symbols. The task is to complete the square from a given set of prescribed
entries; this set must be a defining set for the sudoku – that is, there is a unique
solution, and it is often required that the set be critical, so that for any proper
subset of the ‘givens’ there is more than one solution. It has recently been shown
that there is no such defining set of size 16 (see [32]) – in other words, a sudoku
puzzle such as the following, with a set of 17 givens, represents the least possible
number of givens for a unique solution:

5

6

8

7

3

7 5

2

3 4

2

8

1

6

4 3

1

A sudoku puzzle with the minimum number of givens.

Sudokus have their name from Japanese, but theywere invented in theUnited
States in the late 1970s when the architect HowardGarns began publishing such
puzzles in Dell magazines, the first appearing in Dell Pencil Puzzles and Word
Games in May 1979. The puzzles were then called ‘number place’, but when
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they became popular in Japan in the mid-1980s, it was under the name suji wa
dokushin ni kagiru, which means ‘number is limited only single’; this became
abbreviated to ‘sudoku’. In 1986, when the interest exploded, the Japanese
publishing company Nikoli introduced the extra rule that the cells filled with
prescribed entries should have 180-degree rotational symmetry, though this
rule is now often ignored. It is believed that the least possible number of givens
for a sudoku puzzle with 180-degree symmetry is 18, but this has not yet been
proved.

Sudokus have often been attributed to Euler, but this is incorrect. However, as
has been pointed out byChristianBoyer [33], therewere forerunners of sudokus
in France as early as the end of the 19th century, mainly in the form of puzzles
about completing magic squares. The following figure shows one such from
1891, where subsquares of sudoku type were part of the problem: complete the
magic square with numbers 1–81 so that, in each of the indicated subsquares,
all row and column sums are 123.

14

2

1

4

7 9

6

3

8

54 59 39 80

40

A sudoku-like problem about magic squares from 1891.

The following figure shows a square from a problem from 1895: complete the
square with numbers 1–9 so that the sum of the entries in each row, column,
and main diagonal is the same. The solution actually turns out to comply with
the sudoku rules! The solution, published in 1895, is also shown.
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7

7

7

7

7

3

5

8

8

8

8

9

9

9

9

1

1

1

1

2

2

2

2

2

4

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

6

9

8

1

7 8 9 1 2 3 4 5 6

3 1 2 6 4 5 9 7 8

5 6 4 8 9 7 2 3 1

8 9 7 2 3 1 5 6 4

1 2 3 4 5 6 7 8 9

6 4 5 9 7 8 3 1 2

9 7 8 3 1 2 3 4 5

2 3 1 5 6 4 8 9 7

4 5 8 7 6 9 1 2 3

A problem from 1895 and its published sudoku solution.

Sudoku squares are also included inW. T. Federer’s 1955 book [34] on exper-
imental designs, in the general form of latin squares of order n = m1m2 which
satisfy the requirement that the entries in each naturalm1 × m2 subsquare are
all distinct. Federer attributed this to G. M. Cox, and he called such a latin
squaremagic (‘super magic’ ifm1 �= m2 and them2 × m1 subsquares also have
the property). This concept makes better sense than just the row and column
requirements do in (say) an agricultural experiment designed to expose the
treatmentsmore evenly to varying conditions in the field. In 1956W.U. Behrens
[35] published an extension of this idea to gerechte designs (proper designs),
where the subsquare pattern is replaced by any given partition of the latin square
into n regions of n cells each.

Wayne Gould, a retired judge and a resident of Hong Kong, realized the
power of computer programs in generating sudokus, and on 12November 2004
The Times of London published one of his sudokus (or rather, a Su Doku, as
it was then called). Many more newspapers followed as the puzzles became
increasingly popular, and The Times had Gould answer readers’ questions on
sudokus; he later produced sudokus for several newspapers. In the US, sudoku
championships, live TV sudoku shows, and similar events followed, as a further
sign of their popularity.

It has been calculated that there are 6 670 903 752 021 072 936 960 distinct
sudoku squares.This means that only about one in a million 9 × 9 latin squares
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is a sudoku square. Many of these can be obtained by performing simple oper-
ations on others, and the total number of essentially different sudoku squares is
5 472 730 538. It is hard to compare this to a number for latin squares, as the
two have very different symmetries (see [36]).

There are now several variants and generalizations of sudoku, many of these
also interesting to mathematicians. Other grid sizes than the usual 9 × 9 are
possible, with other subsquare sizes. The grid can also be of more than two
dimensions. Further, subdividing the basic square – which still must be a latin
square when filled in – into shapes that are not necessarily similar is a possibility
(corresponding to the gerechte designsmentioned above). Also, rather than just
requiring the entries in a subarea to be distinct, one can have conditions on their
sum, product, or the like. An example of the latter variants is KenKen, where
no entries are prescribed; the difficulties and uniqueness come from the shapes
(called cages) and requirements alone. But the solution is always a good old latin
square!
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Peter Nicholson (1765–1844), practical builder and mathematician.



CHAPTER 12

Enumeration
(18th–20th centuries)
e. keith lloyd

B y the end of the 18th century, what is now called ‘enumerative
combinatorics’ was emerging as a distinct discipline. The con-
nections between certain combinatorial problems and algebraical

expansions had already been recognized, but were now more extensively
exploited. In the 20th century the theory of permutation groups was suc-
cessfully used to solve many enumeration problems.

Introduction

In Chapters 5 and 6 Eberhard Knobloch discusses the development of permuta-
tions, combinations, etc., up to the mid 18th century. Hementions in particular
that in the 17th century, authors often inserted sections on combinatorics into
their textbooks on arithmetic and algebra, or began towrite specialmonographs
on the subject. But he also points out that some of the contributors, such as
Abraham de Moivre, were more interested in combinatorics applied to games
than as a subject in its own right.

By the end of the 18th century, combinatorial analysis (as it was then usually
called) was recognized as a distinct discipline, and rather more substantial
books began to appear devoted exclusively to the topic. It had already been
realized that there is an intimate connection between certain combinatorial
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problems and algebraical expansions, and so in the books then appearing the
authors spent much time seeking algorithms for calculating coefficients in vari-
ous algebraical expressions, or for rewriting algebraical expressions in different
forms.

In the 19th century, group theory was developing as a subject, and by the end
of the century some elementary use of it had beenmade in combinatorics. In the
first half of the 20th century, deeper interrelationships between permutation
group theory and combinatorics were recognized, notably by J. Howard
Redfield and George Pólya. Unfortunately, Redfield’s work was overlooked and
remained unpublished until many years after his death; consequently, many
of his results were rediscovered independently by other researchers later in the
20th century.

Enumeration and algebraical expansions

The starting point for this topic is the fact that combinations are intimately
connected with expansions of binomial factors. The observation that there is
such a connection was attributed to Thomas Harriot (1560–1621) by Peter
Nicholson, who in 1818 wrote [34, pp. v–vi]:

In the case of products formed of binomial factors, of the form x + a, x + b, x + c, &c., it

had, long before my time,been observed by Hariot, that the coefficients of the second term

were the sum of all the quantities a, b, c, &c.; the coefficients of the third term, the sum of

all the parcels of the second order of combination; the coefficient of the fourth term, the

sum of all the parcels in the third order; and so on.

In modern terminology, this can be explained as follows: if the set S =
{a, b, c}, then all the subsets (also called combinations without repetition) of S
are ‘generated’ by the expansion

(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (bc + ac + ab)x + abc.

Here the summands in the coefficient of x2 (Nicholson’s second term) corre-
spond to the 1-subsets (subsets of size 1) of S, the summands in the coefficient
of x (his third term) correspond to the 2-subsets of S, and the constant term
(his fourth term) corresponds to the single 3-subset of S. For completeness, one
must adopt the convention that the coefficient of x3 corresponds to the 0-subset
(or empty subset).

The mismatch between the powers of x and the sizes of the subsets can be
avoided by considering the equivalent expansion
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(1 + ax)(1 + bx)(1 + cx) = 1 + (a + b + c)x + (bc + ac + ab)x2 + (abc)x3,

where the summands in the coefficient of xr correspond to the r-subsets
of S.

For an n-set Sn = {a1, a2, . . . , an}, the subsets are generated in the same way
by the expansion of

(x + a1)(x + a2) . . . (x + an),

or by

(1 + a1x)(1 + a2x) . . . (1 + anx).

To count subsets of S, rather than to generate them, we put a = b = c = 1 to
get

(1 + x)3 = 1 + 3x + 3x2 + x3,

or, more generally,

(1 + x)n = 1 + C(n, 1)x + · · · + C(n, r)xr + · · · + C(n, n)xn,

where the binomial coefficient C(n, r) (for r = 0, 1, . . . , n) is equal to the num-
ber of r-subsets of an n-set – that is, the number of ways of choosing r objects
from n objects (the number of r-combinations of n objects). The history of this
interpretation of binomial coefficients is discussed in Chapters 4–7.

The above ideas may be extended to include repetition of elements. For
example, the coefficient of xr in the expansion of

(1 + ax + a2x2)(1 + bx)(1 + cx)

= 1+(a + b + c)x+(a2 + bc + ac + ab)x2+(a2b + a2c + abc)x3+(a2bc)x4

generates the r-combinations of a, b, c in which a may be included up to two
times, but b and c cannot be repeated. If amay be repeated an unlimited number
of times, then the factor involving a is

(1 + ax + a2x2 + a3x3 + · · · ) = (1 − ax)−1.

Hence, r-combinations of a1, a2, . . . , an with unrestricted repetition are gener-
ated by (

(1 − a1x)(1 − a2x) . . . (1 − anx)
)−1

.
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As above, the combinations are counted by putting a1 = a2 = · · · = an = 1, to
give

(1 − x)−n

as the generating function for combinations with repetition – that is, the coeffi-
cient of xr in the expansion of (1 − x)−n is the number of r-combinations with
repetition from an n-set.

The theory of partitions (see Chapter 9) is another area in which generating
functions have been used, notably by Leonhard Euler. For example, the coeffi-
cient of xrzs in the expansion of(

(1 − xz)(1 − x2z)(1 − x3z)(1 − x4z) . . .
)−1

is the number ps(r) of partitions of r into s parts.
From the above, it can be seen that an important part of enumerative combi-

natorics is to develop efficient methods for expanding products and powers of
polynomials and power series; this was enthusiastically taken up by theHinden-
burg School of Combinatorics, led by Carl Friedrich Hindenburg (1741–1808),
professor of physics at Leipzig. Haas [16] writes that

Hindenburg and his school attempted, through systematic development of combinatorials,

to give it a key position within the various mathematical disciplines. Combinatorial consid-

erations, especially appropriate symbols, were useful in the calculations of probabilities, in

the development of series, in the inversion of series, and in the development of formulas

for higher differentials.

Haas also stated that a ‘central problem’ ofHindenburgwas to find an expression
for the bi, explicitly in terms of the ai, in the expansion

(a0 + a1x + a2x2 + · · · + amxm)n = b0 + b1x + b2x2 + · · · + bmnxmn.

The importance which Hindenburg attached to such expansions can be
judged by the title which he gave to a book [21] published in 1796: Der
polynomische Lehrsatz, das wichtigsteTheorem der ganzen Analysis nebst einigen
verwandten und andern Sätzen (The Polynomial Theorem, the Most Important
Theorem in the Whole of Analysis, together with Several Related and Other
Theorems). Hindenburg wrote about half of the book, but, as indicated on
the title page, there were also contributions from other members of the
school (Tetens, Klügel, Kramp, and Pfaff), to which Hindenburg added many
footnotes.
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The school had little, if any, influence outside Germany; a list of most of
the writings of the school is given by Weingärtner [49]. A feature commented
upon by various later writers is the complicated notation used by the school.
For example, even thoughNicholson spoke favourably of some of Hindenburg’s
work, he also wrote [34, p. xxiv]:

Indeed,Hindenburgh’s notation was too complex to be introduced into an English publica-

tion, as he uses no less than six or seven different kinds of letters, taken from the Grecian,

Roman, and Gothic alphabets; and also different sizes of letters, both sloping and upright,

which render it extremely perplexing.

A sample page from the book is shown below. It must have been a problem for
the typesetter; even the addition signs are in assorted fonts and sizes. Another
writer once said that Hindenburg disguised everything under a thick layer of
notation.

Title page and a sample page from Der polynomische Lehrsatz.

Peter Nicholson, a Scotsman, was largely self-taught. An architect by profes-
sion, he wrote about twenty-five books, mainly on carpentry, architecture, and
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building, but most of them have a strong mathematical bias. Between 1817 and
1824 he published several purely mathematical books, in some of which he is
described as a ‘Private Teacher of the Mathematics’; his Essays on the Combina-
torial Analysis [34] appeared in 1818. From the thirty-two-page introduction it
appears that he originally planned two essays (II and III in the completedwork),
but he had a tendency to rewrite his books when they were in press. He decided
to prefix his first essay as an introduction to the second, and at a very late stage
he ‘found it necessary . . . to add a Fourth Essay…’ . It was just as well that he
did, for a note on the back of the title page to the complete work reads:

The Reader is desired to peruse pages 49, 50, and 51, of the Fourth Essay, which explain

the Notation employed in the Introduction and in the Essays themselves, before he begins

to read any part of the Work.

The work appears to be the first book in English with the words ‘combinatorial
analysis’ in the title, but certainly it would have benefited from being rewritten
and reorganized.

Title page of Nicholson’s Essays on the Combinatorial Analysis.
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The introduction to Nicholson’s Essays is valuable from a historical point of
view, since he discussed what other authors he had studied, and at what stage in
his own researches he had become aware of them. But hewas rather chauvinistic
and, after writing

. . . in this country, where genius abounds, and where the combinatorial analysis began to

dawn . . . ,

he then credited Abraham de Moivre [9], [10]:

Thus it appears, that M. Ab. Demoivre was the inventor of the Combinatorial Analysis. To

foreigners alone we owe the subsequent improvements and advancement of this branch

of mathematical science.

It seems that Nicholson’s motivation for taking up the subject came from
studying William Emerson’s Increments [12], and Nicholson himself wrote a
book [33] on that subject. Part way through his work on combinatorics, Nichol-
son became aware of what he termed ‘Hindenburgh’s Combinatorial Essays, in
2 vols. Leipsic, 1796’; presumably he was referring to [21] and [22]. Nicholson’s
friend J. A. Hamilton (described as a professor of music) translated parts of
Hindenburg’s work for him.

Nicholson’s Essay I is entitled Combinatorial Analysis. General Principles of
Combinations and Permutations, but it also contains material on partitions
of numbers, which he called decompositions. Much of the material consists
of systematically listing or counting combinations, etc., and an appendix (on
partitions) to Essay I was written by Hamilton. Essay II, entitled Combinatorial
Analysis Applied to Series in General, includes expansions for binomials and
multinomials, and for quotients of series. Also considered is the problem of
reverting series:

Given y as a series in x, find x as a series in y.

The first part of Essay III, entitled Principles of Binomial Factors . . . , is con-
cerned with expressing products of binomial factors as sums of products of
other binomial factors. A typical problem is:

Given two sets of numbers a, b, c, d, and α,β , γ , δ, find A,B,C,D, and E such that

(x + a)(x + b)(x + c)(x + d)

= A(x + α)(x + β)(x + γ )(x + δ) + B(x + α)(x + β)(x + γ )

+ C(x + α)(x + β) + D(x + α) + E. (∗)
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Nicholson gave a quite efficient algorithm for this (which works for n factors,
not just for four). When the numbers a, b, c, d are in arithmetic progression,
Nicholson called the product (x + a)(x + b)(x + c)(x + d) a factorial. Partway
through [33], he introduced the following notation for such factorials:

(x + r)m|d= (x + r)× (x + r + d)× (x + r + 2d)× · · · ×(x + r + (m − 1)d
)
;

for example,

x5|2 = x(x + 2)(x + 4)(x + 6)(x + 8).

In [34], Nicholson modified this notation by shortening the vertical bar, to
(x + r)m|d; in addition, if d = −rwas negative hewrote r̄ rather than−r, giving,
for example,

(x + 2)4|3̄ = (x + 2)(x − 1)(x − 4)(x − 7).

A special case of interest (notmentioned byNicholson) is when a = b = c =
d = 0 and α = 0,β = −1, γ = −2, δ = −3; then (∗) becomes

x4 = Ax(x − 1)(x − 2)(x − 3) + Bx(x − 1)(x − 2) + Cx(x − 1) + Dx + E,

where A,B,C,D,E are the Stirling numbers of the first kind. Similarly, when
a = 0, b = −1, c = −2, d = −3, and α = β = γ = δ = 0, then A,B,C,D,E
are the Stirling numbers of the second kind. Later in Essay III Nicholson stud-
ied similar expansions in which the factorials are in the denominators; in
these cases, there are infinitely many terms on the right-hand sides of the
expansions.

In some ways, apart from the explanation of the notation, Essay IV (on
Figurate Numbers) is redundant. The nth order of figurate numbers are just the
numbers in the nth row of Pascal’s triangle when it is laid out in the following
rectangular form:

1 1 1 1 1 · · ·
1 2 3 4 5 · · ·
1 3 6 10 15 · · ·
1 4 10 20 35 · · ·
1 5 15 35 70 · · ·
...

...
...

...
... .
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The work of Cayley and Jordan on trees

In themid 19th century, the term treewas introduced in amathematical context
by Arthur Cayley, and various types of trees were enumerated (see Chapter 8).
Around the same time, chemists were beginning to clarify their ideas about
valency and the structure of molecules, and the work on trees soon proved to be
relevant for counting the numbers of isomers of various chemical compounds.

Arthur Cayley (1821–95).

As we saw in Chapter 8, a tree is a structure consisting of a set of vertices,
certain pairs of which are joined by edges, subject to the restriction that the
structure is connected and contains no cycles.The terminology was introduced
by Cayley, but the idea of a tree had been used ten years earlier by G. K. C. von
Staudt [48] and by G. R. Kirchhoff [25], the latter using it in connection with
his work on electrical networks. Moreover, the idea of a family tree goes back
much earlier.

If one particular vertex is distinguished for some reason, then the tree is said
to have that vertex as its root, and the structure itself is called a rooted tree. Cayley
[2] considered the problem of finding the number An of rooted trees with n
edges. If the root has r edges incident with it, then the removal from the tree
of the root and these r edges produces r separate rooted trees. In the following
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figure, for example, the removal of the root ρ produces three separate rooted
trees with roots ρ1, ρ2, and ρ3.

r

r1 r2 r3

Three rooted trees from one rooted tree.

Conversely, starting with a set of r rooted trees, we can form a single rooted tree
by joining each of the old roots to a new vertex; the resulting structure may be
regarded as a single rooted tree with the new vertex as its root.

From this simple idea, and mindful of the way in which Euler had con-
structed generating functions for partitions, Cayley was able to show that the
generating function for rooted trees satisfies the following equation:

1 + A1x + A2x2 + A3x3 + · · · = (1−x)−1(1−x2)−A1 (1−x3)−A2 (1−x4)−A3 . . . .

At a quick glance, this expression looks unhelpful for calculating the numbers
An, but this is not so. If we expand the right-hand side, it turns out that the
coefficient of xn involves only the numbers A1,A2, . . . ,An−1. So, for each n,
the number An can be expressed in terms of its predecessors A1,A2, . . . ,An−1

(withA0 = 1), and the numbers can be calculated one at a time. Cayley did this
as far as n = 10, but he made a few arithmetical errors, some of which he later
corrected.

In 1859 Cayley published a second paper [3] in which he enumerated a
special class of trees. Roughly speaking, the trees he considered were rooted
trees with each terminal vertex (vertex of degree 1) at the same distance from
the root. Denoting by pn the number of such trees with n terminal vertices, he
considered the ‘exponential generating function’

P(x) = p1 + p2x
1! + p3x2

2! + p4x3

3! + · · · ,
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and showed that it satisfies the functional equation

exP(x) = 2P(x) − 1.

Hence,

P(x) = 1
2 − ex

,

which can easily be expanded in powers of x to find pn.
In 1869 Camille Jordan wrote a paper ‘Sur les assemblages de lignes’ [23],

of which trees are a special case. If the outer edges of a tree are stripped off, a
smaller tree is obtained, and if the process is repeated, one eventually obtains
either a single vertex or a pair of vertices joined by an edge. In the former case,
Jordan called the single vertex the centre of the original tree, and in the latter case
he termed the two vertices of the edge the bicentre; the two cases are illustrated
below. Using these concepts, Cayley was able to enumerate unrooted trees (see
his brief note [4] and the more substantial [5]).

9
1
2

3
4 5

14

13

10
6 7

12 11 8 9 13 12 13

10

12 13

10

5

11

1
2

3
4 5

10
6 7

9 13 12 11 8 13 12

10

9 13 12 11

A tree with a centre, and one with a bicentre.

A different concept for the centrality of trees was also introduced by Jordan.
Let v be any vertex of a tree T with n vertices, and let T1,T2, . . . ,Tr be the
subtrees obtained when v and its incident edges are removed. For most choices
of v, one of the treesTi containsmore than 1

2n vertices, but if n is odd then there
is a unique vertex, called the centroid of T, for which each of the trees has fewer
than 1

2n vertices. If n is even, however, there may be either a unique vertex with
this property, or a pair of vertices (necessarily joined by an edge) each of which
has this property; in the latter case, the pair of vertices is called a bicentroid.
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Removal of the edge joining the two vertices in a bicentroid produces two
subtrees, each with 1

2n vertices. For example, in the first tree below, removing
vertex 13 from the fourteen-vertex tree produces three subtrees, eachwith fewer
than 14

2 = 7 vertices, but if any other vertex is removed, then one of the resulting
subtrees has at least seven vertices; so vertex 13 is the centroid of the original
tree. By contrast, if the edge joining vertices 13 and 12 in the second tree is
removed, then each of the resulting subtrees has 16

2 = 8 vertices; so vertices 13
and 12 form the bicentroid.

12 11 148
1

2
3
4 5

9 13

10 76 16 15

9 13 12 11 148
1

2
3
4 5

10 6 7 16 15

2
3

9
1

54

14

10

9 13 12 11 8
1

2
3
4 5

14

10
6 7

12 11 8

6 7

A tree with a centroid, and one with a bicentroid.

Using these concepts Cayley was able to calculate the number of unrooted
trees more easily (see [6]). His method was to regard an unrooted tree with
a centroid as a rooted tree with the centroid as the root; for example, in the
first tree above, vertex 13 is the root. Cayley regarded an unrooted tree with
a bicentroid as composed of a pair of rooted trees with an edge joining the
two roots; for example, if the two trees above are regarded as rooted trees with
vertices 13 and 12 as the roots, then the first tree can be obtained by joining
these vertices by an edge; this new edge and its end vertices form the bicentroid
of the second tree.

In his calculations Cayley now worked in terms of the number φn of rooted
trees with n vertices, rather than the number An with n edges, but since a tree
withn vertices hasn − 1 edges,φn = An−1.Thenumberβn of bicentroidal trees
(for n even) is easy to calculate, since to form such a tree with n vertices, one
just selects a pair of rooted trees, each with 1

2n vertices, and joins the two roots.
If the two choices are distinct, this can be done in 1

2φn/2(φn/2 − 1) ways, but if
the two choices are the same, this can be done in φn/2 ways. The total number
of unrooted bicentroidal trees with n vertices (n even) is thus

1
2φn/2(φn/2 − 1) + φn/2 = 1

2φn/2(φn/2 + 1).
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To formunrooted centroidal treeswithn vertices each choice of a smaller rooted
tree must have fewer than 1

2n vertices, and Cayley’s method was to form a
generating function in much the same way that Euler formed partition-
generating functions. The number γn of unrooted centroidal trees is the coeffi-
cient of xn in the expansion of

(1 − x)−γ1 (1 − x2)−γ2 · · · (1 − x	n/2
)−γ	n/2
 .

Finally, the number φn of rooted trees with n vertices is φn = γn (for n odd)
and φn = βn + γn (for n even).

Cayley also realized (see [4], [5]) that certain chemical enumeration prob-
lems could be reformulated in terms of enumerating specific classes of trees. For
example, the carbon atoms and carbon–carbon bonds in an alkane CnH2n+2

(also called a paraffin) form a tree with n vertices, in which each vertex has
degree at most 4. The number of such trees is, therefore, equal to the number
of isomers of CnH2n+2. The restriction on the degree is not easy to deal with,
however, and although he published in this area, Cayley was not as successful
here as he had been with the earlier tree-enumeration problems. Cayley’s work
on chemical enumeration was later followed up by George Pólya, whose work
is discussed below. An account extending Cayley’s work on alkanes is given by
Rains and Sloane [37].

Major Percy MacMahon

Percy AlexanderMacMahon (1854–1929) was born inMalta and had amilitary
career, rising to the rank of major. He did see some active service in India, and
later spent some years at the Royal Military Academy in Woolwich. Although
he was part of the British mathematical establishment of the time (he became
President of the London Mathematical Society in 1894–96 and of the Royal
Astronomical Society in 1917–18), MacMahon’s extensive researches in com-
binatorics rather set him apart from his contemporaries.

In his work MacMahon made great use of generating functions, and
topics that he studied included partitions and symmetric functions (see
Chapter 9). His collected papers were edited by Andrews [32], who added
extensive commentaries on MacMahon’s work.

MacMahonwrote two volumes entitledCombinatoryAnalysis [30], which are
still in print, and these were soon followed by a short introduction [31] to the
subject. In his preface to the latter, he explained that he was prompted to write
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it since some of his ‘mathematical critics’ had found that the original volumes
were ‘difficult or troublesome reading’. Not everyone thought this, however, for
Redfield was inspired by MacMahon’s books to do fundamental research into
enumeration, as we now see.

J. Howard Redfield – a remarkable polymath

One of the most remarkable people to have worked in enumeration in the
20th century was the American polymath J. Howard Redfield. His educational
qualifications included an SBdegree fromHaverfordCollege, near Philadelphia,
a second SB degree (in civil engineering) from the Massachusetts Institute
of Technology, and a PhD degree (in Romance languages, with a thesis on
‘Romance loan-words in Basque’) from Harvard University. His professional
work as a civil engineer led him to study the mathematical theory of elasticity
from Augustus Love’s book [29], but he went on to study other mathematical
material, including P. G. Tait’s work on knot theory (see [47, pp. 273–347]),
Whitehead and Russell’s Principia Mathematica [50], and MacMahon’s Combi-
natory Analysis [30]. What prompted him to do so is not clear, but in following
up some work ofMacMahon, Redfield realized that enumerative combinatorics
and group theory are interrelated, and he published a pioneering paper [42] on
this borderline area in 1927. Unfortunately this paper was generally overlooked
until the 1960s, by which time other researchers had independently obtained
many of the results in Redfield’s paper.

Redfield’swork involved the idea of a group of symmetries.This is a collection
of symmetries (such as rotations and reflections) that can be combined to give
new symmetries. He realized that many enumeration problems can be specified
in terms of placing n geometrical objects in n positions, where a group G of
symmetries acts on the set of objects and a second symmetry group H acts on
the set of positions. IfG is a group of permutations of a setX of objects, then each
element g ∈ G can be expressed by combining cycles of objects, and Redfield
realized that for enumeration problems it is only the numbers of cycles of the
various lengths that are important, and not which elements are in which cycles.

Redfield introduced a polynomial Grf(G), associatedwith the groupG acting
on the set X, and called it the group reduction function; nowadays, it is usually
termed the cycle index (see the next section).The polynomial may be written as

Grf(G) = 1
|G|

∑
g∈G

sa1(g)1 sa2(g)2 sa3(g)3 . . . ,
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where a1(g) is the number of objects fixed by the action of the symmetry g,
a2(g) is the number of 2-cycles (pairs of objects interchanged by g), a3(g) is
the number of 3-cycles, and so on. Here, the symbols sr can be regarded as
variables or indeterminates, althoughRedfield regarded them as the power-sum
symmetric functions

sr = xr1 + xr2 + · · · + xrn

in the indeterminates x1, x2, . . . , xn.
Redfield also introduced a composition (binary operation) on polynomials

which, in the type of problem mentioned above, he applied to Grf(G) and
Grf(H). Here (following Read [39], [40]), the composition is denoted by ∗. The
rules defining ∗ are:

• for identical monomials,

sa1s
b
2s
c
3 · · · ∗ sa1s

b
2s
c
3 · · · = 1aa!2bb!3cc! . . . sa1sb2sc3 . . . ;

• the composition of two non-identical monomials is 0;

• the composition of polynomials is linear – equivalently,∗ is distributive over +.

One example, considered byRedfield, is to find the number of ways of placing
four black balls and four white balls at the corners of a cube, with one ball at
each corner. Here, the four black balls can be permuted in any way, and so
can the four white ones. Thus, the object group G is obtained by combining
two copies of the group S4 of all permutations of four objects, and its group
reduction function is the square of that for the symmetric group S4, so

Grf(G) = 1
242

(
s41 + 8s1s3 + 6s21s2 + 3s22 + 6s4

)2
= 1

242
(
s81 + 82s21s

2
3 + 32s42 + 62s24 + · · ·

)
.

The position groupH is the group of all rotational symmetries of the cube, with

Grf(H) = 1
24
(
s81 + 8s21s

2
3 + 9s42 + 6s24

)
.

The solution to the enumeration problem is obtained by composing these two
group reduction functions and then adding the coefficients. Because of the
second rule above, the only monomials that contribute to the composition are
those that occur in each group reduction function, so
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Grf(G) ∗ Grf(H) = 1
243

(
(s81 ∗ s81) + (82s21s

2
3 ∗ 8s21s

2
3) + (32s42 ∗ 9s42) + (62s24 ∗ 6s24)

)
.

The sum of the coefficients in this composition is

1
243

(
188! + (512 × 122!322!) + (81 × 244!) + (216 × 422!)

)
= 7.

Thus, there are seven ways of placing the balls in the corners (see below).

A page from Redfield’s paper, solving the above problem.
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The above problem can be restated in terms of establishing a one–one cor-
respondence between balls and corners. When this point of view is adopted,
the two sets (objects and positions) play more symmetrical roles, and it is
an easy step to generalize to one–one– · · · –one correspondences between
q sets of objects, where each set has a group Gi of symmetries (for i =
1, 2, . . . , q). This Redfield did, and his calculations involved the composition
Grf(G1) ∗ Grf(G2) ∗ · · · ∗ Grf(Gq) of all the group reduction functions.

Redfield also noted that each distribution has its own symmetry group
(which is necessarily contained in the position groupH), and he asked whether
it is possible to break down the counting so as find the number ni of distribu-
tions with a given symmetry group Hi ⊆ H. He showed that the composition
Grf(G) ∗ Grf(H) satisfies

Grf(G) ∗ Grf(H) =
∑
i

ni Grf(Hi).

Unfortunately, differentGi may sometimes have the same Grf, or the various
Grfs may be linearly dependent, and in such cases the numbers ni cannot be
determined uniquely from the above equation. Thus, in general, the group
reduction function is not the appropriate tool to find the numbers ni. Red-
field continued his researches, however, and by 1937 he had found the right
tool.

Redfield carried out much of his mathematical research at his home on Farm
Road inWayne, Pennsylvania, about fifteenmiles from central Philadelphia. He
had some contact with professional mathematicians in the area, and also access
to libraries in Philadelphia, but often material that would have helped him was
not readily available to him. In particular, he realized that group characters were
relevant to his work, but he was unable to see much of the literature on that
subject. The tool that Redfield eventually discovered to find the numbers ni he
called a generalized character, but it was already in the literature in the second
edition of Burnside’s book [1] under the namemark (of a permutation group).
It seems, however, that Redfield never saw the second edition of that book, but
only the first edition.

In 1937 Redfield gave a lecture on his work at the University of Pennsylvania.
The typescript that he prepared for the lecture has survived andwas published in
2000 (see Redfield [43] and Lloyd [28]). It is a good introduction to Redfield’s
ideas and methods, and includes his work on generalized characters (marks).
Finally, in 1940, Redfield submitted a second paper to the American Journal of
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Mathematics, but alas it was rejected. It was not to appear in print until 1984
[44], some forty years after his death.

The Redfield family has preserved many of J. Howard Redfield’s notebooks
and manuscripts, including a copy of a letter to D. E. Littlewood, dated 9
May 1938. In this letter, Redfield thanked Littlewood for sending him some
offprints, and he went on to make some remarks about their contents. It is not
known who initiated the correspondence, nor whether there were any further
letters, but it helps to explain the fact that Littlewood briefly cited Redfield’s
first paper [42] in both editions of his book [26]. This appears to be the only
citation of Redfield’s paper during his lifetime, and no other citation is known
before a glowing account of Redfield’s achievements by Frank Harary [18] in
1960. Since then, several analyses and numerous citations of Redfield’s work
have appeared (see, in particular, Hall, Palmer, and Robinson [17] and Sheehan
[46]). For further details of Redfield’s life and the discovery of his unpublished
researches, see Lloyd [27], [28].

J. Howard Redfield (1879–1944) and George Pólya (1887–1985).

The work of Pólya

In the mid 1930s George Pólya, who had already established a reputation in
analysis, wrote a few short papers on enumeration. He thenwrote a very lengthy
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paper [35] which was quickly recognized as a landmark in the subject, but
it was to be many years before an English translation of it was published, in
[36]. Extending Cayley’s work, Pólya enumerated various types of graphs and
chemical compounds. The concept that enabled him to progress further than
Cayley was a polynomial which he termed the cycle index; it was just Redfield’s
group reduction function under another name, but was undoubtedly conceived
independently by Pólya.

Unlike Redfield, Pólya did not combine different cycle indices. Instead, each
of his calculations involved only a single cycle index in which the variables
are replaced by generating functions (usually infinite series) to produce a new
generating function. (It is clear from the extract on p. 300 from Redfield’s 1927
paper that he toowas aware that cycle indices could be used in this way.) In spite
of its length, Pólya’s paper is largely based on a single theorem, his ‘Hauptsatz’,
which he applied to a great many examples.

To illustrate Pólya’s technique, we return to our earlier problem of placing
black andwhite balls at the corners of a cube.This can be solved in the following
alternative way. The polynomial φ(b,w) = b + w is regarded as a generating
function for the black and white balls and, as mentioned above, the cycle index
of the cube acting on its vertices is

Grf(H) = 1
24

(
s81 + 8s21s

2
3 + 9s42 + 6s24

)
.

The substitutions sn = bn + wn are then made into the cycle index to produce
the generating function

�(b,w) = 1
24

(
(b + w)8+ 8(b + w)2(b3+ w3)2+ 9(b2 + w2)4 + 6(b4 + w4)2

)
= b8+ b7w + 3b6w2+ 3b5w3+ 7b4w4+ 3b3w5+ 3b2w6+ bw7+ w8.

Here, the coefficient 7 of b4w4 is the number of ways of placing four black balls
and four white balls at the corners of the cube. More generally, the coefficient
of brws is the number of ways of placing r black balls and s white balls at the
corners of the cube; this is necessarily 0 unless r + s = 8. Thus Pólya’s method
of solving the original problem simultaneously solves the analogous problem
for all possible distributions of balls.

Over the years, many people have used Pólya’s theorem to count various
families of objects. It is impossible to give an exhaustive list here, but the
book by Harary and Palmer [20] includes many examples of its use in graph
theory.
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Later work

In the 1950s, in his PhD thesis [38] (see also [39], [40]), Ronald C. Read
introduced his ‘superposition theorem’, which involved the composition of
cycle indices; he was, without realizing it, rediscovering the technique used
by Redfield some thirty years earlier. Other developments were made in both
the theory and the applications of enumeration during the 1960s and 1970s.
Researchers involved included Herbert Foulkes, N. G. de Bruijn, John Sheehan,
and Frank Harary and his co-workers.

De Bruijn reformulated Pólya theory in terms of counting equivalence classes
of functions f : D → R, where D and R are sets. If a symmetry group G acts on
D, two functions f1 and f2 are equivalent whenever there is an element g ∈ G for
which f1g = f2 – that is, for all d ∈ D, f1g(d) = f2(d). For the earlier problem
of placing black and white balls at the corners of a cube, the set D is the set of
corners, R = {b,w} is the set of two colours, and G is the rotation group of the
cube acting on its corners.

De Bruijn also generalized the theory in various ways; for example, he intro-
duced a second group H acting on R, and defined two functions f1 and f2 to
be equivalent if there are an element g ∈ G and an element h ∈ H for which
f1g = hf2. For the problem above with two colours, the only non-trivial possi-
bility forH is the group of order 2, where the non-identity element interchanges
the two colours b andw; this corresponds to counting patterns of colours, where
the actual colours used are of no consequence. Thus, a colouring using r white
balls and s black balls would not be counted separately from the corresponding
one where all the white balls had been replaced by black ones and all the black
balls had been replaced by white ones.

De Bruijn’s theorems involve the application of differential operators to cycle
indices, but the calculations are often difficult and comparatively little use has
been made of his methods. De Bruijn’s paper [7] is a good introduction to the
simpler parts of his work; for later generalizations, see [8].

There is an intimate connection between the theorems of Pólya, Redfield, and
de Bruijn, and in the case of the earlier de Bruijn generalizations, for example,
it is possible to replace the two groups by a single composite group acting on a
different set. Pólya’s theorem can then be applied to solve the original problem,
and this obviates the need to use differential operators (see Harary and Palmer
[19], [20], for details).
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The connection between Redfield’s 1927 paper and group characters was
developed by Herbert Foulkes [13], [14]. His student, John Sheehan, attacked
the problem (mentioned earlier) of counting distributions according to their
individual symmetry groups. In [45] he solved it using marks of permutation
groups, unaware that Redfield had already done this in the late 1930s, since
Redfield’s solution [44] was not published until 1984.

For information on more recent work in the field of enumeration, see Read
[41] and Kerber [24] for accounts by mathematicians, and Fujita [15] and El-
Basil [11] for accounts by chemists.
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CHAPTER 13

Combinatorial set theory
ian anderson

This chapter outlines the historical development of the study of
combinatorial problems concerning finite sets, beginning with
the inclusion–exclusion principle of de Moivre in the early 18th

century, and finishing with the 20th-century development of a unified
body of theory relating to the intersections, unions, and orderings of
collections of finite sets.

Introduction

A set is a collection of objects. The generality of this concept might suggest that
little of interest can be said about sets, but this is far from being the case. Indeed,
mathematics is largely concerned with sets – the set of numbers, the set of lines
and points in the plane, the set of matrices, and so on.

Often we are concerned with the size of a set:

How many prime numbers are there in the set {1, 2, . . . , 1000 }?

How many elements of a set have a given property?

How large can a collection of subsets of a set be if no subset is contained in another?

In this chapter we explore several key ideas that have arisen during the past
three hundred years and which are of interest to mathematicians today. These

combinator ial set theory | 309



are mainly concerned with set-theoretic concepts such as intersections and set
inclusion, although the contexts vary greatly.

The first topics in this chapter are two basic counting principles called the
inclusion–exclusion principle and the box principle. The first of these is con-
cerned with estimating the size of the union of given subsets of a set, and we
present a general formula that gives the answer in terms of the sizes of the
intersections of the subsets. This principle was first exploited by Abraham de
Moivre in 1718 in his bookTheDoctrine of Chances [4] (seeChapter 6), although
he did not use abstract set notation in his presentation. He was concerned with
the number of permutations of objects in which certain places are forbidden to
certain of the objects; this derangement problemwas solved by a general method
that was later abstracted from his concrete problems as the inclusion–exclusion
principle and applied more generally.

The second principle, the box principle or pigeonhole principle, essentially
asserts that if more than n objects are placed into n boxes, then at least one box
must receive at least two objects.This simple idea was developed almost beyond
recognition in the 20th century, by the logician F. P. Ramsey and others, to prove
the existence of substructures of a required type in a larger structure, provided
that the original structure is sufficiently large.

The problem of selecting different elements to ‘represent’ given subsets is
fundamental to many problems in set theory and graph theory. The origin of
this problem of finding distinct representativeswas in the area of finite geometry
at the end of the 19th century, but the same problem reappeared in the work
of 20th-century mathematicians such as Dénes König and Philip Hall. The
basic problem is popularly known as themarriage problem, and we describe its
development later in the section on tranversals.The story is one of independent
discoveries, in different contexts, of results that turned out to be equivalent,
although formulated in very different ways.

The second half of the 20th century saw a great increase of interest in the
study of families of subsets of a set that possess certain intersection or inclusion
properties.Combinatorial set theory, as it has come to be called, is often consid-
ered to have begunwith a theoremof Sperner in 1928, which put a bound on the
number of subsets of a set that can be chosen if no one subset is to be contained
in any other. How subsets relate to one another under inclusion parallels how
numbers are related under division, and these problems can be viewed as special
cases of problems arising in general partially ordered sets. We study Sperner’s
theorem and show how it was used by later authors to solve other set-theoretic
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problems. Finally, we discuss the later results of Erdős, Ko, and Rado, and
of Kruskal and Katona, which have proved central to the development of the
subject.

The inclusion–exclusion principle

In the 24th and 25th problems, I explain a new sort of algebra, whereby some questions

relating to combinations are solved by so easy a process that their solution is made in

some measure an immediate consequence of the method of notation. I will not pretend

to say that this new algebra is absolutely necessary for the solving of these questions

which I make to depend on it, since it appears that Mr Montmort, author of Analyse des

Jeux de Hazard, and Mr Nicholas Bernoulli have solved, by another method, many of the

cases therein proposed: but I hope I shall not be thought guilty of too much confidence

if I assure the reader that the method I have followed has a degree of simplicity, not

to say of generality, which will hardly be attained by any other steps than by those I

have taken.

So wrote Abraham deMoivre in the preface to his bookTheDoctrine of Chances
[4], published in 1718. De Moivre, a Frenchman by birth, came to England in
1685 as a Protestant refugee, spending the rest of his life in London; he became
a Fellow of the Royal Society in 1697. Clearly deMoivre had read the 1708 book
Essay d’Analyse sur les Jeux de Hazard (Essay on the Analysis of the Games of
Chance) [5] by Pierre Rémond (later de Montmort). This book was a study of
games of chance, and included Pascal’s triangle and the derangement problem,
which de Moivre was to solve by his own new method.The derangement prob-
lem asks:

If a number of objects in order are arbitrarily rearranged, how likely is it that no
object will be in its original position?

De Moivre’s ‘new sort of algebra’ is essentially a generalization of the answer
to the following simple set-theoretic question:

Given two finite sets A and B, how big is their union A ∪ B?

If |X| denotes the number of elements in the set X, we observe that the estimate
|A| + |B|may be too big, since any elements in both sets are counted twice, and
so we refine our estimate by subtracting the number of elements in both sets
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(represented by the shaded area in the diagram). First we include elements in
A or in B, and then we exclude those in both. Thus:

A B

|A ∪ B| = |A| + |B| − |A ∩ B|.

This idea extends to three sets, A, B, and C:

A

B C

|A ∪ B ∪ C| = |A| + |B| + |C|
− |A ∩ B| − |A ∩ C| − |B ∩ C|
+ |A ∩ B ∩ C|.

Here we include and exclude three times any element that is in all three sets, so
we have to include such elements once again at the end.

DeMoivre argued that ifA is the set of arrangements of a, b, c, d, e, f in which
a is in its correct place, and if B,C,D,E, F are similarly defined, then the number
of derangements (orderings in which no letter is in its correct place) is

6! − |A ∪ B ∪ . . . ∪ F|
= 6! −

{(|A| + |B| + · · · + |F|)− (|A ∩ B| + · · · + |E ∩ F|)+ (|A ∩ B ∩ C| + · · · )
−(|A ∩ B ∩ C ∩ D| + · · ·)+ (|A ∩ B ∩ C ∩ D ∩ E| + · · ·)− |A ∩ B ∩ C ∩ D ∩ E ∩ F|

}
= 6! − C(6, 1)5! + C(6, 2)4! − C(6, 3)3! + C(6, 4)2! − C(6, 5)1! + C(6, 6) = 265.

The probability that no object will be in its original position is then obtained by
dividing by 6! = 720, giving 265

720 ≈ 0.3680, which is very close to 1/e ≈ 0.3679;
in fact, the number of derangements of a set of n elements is always the integer
nearest to n!/e, which in this case is 6!/e ≈ 264.873.
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De Moivre’s use of the inclusion–exclusion principle.

The principle used by de Moivre is now called the inclusion–exclusion princi-
ple. In the past it has been known by various names, such as the cross classifica-
tion principle, and has been used by many mathematicians over the centuries.
It was, for example, used byWhitney [44] in 1932 in his study of the chromatic
number of a graph, and it can also be used to obtain the 1998 formula of
Ollerenshaw and Brée [35] for the number of most-perfect pandiagonal magic
squares.

The inclusion–exclusion principle has also proved itself to be a very
useful technique in the study of prime numbers. Eratosthenes of Cyrene
(276–194 bc)may be best known for his remarkablemeasurement of the Earth’s
circumference, using the length of the shadow of a pole at noon in two different
locations, but he is also remembered for his ‘sieve’ which he used to count prime
numbers. To find all the prime numbers up to 100, for example, score out all
numbers up to 100 that are multiples of 2, then score out all multiples of 3, 5,
and 7; the remaining numbers, apart from1, are the required primes, since every
non-prime number less than 100 must have a prime factor less than 10. If this
procedure is used to count primes, there is the added complication that some
numbers are scored out more than once, so the inclusion–exclusion principle
is appropriate. For numbers much larger than 100 there are problems with this
method, arising from the large number of terms involved; these problems were
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overcome in 1920 by the Norwegian mathematician Viggo Brun, whose deep
and clever adaptation [2] of the principle, known as the Brun sieve, has led to
much progress in the study of the distribution of prime numbers.

The pigeonhole principle and Ramsey theory

In 1801, at the age of 24, Carl Friedrich Gauss published his great work Dis-
quisitiones Arithmeticae [17]. In Article 45 of this book, Gauss considered the
geometric progression 1, a, a2, . . . (modulo p):

Since the modulus p is prime relative to a and hence to any power of a, no term
of the progression will be ≡ 0 (mod p) but each of them will be congruent to one
of the numbers 1, 2, . . . , p − 1. Since the number of these is p − 1, it is clear that
if we consider more than p − 1 terms of the progression, not all can have different
least residue. So among the terms 1, a, a2, . . . , ap−1, there must be at least one
congruent pair… .

Gauss is giving here one of the first known applications of the pigeonhole
principle:

If m + 1 objects are placed in m pigeonholes, then at least one of the pigeonholes
receives at least two objects.

Thus, for example, in any group of thirteen people, there must be at least two
people with birthdays in the same month. This simple idea has many applica-
tions. It is often called Dirichlet’s box principle, since it was used by Dirichlet
in his work [8] on the approximation of irrational numbers by rationals. It can
also be used to show simply that a real number has a finite or recurring decimal
expansion if and only if it is rational. A more general form of the principle is:

If mn + 1 objects are placed in m pigeonholes, then at least one of the pigeonholes
receives at least n + 1 objects.

This section deals with some of the profound generalizations of this simple
principle. An example appears below.

In 1916 the algebraist Issai Schur wrote a paper [37] on the congruence

xm + ym ≡ zm (mod p).

In that paper he gave a simple proof of a result of L. E. Dickson [6], that this
congruence must be satisfied by three integers x, y, z that are relatively prime
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Dirichlet’s ‘boxes’ in the 17th century

PierreNicole,one of the authors of the famous Logique de Port-Royal (1662),related
the following: ‘One day I told Madame de Longueville that I could prove that there

are at least two people living in Paris with the same number of hairs on their

heads. She asserted that I could never prove this without counting them first. My

premisses are these. No head has more than 200 000 hairs, and the worst case

provided has one.Consider 200 000 heads, none having the same number of hairs.

Then each must have a number of hairs equal to some number from 1 to 200 000

both included. Of course if any have the same number of hairs my bet is won.

Now take one more person,who has not more than 200 000 hairs on his head.His

number must be one of the numbers 1 to 200 000 included.As the inhabitants of

Paris are nearer 800 000 than 200 000,there aremany heads with an equal number

of hairs.’

to p, provided that p is large enough. This result of Dickson showed that any
attempt to prove Fermat’s last theorem by considering the equation as a congru-
ence modulo a prime is doomed to failure. Schur used the pigeonhole principle
to show that, if n is sufficiently large and if the integers 1, 2, . . . , n are distributed
into k classes, then there must be three integers x, y, z, all in the same class, for
which x + y = z. From this, Schur was able to give his simple proof of Dickson’s
result.

A related result was published in 1927 by B. L. van derWaerden [41]. Instead
of considering the equation z − y = x, consider the system of equations

x1 − x2 = x2 − x3 = · · · = xh−1 − xh.

Here we require that the xi are in arithmetic progression. Van der Waerden
proved that, if the integers 1, 2, . . . , n are distributed into k classes where n is
sufficiently large, then there exist integers x1, x2, . . . , xh in arithmetic progres-
sion and all in the same class.

A profound development of the pigeonhole principle appeared in 1930 in
a posthumous paper by the brilliant young logician F. P. Ramsey. Ramsey, the
elder brother of the future Archbishop of Canterbury, was born in Cambridge
and was educated at Winchester and at Trinity College, Cambridge. Elected to
a Fellowship at King’s College in 1924, he taught there until his early death in

combinator ial set theory | 315



1930, caused by a liver infection after an abdominal operation, in a London
hospital.

On 13 December 1928 Ramsey read a paper at a meeting of the London
Mathematical Society on the Entscheidungsproblem (decision problem) of
Hilbert, which was concerned with the possibility of finding a systematic
method for determining the truth or falsity of a given logical formula. Ram-
sey’s partial solution of this problem (which was completely solved by Alonzo
Church in 1936) required a deep extension of the pigeonhole principle. Instead
of distributing elements of an n-element set S into boxes, Ramsey distributed
the subsets of a given size r into boxes; we can think of ‘colouring’ the sub-
sets, each subset in a particular box being given the same colour. Ramsey
showed [36] that, provided n is large enough, if each r-element subset of
S is given one of k different colours then, for a given l < n, there must
be a subset W of S of size l all of whose r-element subsets have the same
colour.

In a sense Ramsey’s theorem asserts that, in a random chaotic structure, there
must be a certain amount of non-chaotic substructure somewhere within it.
A well-known simple case of Ramsey’s result occurs in the following problem,
which appeared (see [18]) in the 1953 William Lowell Putnam Mathematical
Competition (an annual competition sponsored by the Mathematical Associa-
tion of America):

Six points are in general position in space (no three in line, no four in a plane). The fifteen

line segments joining them in pairs are drawn and then painted, some segments red, some

blue. Prove that some triangle has all its sides the same color.

This is the same problem as the following version that appeared as elemen-
tary problem E1321 on page 446 of the American Mathematical Monthly
in 1958:

Prove that, at a gathering of any six people, some three of them are either mutual acquain-

tances or complete strangers to one another.

The problem is easily solved. Take any one of the points and consider the five
lines from it. By the pigeonhole principle, at least three of these five lines must
have the same colour.Without loss of generality, suppose the points are labelled
a, b, . . . , f and that the lines ab, ac, and ad are all blue. Then, if any of the
lines bc, cd, db is blue, we have a blue triangle; if not, we have a red triangle
bcdb.
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Frank Plumpton Ramsey (1903–30) and Paul Erdős (1913–96).

Ramsey’s theorem can be used to give a simple proof of Schur’s result, and
other applications were soon apparent. In 1934 a paper on a geometrical theme
was written by Paul Erdős and George Szekeres [13]. Erdős stood head and
shoulders above any other 20th-century mathematician working in combina-
torial areas. Living a life entirely devoted to mathematics he toured the world,
living out of a suitcase that contained most of his worldly possessions and
sowing the seeds of mathematical ideas wherever he found an ‘open’ mind
that could respond. Altogether he wrote over 1500 research papers, including
joint work with more than 500 collaborators throughout the world. He created
new areas of research, such as the introduction of probabilistic arguments to
establish existence theorems, and asked searching questions that led to deep
new insights.

His joint paper with George Szekeres, ‘On a combinatorial problem in geom-
etry’, appeared in 1935. It discussed a problem attributed to the young Esther
Klein (later to become Esther Szekeres):

Given sufficiently many points in the plane, can we always select n of them which form a

convex n-sided polygon?

The authors of the paper gave two different proofs of this result; the first,
constructed before the authors had come across Ramsey’s work, used (and
independently proved) Ramsey’s theorem.
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The Erdős–Szekeres paper improved upon Ramsey’s original proof in one
important respect. Ramsey theorems assert that something must happen pro-
vided that n is ‘sufficiently large’. How large? We have seen that, provided six
people are present, there must be either three mutual acquaintances or three
mutual strangers. How many need to be present to ensure at least a mutual
acquaintances or b mutual strangers? The least number needed is denoted by
R(a, b), and these numbers are now called Ramsey numbers. Thus, as we have
seen, R(3, 3) = 6. Except for obvious cases such as R(a, 2) = a for all a, very
few Ramsey numbers are known; for example, it is known that R(4, 4) = 18,
but R(5, 5) is unknown. Erdős and Szekeres showed that C(a + b − 2, a − 1)
people would suffice, and this bound stood for many years as the best known.
Details of the history of these and similar bounds can be found in Winn [45].

Configurations

At the end of the 19th century there was a growing interest in the study of
finite geometries. In particular, structures called plane configurations nk were
discussed, with n points and n lines and having the properties that, for some k,
each line contains k points, each point lies on k lines, and any two points appear
on at most one line.

In 1894 Ernst Steinitz, who was to become better known for his work on field
theory and polyhedra, was a student at Breslau in the German Empire (now
Wrocław in Poland). His dissertation, Über die Construction der Configuratio-
nen n3 [40], contained the remarkable result that, if the lines in nk (which are
sets of k points) are written as the columns of a k × n array, then the elements
(points) in each column can be rearranged so that each horizontal row contains
each element exactly once. For example, starting from the configuration 83

1 1 1 2 2 3 3 4
2 4 6 6 5 4 5 7
3 5 7 8 7 6 8 8

we can rearrange the entries in the columns to give

1 4 7 2 5 6 3 8
2 1 6 8 7 3 5 4
3 5 1 6 2 4 8 7

where each row now consists of the numbers 1, 2, . . . , 8.
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Steinitz used his result to prove that n3 can be drawn in the plane in such
a way that all but one of the lines is straight. One example, the Fano plane 73,
discussed by Gino Fano [14] in 1892, was depicted in Chapters 10 and 11. The
following diagram shows the above configuration 83.

1

2

a d

f

g3 8

6 7

5

4c

h

e
b

The configuration 83.

Although Steinitz’s result was long neglected (see Gropp [19]), it was essen-
tially rediscovered twenty years later in the language of graph theory. If we label
the columns (lines) of the above 83 by a, b, . . . , h, then we can represent 83 by a
graph in which, for example, a is joined to 1, 2, and 3 since line a consists of the
points 1, 2, 3. This graph is regular and bipartite: the top vertices have degree 3
since each line has three points, and the bottom vertices have degree 3 because
each point lies on three lines.

a

1

b c d e f g h

2 3 4 5 6 7 8

The configuration 83 as a regular bipartite graph.

At the Congress for Mathematical Philosophy in Paris in 1914, Dénes
König of the Technische Hochschule in Budapest presented a paper containing
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the general graph-theoretical result (published later in [28]) that any regular
bipartite graph has a 1-factor; this means that, in any such graph with 2n
vertices, there exist n disjoint edges. In the above 83 graph, the eight edges
a–1, b–4, c–7, d–2, e–5, f –6, g–3, h–8 form a 1-factor, and give the first row of
Steinitz’s rearranged array. Since Steinitz did not use the ‘plane’ property that
any two points are joined by at most one line, it follows that König’s result
is really equivalent to that of Steinitz. In his book Theorie der endlichen und
unendlichen Graphen (Theory of Finite and Infinite Graphs) [29], the first major
book devoted to the theory of graphs, König described how this result relates to
many others.

Transversals

What Steinitz did was to choose a different point from each line so as to form
the first row of his array. Such a collection of elements, a distinct element chosen
from each of a given collection of sets, is now called a system of distinct repre-
sentatives or transversal. In 1935 Philip Hall, working at Cambridge, published
his famous paper [21] in which he obtained a simple necessary and sufficient
condition for a collection of subsets to have a transversal:

The sets A1, . . . , Am possess a transversal x1, . . . , xm with xi ∈ Ai for each i, if and only if,

for each k ≤ m, the union of any k of the sets Ai contains at least k elements.

This result gives an easy proof of the Steinitz–König theorem as a special case.
It has come to be known as Hall’s theorem, and the above condition as Hall’s
condition, although it is closely related to results of other mathematicians. For
example, at the same time as Hall’s paper was being published in the Journal of
the LondonMathematical Society, Maak [32] proved essentially the same result.
Maak’s work was discussed a decade later by Hermann Weyl, who presented
Hall’s theorem in terms of friendships between boys and girls [43]; the sets were
the lists of girls that the boys were friendly with, and the problem was to marry
each boy to a girl who was a friend. This marriage version was popularized by
a paper of Halmos and Vaughan [22], who also gave a simpler proof, and the
problem is now often called themarriage problem.

Historically, Hall’s theorem played a key role in the development of com-
binatorial set theory. It may be equivalent to other results, such as those of
König and others, but its formulation is particularly useful in applications. One
simple application is due to Marshall Hall, who wrote a major book entitled
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Combinatorial Theory and who used the Hall condition in 1945 to prove (see
[20]) that any k × n latin rectangle with k < n can be extended to an n × n
latin square.

Another application of Hall’s theorem is to give a simple proof of an earlier
result of van der Waerden. In 1910 G. A. Miller [34] had published a result on
cosets of a finite group. In its simplest form it states that if a groupG is expressed
as a disjoint union of n left cosets of a subgroup H, and also as the union of n
right cosets of H, then the left and right cosets possess a common transversal.
In 1927 van der Waerden [42] showed that this result is not really a group-
theoretical result, but a combinatorial one:

If a finite set S with mn elements is partitioned into n sets of size m in two different
ways,

S = A1 ∪ A2 ∪ · · · ∪ An = B1 ∪ B2 ∪ · · · ∪ Bn ,

then there exist elements x1, x2, . . . , xn that act as a transversal for the sets Ai and
simultaneously for the sets Bi.

Van der Waerden did not use either König’s theorem or Hall’s theorem, but
gave an independent proof; however, in a note at the end of his paper added
at the proof stage, he remarked that his result is equivalent to König’s. König
deduced van derWaerden’s result from the König–Steinitz theorem in his book,
whereas Hall in [21] derived it from his own theorem.

Dénes König (1884–1944) and Philip Hall (1904–1982).
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It is fascinating to discover how, in the period up to 1940, many results were
obtained that are intimately related to those of Hall and König. König himself
presented one such result in 1931 to the Budapest Mathematical and Physical
Society, of which he was secretary for many years; since another version was
presented later in that year by E. Egerváry [9], it is now known as the König–
Egerváry theorem. Consider, as an example, the (0, 1)-matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1 0 1

0 1 0 1 0 0 0

0 0 0 1 0 0 0

0 0 1 1 1 1 1

0 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The smallest number of lines (rows or columns) that together include all the
1s is four (take rows 1 and 4 and columns 2 and 4), while the largest num-
ber of 1s that can be chosen with no two in the same row or column is also
four (take the 1s in positions (1, 1), (2, 2), (3, 4), and (4, 5) ). The general
result is that the minimum number of rows and columns that cover all the 1s
is always equal to the maximum number of ‘independent’ 1s in the matrix.
This is one of many such ‘max–min’ results; another is Menger’s theorem (see
Chapter 14).

Dénes König’s book [29] remained the definitive exposition of graph theory
for thirty years, although it was not translated into English until 1990, and
some of the historical footnotesmake fascinating reading. Of particular interest
are those revealing an apparent degree of hostility between König and Georg
Frobenius over a result in the theory of determinants – that, if A is an n × n
matrix, then every product in the expansion of the determinant detA is 0 if and
only if A contains a zero h × k submatrix B for some h and k with h + k > n.
In 1912 Frobenius [15] proved this result in what König called ‘an extraordi-
narily complicated way’. König translated it into a graph theory problem (it
is essentially equivalent to the Steinitz–König theorem) and sent Frobenius a
copy of his simpler proof. Frobenius [16] then published a simpler proof of his
own, making no reference to König’s proof, but dismissing the use of graphs
in determinantal problems as ‘a method of little value for the development
of the theory of determinants’. This claim was robustly rejected by König in
his book.
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Sperner’s theorem

Around the same time as the above developments were taking place, another
fundamental result, which also has a max–min interpretation, was discovered
by Emanuel Sperner in Hamburg. A chain of subsets of a set X is a sequence
A1 ⊂ A2 ⊂ · · · ⊂ Am of subsets of X, with each subset properly contained in
the next.The ‘opposite’ of a chain is an antichain, a collection of subsets none of
which contains another. Sperner was asked by the young Otto Schreier (who
died tragically at the age of 28, but not before doing fundamental work in
combinatorial group theory) how large an antichain of subsets of an n-element
set can be. Sperner [39] showed that the largest antichain has size C(n, 	 1

2n
),
the number of subsets of size 	 1

2n
. This result can be looked on as a max–
min result, since the set of all subsets of a set of size n can be partitioned into
C(n, 	 1

2n
) chains, but no fewer. So themaximum size of an antichain is equal to
theminimumnumber of chains into which the set of subsets can be partitioned.
It was later proved byDilworth [7] that this is true of any partially ordered set P:

Themaximum size of an antichain in P is equal to theminimumnumber of chains
whose union is P.

Sperner’s theorem has had applications in many diverse areas. One inter-
esting use of this theorem was to the problem of finding how many of the
sums ε1x1 + ε2x2 + · · · + εnxn (where each εi is 1 or −1 and the xi are real
numbers with |xi| ≥ 1) can lie in an interval of length 2; this problem had been
studied by Littlewood and Offord [31] in 1943. In 1945 Erdős [11] observed
that Sperner’s theorem can be used to show that the maximum number of
such sums is C(n, 	 1

2n
). It was shown later, by Kleitman [26] and Katona [24]
independently, that the same bound holds for the number of sums of the same
form lying inside a unit circle, when the xi are two-dimensional vectors of length
at least 1; again the proof depends upon Sperner’s theorem. Then, in 1970,
by an ingenious partition of the set of sums into blocks of a particular form
that imitated chains of subsets, Kleitman [27] extended the result to vectors in
an arbitrary number of dimensions. This completely solved what had become
known as the Littlewood–Offord problem.

Sperner’s theorem plays a key role in modern combinatorial set theory.
Its generalizations and ramifications have led to a whole new area called
Sperner theory. Further details can be found in the books by Anderson [1] and
Engel [10].
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The Erdős–Ko–Rado and
Kruskal–Katona theorems

During the 1930s many mathematicians, including Artin, Courant, Noether,
vonNeumann, andWeil, left continental Europe, seeking refuge from the grow-
ingNazi threat. Also among thesewasRichardRado,who leftBerlin in 1933 and
went to Cambridge to work under G. H. Hardy; thereafter he held university
positions in Sheffield, London, and Reading. It was at Cambridge in 1934 that
Rado first met Erdős, who had left Hungary for a four-year postdoctoral fellow-
ship in Manchester. Along with the Chinese mathematician Chao Ko, who was
also at Manchester and studying for a PhD degree under L. J. Mordell, Erdős
and Rado discovered the far-reaching answer to the following problem:

If k ≤ 1
2n, howmany k-element subsets A1,A2, . . . ,Am of an n-element set X can

be found, such that Ai ∩ Aj �= ∅ for all i, j?

Certainly, we could select one of the elements x of X and take all the k-element
subsets containing x; this would give C(n − 1, k − 1) intersecting sets. By a
fairly technical method they showed in 1938 that this is indeed the largest
possible value of m. This result, known as the Erdős–Ko–Rado theorem [12],
lay unpublished until 1961, an unusually long publication delay. Erdős wrote
that one of the reasons for the delay was that there was relatively little interest
in the subject at the time. However, the 1960s was a decade that saw a great
increase of interest in such matters, and their result was soon to be extended
and generalized in many ways. For example, Hilton and Milner [23] showed
in 1967 that if the intersecting k-element subsets do not all have an element in
common, then

m ≤ C(n − 1, k − 1) − C(n − k − 1, k − 1) + 1.

Another important development was the deduction of the Erdős–Ko–Rado
theorem from the Kruskal–Katona theorem which we describe below.

The power of modern computers to search through vast amounts of data has
led to considerations of methods for storing lists or sequences:

Is there a good way of listing all k-element subsets of {1, 2, . . . , n}?
One method is to use the lexicographic ordering: list the subsets in numeri-
cal order; for example, the 3-element subsets of {1, 2, 3, 4, 5} in lexicographic
order are
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{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}.

Here we place set A before set B if the smallest element that is in one of A and
B, but not both, lies in A.

Although this seems a very natural ordering, there is a more important one,
called the squashed ordering. Here we place set A before set B if the largest
element in one or the other, but not in both, lies inB.This ordering has the effect
of squeezing together early in the ordered list all those sets that do not have a
‘large’ element. The 3-element subsets of {1, 2, 3, 4, 5} in squashed order are

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5},
{1, 3, 5}, {2, 3, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}.

This ordering may seem more natural once it is realized that the squashed
ordering of the sets corresponds to the lexicographic ordering of the binary
sequences of length 5 containing three 1s:

00111, 01011, 01101, 01110, 10011, 10101, 10110, 11001, 11010, 11100;

for example, the set {1, 2, 4} corresponds to the binary sequence 01011, since
the 1s appear in the 1st, 2nd, and 4th positions from the right.

Suppose that we are now given four subsets of {1, 2, 3, 4, 5} of size 3. How few
subsets of size 2 can be contained in them? If we take four subsets at random,
say

{1, 2, 4}, {2, 3, 5}, {1, 3, 4}, {2, 3, 4},

then they contain eight 2-element subsets – namely,

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}.

The first four subsets in the lexicographic ordering also contain eight 2-element
subsets, but the first four in the squashed ordering contain only six. This illus-
trates a general result, stated without proof by Schützenberger [38] in 1959, but
proved independently by Kruskal [30] and Katona [25] a few years later, that:

if r k-element subsets of {1, 2, . . . , n} are to be chosen so as tominimize the number
of (k − 1)-element subsets contained in them, then the first r sets in the squashed
ordering should be selected.
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This result, known as the Kruskal–Katona theorem, is reminiscent of an ear-
lier theorem proved in 1927 by Francis SowerbyMacaulay, a schoolteacher who
includedG.N.Watson and J. E. Littlewood among his pupils. Hewrote fourteen
research papers, mainly on algebraic geometry and polynomial ideals, and was
elected a Fellow of the Royal Society in 1928, the year after his paper [33] on a
combinatorial topic appeared in the Journal of the LondonMathematical Society.
In that paperMacaulay proved that if the set of vectors of dimension nwith non-
negative integer components is made into a partially ordered set by defining

(a1, a2, . . . , an) ≤ (b1, b2, . . . , bn), whenever ai ≤ bi for all i,

and if each vector (a1, a2, . . . , an) is given the rank a1 + a2 + · · · + an, then we
can choose r vectors of rank k that cover the smallest possible number of vectors
of rank k − 1 by taking the first r vectors of rank k in the lexicographic order-
ing. Since then, these ideas have led to the modern study of Macaulay posets,
partially ordered sets in which there is an ordering that gives a minimization
result as above. One of the most important results in this area is the Clements–
Lindström theorem [3], which states that the partially ordered set of divisors
of an integer is a Macaulay poset. This result includes both the Kruskal–Katona
theorem and Macaulay’s theorem as special cases; further details can be found
in Engel [10].
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CHAPTER 14

Modern graph theory
lowell beineke and robin wilson

During the first half of the 20th century many classic theorems
about graphs were discovered, but it was not until the second
half of the century that graph theory emerged as an important

field in its own right.This chapter develops themes arising from the four-
colour problem, before focusing on three specific subject areas – the fac-
torization of graphs, connectivity, and graph algorithms [1].

Planar graphs

Like many other aspects of graph theory, the origins of the study of planar
graphs can be found in recreational puzzles. One such poser was given by
August Möbius in his lectures around the year 1840 (see [5, pp. 115–16]):

There was once a king with five sons. In his will he stated that after his death the sons

should divide the kingdom into five regions, so that the boundary of each region should

have a frontier line in common with each of the other four regions. Can the terms of the

will be satisfied?

This question asks whether it is possible to find five mutually neighbouring
regions in the plane.We can turn this into a graph theory problem by ‘dualizing’
it, replacing regions by capital cities and frontier lines by connecting roads, as
follows:
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There was once a king with five sons. In his will he stated that after his death the sons should

build non-intersecting roads joining the five capital cities in the regions of his kingdom.Can

the terms of the will be satisfied?

If there had been only four sons, then both problems could have been eas-
ily solved; the following figure illustrates the solutions and a dual connection
between them.

1
2 3

4

1
2 3

4

Defining the complete graph Kn to be the graph obtained by joining n vertices
in pairs, we see that K4 is planar – that is, it can be drawn without any edges
crossing, as illustrated above. However, a little experimentation, or use of Euler’s
polyhedron formula (see Chapter 8), shows that in any drawing of K5 some
edges must cross. Thus:

The graph K5 is not planar.

So in Möbius’s two puzzles the terms of the will cannot be satisfied.

A related problem is the ‘gas–water–electricity’ problem. Its origins are
obscure, but in 1913 Henry Dudeney [14] presented the problem as follows,
describing it as ‘as old as the hills’:

The puzzle is to lay on water, gas, and electricity, from W, G, and E, to each of the three

houses, A, B, and C, without any pipe crossing another. Take your pencil and draw lines

showing how this should be done. You will soon find yourself in difficulties . . . .
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This problem also has no solution, although Dudeney claimed to have solved
it by running a pipe through one of the houses. Defining the complete bipartite
graph Kr,s to be the graph obtained by joining each of r vertices to each of s
other vertices, then our result is:

The graph K3,3 is not planar.

The ‘Kuratowski graphs’ K5 and K3,3.

In 1930 Kazimierz Kuratowski [29] published the surprising result that these
two graphs are the only ‘basic’ non-planar graphs, in the sense that every non-
planar graphmust contain at least one of them, a result obtained independently
by O. Frink and P. A. Smith.

For some time, mathematicians tried to find characterizations of planar
graphs that depend on combinatorial, rather than geometrical, considera-
tions. The clue to doing so turned out to be through duality; note that
only planar graphs, such as K4, have geometrical duals, as illustrated above.
In 1931 Hassler Whitney [51] formulated an abstract definition of duality
that is purely combinatorial (involving the cycles and cutsets of two graphs)
and which agrees with the geometrical definition of a dual graph when
the graph is planar. He then proved the following for this abstract form of
dual:

A graph is planar if and only if it has an abstract dual.

Extending these ideas eventually led Whitney to the concept of a matroid,
which generalizes the ideas of ‘independence’ in both graphs and vector spaces
[52]; in particular, the dual of a matroid is a natural concept that extends and
clarifies the duality of planar graphs. Interest in matroids took some time to
develop, but in the 1950sW. T. Tutte [46] obtained a Kuratowski-type condition
for a matroid to be one that arises from a graph.

modern graph theory | 333



The four-colour theorem

Following Percy Heawood’s 1890 bombshell [21] (see Chapter 8), potential
solvers of the four-colour problemwere back at square one. Over the next eighty
years, the slow climb back involved two main ideas, those of an unavoidable set
of configurations and a reducible configuration.

In his 1879 paper, Kempe had shown that every map necessarily contains a
digon, triangle, quadrilateral, or pentagon. Since at least one of these configu-
rations must appear, we call such a set of configurations an unavoidable set. He
also showed that if amap contains a digon, a triangle, or a quadrilateral, then any
colouring of the rest of the map can be extended to include this configuration.
Any configuration of countries for which this is true is called reducible. Note
that no reducible configuration can appear in a minimal counter-example to
the four-colour theorem.

Where Kempe’s proof broke down is that he failed to prove that a pen-
tagon is reducible, and the search began for configurations that might replace
the pentagon in the unavoidable set. In 1904 Paul Wernicke [50] proved that
it can be replaced by a pair of adjacent pentagons and a pentagon adja-
cent to a hexagon, thereby obtaining a more complicated unavoidable set
that could then be tested for reducibility. Later, in 1922, Philip Franklin [16]
proved that every cubic map containing no digons, triangles, or quadrilater-
als must have at least twelve pentagons, and must include at least one of the
following:

• a pentagon adjacent to two other pentagons;

• a pentagon adjacent to a pentagon and a hexagon;

• a pentagon adjacent to two hexagons.

Using this unavoidable set he proved the four-colour theorem for maps with up
to twenty-five countries. Unavoidable sets were also given by C. N. Reynolds,
Henri Lebesgue (mainly known for his work on the integral calculus), and
others, and over the years the four-colour theorem came to be proved for larger
and larger maps.

Meanwhile, the search was on for reducible configurations other than
the digon, triangle, and quadrilateral. G. D. Birkhoff [7], who learned of
the four-colour problem from Oswald Veblen while studying at Princeton
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University, showed that various other configurations, such as the ‘Birkhoff dia-
mond’ β1,β2,β3, and β4 of four adjacent pentagons, are reducible.

The Birkhoff diamond.

This two-pronged attack of constructing unavoidable sets and proving con-
figurations to be reducible would eventually prove successful. On the one hand
one could replace the pentagon by more and more complicated unavoidable
sets, and on the other hand one could try to obtain larger and larger lists of
reducible configurations. The ultimate aim was to find an unavoidable set of
reducible configurations, since everymapwould have to contain at least one such
configuration, and whichever it was, any colouring of the rest of the map could
then be extended to the configuration. Alternatively, since everymapmust con-
tain one of these reducible configurations, and since no reducible configuration
can appear in a counter-example to the four-colour theorem, there can be no
such counter-example.

Around 1970 Heinrich Heesch [22] presented arguments that indicated that
a finite unavoidable set of reducible configurations existed, and that the number
of such configurations would not exceed 9000. In addition, he developed a
technique for constructing unavoidable sets, later called the dischargingmethod,
and noticed that there are certain features of a map that seem to prevent a
configuration from being reducible.

modern graph theory | 335



Kenneth Appel (b.1932) and Wolfgang Haken (b.1928).

These ideas were developed by Kenneth Appel and Wolfgang Haken, who
spent several years designing computer programs that would help in the search
for unavoidable configurations and assist in testing for reducibility. Unlike other
investigators, who created large numbers of reducible configurations and then
tried to package them into unavoidable sets, Appel and Haken’s approach was
to construct unavoidable sets of ‘likely-to-be-reducible’ configurations and then
check them for reducibility,modifying the set as necessary – this approach saved
much time and effort. After some 1200 hours of computer time, they eventually
produced an unavoidable set of 1936 reducible configurations (later reduced to
1482), thereby completing the proof of the four-colour theorem (see [2] and
[3]). Indeed, since their approach yielded many thousands of such unavoidable
sets, they had thousands of proofs of the four-colour theorem, so that if any
individual configurationwere subsequently to be proved irreducible, this would
not invalidate their work. For further details of their proof, see [53].
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Since then, the technical details of the proof have been simplified somewhat,
mainly by Robertson, Sanders, Seymour, and Thomas (see [39] and [42]), and
the configurations have been checked on other computers, but no easily verifi-
able proof has yet been found. Because of this, and because Appel and Haken’s
work raised interesting philosophical questions about the nature of mathe-
matical proof, the mathematical world was slow to acclaim their magnificent
achievement (see [53, Ch. 11]).

Higher surfaces

Our earlier discussion on the colouring of maps drawn on the plane applies
equally well to maps drawn on a sphere, and this leads us to ask how many
colours are needed for maps drawn on other surfaces. Indeed, in the 1890
paper in which he demolished Kempe’s ‘proof ’ (see Chapter 8), Heawood
[21] raised this very question, proving that seven colours are sufficient for all
maps drawn on a torus and that for some maps seven colours are actually
needed.

Surfaces are of two types. On the one hand are the orientable surfaces, which
can be thought of as spheres with a number of handles added; for example,
the double torus is a sphere with two handles added. On the other hand are
the non-orientable surfaces, with a ‘twist’ (or ‘cross-cap’) in them.These include
the projective plane and the Klein bottle.

Double torus, sphere with two handles, and Klein bottle.

Any surface can be obtained by taking a polygon and identifying some of its
edges. For example, when we identify opposite edges of a rectangle we obtain a
torus, but if we give one pair of opposite edges a twist before identifying them,
we obtain a Klein bottle. For the projective plane, we give both pairs of opposite
edges a twist.
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Identifying edges to obtain a torus, a Klein bottle, and a projective plane.

Using Lhuilier’s result that the Euler characteristic of an orientable surface
with g handles is 2 − 2g (see Chapter 8), Heawood showed that any map drawn
on such a surface can be coloured with 	 1

2
(
7 + √

1 + 48g
)
 colours when

g ≥ 1; this reduces to 7 for a torus (g = 1) and to 8 for a double torus (g = 2).
Unfortunately, except for the torus, he omitted to prove that there are maps
that actually require this number of colours, claiming that ‘there are generally
contacts enough and to spare’.

In the following year, Lothar Heffter [23] pointed out the omission, and
provided the necessary constructions for certain specific values of g. Shortly
after, Heinrich Tietze [43] raised the corresponding problem for maps drawn
on non-orientable surfaces. For a non-orientable surface with g cross-caps, the
Euler characteristic is 2 − g, and the appropriate upper bound on the number
of colours becomes 	 1

2
(
7 + √

1 + 24g
)
. It took many years to prove that in

both the orientable and the non-orientable cases these upper bounds can be
achieved for all remaining values, except for g = 2, the Klein bottle, in the non-
orientable case. The proof eventually came after a long and difficult struggle
involving many people – most notably, Gerhard Ringel and J. W. T. Youngs.

The main problem that Ringel and Youngs solved involved the (orientable)
genus of a graph, the least number of handles that must be added to a sphere for
the graph to have a drawing with no edges crossing. For example, the complete
graph K5 has genus 1, since it can be drawn on a torus, but not on a sphere;
in fact, the same is true of K6 and K7. A key connection between this problem
and the four-colour problem is that if the genus of Kn is gn, then there are some
maps on the surface with gn handles that require n colours. In 1968 Ringel and
Youngs showed that the genus of Kn is � 1

12 (n − 3)(n − 4)�, and from this and
the above observation it follows that, for g ≥ 1, the surface with g handles has
maps on it that actually require 	 1

2
(
7 + √

1 + 48g
)
 colours.

The Ringel–Youngs proof involved the ingenious use of a related ‘electrical
current graph’ and split into no fewer than twelve separate arguments, depend-
ing on the remainder when n is divided by 12. Some of these cases turned out to
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be particularly intransigent; for details, see the book byRingel [37]. Intriguingly,
a few particular values of n that needed special treatment proved to be rather
difficult, and were eventually sorted out by a professor of French literature (see
[32])!

Meanwhile, corresponding results had also been obtained for non-orientable
surfaces. For such a surface with g cross-caps, Kagno [25] proved in 1935 that
there are maps that require 	 1

2
(
7 + √

1 + 24g
)
 colours when g = 3, 4, or 6,

but in the previous year Franklin [17] had shown that for the Klein bottle,
where g = 2, the correct number of colours turns out to be 6, rather than the
value 7 given by this formula. In 1952 Ringel obtained the complete solution,
proving that there are maps that require this number of colours, with the single
exception of maps on the Klein bottle (see [37]).

1 2

3

4

4

5

65

6

1

11

1

2

3

4
5

6
7

K7 drawn on the torus and K6 drawn on the projective plane.

We saw earlier that a graph can be drawn in the plane or sphere if it does not
contain either of the ‘forbidden subgraphs’K5 andK3,3 (Kuratowski’s theorem).
The analogous question for higher surfaces, as to whether there is a finite set of
‘forbidden subgraphs’ for each one, remained elusive for a long time, although
in 1979 Glover et al. [18] managed to obtain a set of 103 forbidden subgraphs
for the projective plane.

Eventually, in a remarkable series of papers in the 1980s, Neil Robertson
and Paul Seymour achieved a major result on ‘graph minors’, one of the most
remarkable breakthroughs in the whole of graph theory. One of its conse-
quences is that, for each such surface (orientable or non-orientable), there is
indeed a finite set of forbidden subgraphs; however, unlike the situation for
the sphere, the number of such subgraphs may be very large – even for the
torus, there are many hundreds of them. A survey of this topic can be found
in Robertson and Seymour [38].
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Other colouring problems

As stated, the four-colour map problem does not appear to be a problem in
graph theory. However, as Kempe pointed out in his 1879 paper, the map
problem can be dualized to give a problem on the colouring of vertices; in this
formulation, we are required to colour the vertices of a planar graph with four
colours in such a way that any two vertices joined by an edge are coloured
differently; this reformulation was the version in which Appel and Haken’s
solution was presented.

a

a

a

b

b

ba

c c

c

A graph whose vertices are coloured with three colours.

More generally, one can ask for the chromatic number of any given graph, the
smallest number of colours needed to colour its vertices in such a way that any
two vertices joined by an edge are coloured differently.This idea developed a life
of its own in the 1930s, mainly through the work ofHasslerWhitney, whowrote
his PhD thesis on the colouring of graphs (see [50]). In particular, Whitney
developed for graphs an idea that Birkhoff [6] had introduced for maps; this is
the chromatic polynomial, which gives the number of possible colourings as a
polynomial function of the number of colours available. Such polynomials can
be usefully studied in their own right, as was done to good effect by Birkhoff
and Lewis [8], Tutte, and others. Subsequently, R. L. Brooks [10] obtained a
useful upper bound on the number of colours required to colour the vertices of
a graph, in terms of the largest vertex degree in the graph:

For a connected graph that is not a complete graph or a cycle of odd length, the
chromatic number cannot exceed the maximum vertex degree.

In 1880, while trying to prove the four-colour theorem, P. G. Tait [41] proved
that the countries of a cubicmap can be coloured with four colours if and only if
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its boundary edges can be coloured with three colours so that the edgesmeeting
at any point are all coloured differently.

a

a

a

a
a

C

A

A B

B

D

c

c

c

c

c

b

b

b

b
b

A four-coloured cubic map whose edges are coloured with three colours.

More generally, one can ask for the chromatic index of a given graph, the
smallest number of colours needed to colour its edges in such a way that any
two edges that meet at a vertex are coloured differently. It is clear that if a graph
contains a vertex of degree k, then we need at least k colours to colour the edges.
It follows that the number of colours needed to colour all the edges of the graph
cannot be less than the maximum vertex degree in the graph.

A graph is bipartite if its set of vertices can be split into two sets in such a way
that each edge joins a vertex in one set to a vertex in the other. In 1916 Dénes
König [27] proved that if a bipartite graph has largest vertex degree k, then its
edges can be coloured with just k colours; for example, the edges of the bipartite
graph below require three colours.

a a a a
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c c
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In 1949 Claude Shannon [40] reformulated a problem involving electrical
relays as an edge-colouring graph problem and established an upper bound for
the number of colours required.Then, in a fundamental paper, V. G. Vizing [47]
proved that to colour the edges of any graph with largest vertex degree k, k + 1
colours are always sufficient.This led to the still-unsolved classification problem
of determining which graphs need only k colours and which ones need k + 1
colours.
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The study of colouring problems of various types blossomed throughout the
1970s and 1980s, and continues to flourish. Further information about these
developments can be found in the book by Jensen and Toft [24].

Matchings and factorization

An important problem in graph theory is to determine whether one can pair up
the vertices of a given graph in such away that the vertices in each pair are joined
by an edge – in other words, can one find a set of disjoint edges meeting each
vertex? Such questions arise, for example, when the vertices represent people
who are required to work in pairs, and the edges indicate a willingness to work
together.

The set of edges in such a pairing is called a perfect matching. For example,
the first of the graphs below has a perfect matching, shown with heavy edges.
However, the second graph has no perfect matching – for, if the vertices v and
w are removed (with their incident edges), then what remains has four pieces,
each with an odd number of vertices; in a perfect matching, v andwwould have
to be paired with vertices from all four pieces, contradicting the definition.

v

w

This idea lies at the basis of a result of Tutte [44], published in 1947, that
asserts that a graph has a perfect matching unless there are vertices like the
above pair v and w:

A graph has a perfect matching if and only if it has no set of k vertices whose
removal leaves a graph in which more than k of the connected pieces that remain
have an odd number of vertices.
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Note that Tutte’s theorem does not tell us how to find a perfect matching in
a graph (if one exists); in fact, showing that there is one can take a lot of
checking.

Another type of matching problem is the assignment problem:

A firm has several positions to be filled, and there are several applicants, each of
whom is qualified for certain of the positions. When can all of the openings be
filled?

This situation can be modelled with a bipartite graph, with the positions as
one set of vertices, the applicants as the other set, and with edges joining the
positions to qualified applicants. A solution to the problem is then a set of
disjoint edges that covers all of the openings. In set theory terms the solution is
given by Hall’s theorem (see Chapter 13); for us, this says that all the jobs can
be filled if and only if each set of positions has at least as many applicants as the
number of positions.

When a solution does not exist for any of these matching problems, it is
natural to ask how close one can get, and how one can find an optimal solu-
tion. A brief discussion of such questions appears in the last section of this
chapter.

A perfect matching in a graph is often called a 1-factor. Perhaps surprisingly,
the study of 1-factors did not begin with the matching question, but originated
with Tait’s 1880 result, mentioned earlier, that a 4-colouring of the countries of a
cubicmap corresponds to a 3-colouring of the edges in which the coloursmeet-
ing at each point are all different. In such a 3-colouring the edges of each colour
constitute a 1-factor, and taken together the three 1-factors give a 1-factorization
of the graph.More generally, a graph is k-regular if each of its vertices has degree
k, and such a graph has a 1-factorization, or is 1-factorizable, if its set of edges
can be split into k 1-factors.

The first mathematician to study factorizations systematically was Julius
Petersen, who in 1891 wrote a fundamental paper [35] on the factorization of
regular graphs, arising from a problem in the theory of invariants. For a regular
graph of odd degree, the primary question is whether it has a 1-factor and, if so,
whether it is 1-factorizable. As shown earlier, Tait’s graph has a 1-factorization.
However, the following 3-regular graph has no 1-factor: note, however, that it
has three ‘cut-edges’ – if any one of them is removed, then the remaining graph
has two pieces. Petersen proved that:
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Every 3-regular graph with at most one cut-edge has a 1-factor.

More generally, an r-factor in a graph is a subgraph in which each vertex
has degree r. After 1-factors, by far the most interesting ones are the 2-factors,
collections of cycles with the property that each vertex of the graph lies in just
one cycle. A graph is r-factorizable if its set of edges can be split up into r-factors;
for example, the complete graph K5, which is 4-regular, is 2-factorizable, since
its set of edges can be split into two 2-factors (the outer pentagon and the inner
pentagram).

Petersen realized that the factorization of regular graphs of even degree is
simpler than for those of odd degree, and he proved that:

Every regular graph of even degree is 2-factorizable.

A few years later, he wrote a short note [36] in which he presented a cubic
graph that is not 1-factorizable but can be split into a 2-factor (the pentagon
and pentagram) and a 1-factor (the spokes joining them). It is now called the
Petersen graph.
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Julius Petersen (1839–1910) and the Petersen graph.

Many years later, following his result on the existence in a graph of a 1-factor
(or perfect matching), Tutte [45] proved a corresponding theorem that tells us
when a graph has an r-factor.

Connectivity

Another application of graphs lies in their modelling of flows in networks.
In this setting, there is a collection of locations with certain pairs connected
directly by roads, whichmay be in just one direction, and each road has a certain
capacity for the amount of goods that can be transported along it; the figure
below gives an example of such a ‘capacitated network’.
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Two vertices are specified as the start s and terminus t, and the objective is
to find flows from s to t, wherein the amount flowing along each arc does not
exceed the capacity and (except for s and t) the amount coming into each vertex
equals the amount going out. The total amount flowing from s to t is called the
value of the flow, and we wish to find a flow of maximum value.

A cut in a network is a collection of arcs whose removal leaves no directed
paths from s to t. Its capacity is the sum of the weights on its arcs. In 1956 Ford
and Fulkerson [15] proved the renownedmax-flow–min-cut theorem:

In any network, the maximum value of a flow equals the minimum capacity
of a cut.

For the above network, this theorem is illustrated below, where the numbers in
brackets give a flow from s to t of value 68, and the arcs xt, yt, yz, and wz form
a cut of capacity 68.
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In fact, such considerations can be traced back to the 1920s, to work by Karl
Menger and others on the connectivity (the degree of connectedness) of graphs.
If, in a connected graph, s and t are two vertices that are not joined by an edge,
then there is a set of vertices whose removal leaves a graph in which s and t lie
in different pieces. What is the smallest number of vertices in such a set?

On the other hand, there may be several paths joining s and t that share
no vertices other than s and t. How many such paths can there be? Clearly
this number cannot exceed the number of vertices whose removal leaves s and
t in different pieces. That this many paths always exist is the essence of the
fundamental theorem of connectivity, first given by Menger [33] in 1927:
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For any non-adjacent vertices s and t in a graph, the maximum number of inter-
nally disjoint paths from s to t equals the minimum number of vertices in a set
whose removal leaves s and t in different pieces.

For example, in the graph below there are three vertices whose removal sepa-
rates s from t, and there are three paths from s to t that are internally disjoint.

s t

There are numerous versions of Menger’s theorem, some of which are global
in nature. A graph is k-connected if the removal of any set of fewer than k vertices
leaves a connected graph with at least two vertices. Here is a global form of
Menger’s result:

If a graph is k-connected, then each pair of vertices has a family of k internally
disjoint paths between them.

The connectivity of a graph is the minimum number of vertices whose
removal results in a disconnected graph (or leaves just one vertex, in the case
of a complete graph). Although Menger’s theorem does not tell us how to find
the connectivity of a graph efficiently, there are methods for doing so, and we
return to this point shortly.

The connectivity of a graph has practical implications, such as determining
how vulnerable to disruption a communications network might be if certain
sites break down. Alternatively, instead of sites it could be links that fail, and this
suggests edge versions of connectedness. Unsurprisingly, there are both local
and global forms of Menger’s theorem for edges; first a local version:

For any vertices s and t in a graph, the maximum number of edge-disjoint paths
from s to t equals the minimum number of edges in a set whose removal leaves s
and t in different pieces.

A graph is k-edge-connected if the removal of any set of fewer than k edges
leaves a connected graph with at least two vertices. Here is a global form of
Menger’s result for edges:

If a graph is k-edge-connected, then each pair of vertices has a family of k edge-
disjoint paths between them.
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The edge-connectivity of a graph is defined as expected, and is a measure of how
vulnerable a network might be to disruption if lines of communication fail.

Finally, we remark that Ford and Fulkerson’s max-flow–min-cut theorem is
actually equivalent to Menger’s theorem, and thus implies all of its variations.
This is another illustration of something that we have seen before (for example,
in connection with matchings and factorizations), that there have been inde-
pendent discoveries, often many years later and through different applications,
of closely related ideas and results. Furthermore, the proof that Ford and Fulk-
erson provided is constructive in nature, and thus provides an efficient method
for finding both a flow of maximum value and a cut of minimum capacity in a
network. This notion of an efficient constructive method leads us to our final
stop in this excursion into the history of modern graph theory.

Algorithmic graph theory

Graph theory algorithms can be traced back over one hundred years to when,
for example, M. Trémaux and others explained how to escape from a maze
(see [31]). In the mid 20th century such algorithms increasingly came into
their own, with the solutions of such problems as the shortest path problem, the
minimum connector problem, and theChinese postman problem. In each of these
problems we are given a network or weighted graph with a number assigned to
each edge, such as its length or the time taken to traverse it.

There are several efficient algorithms for finding the shortest path in a given
network, of which the best known is due to E. W. Dijkstra [13] in 1959. Finding
a longest path, or critical path, in an activity network also dates from the 1940s
and 1950s, with PERT (ProgramEvaluation and Review Technique) used by the
USNavy for problems involving the building of submarines, and CPM (Critical
PathMethod) developed by theDuPont deNemoursCompany tominimize the
total cost of a project.The Chinese postman problem is to find the shortest route
that covers each edge of a given weighted graph; it was solved by Meigu Guan
[Mei-KuKwan] [19].The greedy algorithm for theminimum connector problem,
in which we seek a minimum-length spanning tree in a weighted graph, can be
traced back to O. Borůvka [9] and was later rediscovered by J. B. Kruskal [28].

A problem that sounds similar is the travelling salesman problem, in which
a salesman wishes to make a tour of a number of cities in minimum time or
distance (see [30]). This problem appeared in rudimentary form in a practical
book written in 1831 for the Handlungsreisende (commercial traveller) (see
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Voigt [48]), but its first appearance in mathematical circles was not until the
early 1930s, at Princeton. It was later popularized at the RAND Corporation
(see [11]), eventually leading to a fundamental paper of Dantzig et al. [12]
that included the solution of a travelling salesman problem with forty-nine
cities. Over the years the number of cities has gradually increased, and in
the 1980s a problem with more than two thousand cities was settled by Pad-
berg and Rinaldi [34]. It can now be solved for tens of thousands of cities
(see [4]).

The travelling salesman problem was not the only significant combinatorial
problem studied at the RAND Corporation in the mid 20th century. In par-
ticular, algorithms were developed by Dantzig and by Ford and Fulkerson for
finding the maximum flow of a commodity between two nodes in a capaci-
tated network (see the previous section). Algorithms for solving matching and
assignment problems were also developed, where one wishes to assign people
as appropriately as possible to jobs for which they are qualified; this work devel-
oped from the above-mentioned work of König and from the celebrated result
on matching due to Philip Hall [20], later known as the ‘marriage theorem’ (see
Chapter 13).

This chapter would not be complete without some mention of one of the
outstanding problems of 20th-century mathematics:

Is there a ‘good’ algorithm for solving the travelling salesman problem?

A class of problems is said to be in P if any instance of it can be solved in a
number of steps bounded by a polynomial in the input size (for graphs, usually
the number of vertices); it is in NP if a proposed solution can be checked in a
polynomial number of steps. The basic question is ‘Does P=NP?’

In a groundbreaking paper in 1975, R. Karp [26] presented a number of
important graph theory problems with the property that if any one of them
has a ‘good’ algorithm for its solution, then so do all of the others; these
problems include determining whether a graph is 3-colourable, whether two
drawings represent the same graph, whether a graph has a Hamiltonian cycle
(see Chapter 8), and many hundreds of others. The ‘P = NP?’ question remains
unresolved and was one of the Millennium Problems posed by the Clay
Mathematics Institute in 2000, with a prize of one million US dollars for a
solution.
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PART IV

AFTERMATH



Endre Szemerédi (b.1940),winner of the Abel Prize, 2012.



A PERSONAL VIEW
OF COMBINATORICS

peter j. cameron

This chapter presents a quick overview of the recent development
of combinatorics and its current directions – as a discipline in its
own right, as a part of mathematics and, more generally, as a part

of science and of society.

Introduction

Henry Whitehead reportedly said, ‘Combinatorics is the slums of topology’
(an attribution confirmed by Graham Higman, a student of Whitehead). Less
disparagingly, Hollingdale [24] wrote ‘. . . the branch of topology we now
call “graph theory” . . . ’ . This prejudice, the view that combinatorics is quite
different from ‘real mathematics’, was not uncommon in the 20th century,
among popular expositors as well as professionals. In his biography of Srinivasa
Ramanujan, Robert Kanigel [26] describes Percy MacMahon in these terms:

[MacMahon’s] expertise lay in combinatorics, a sort of glorified dice-throwing, and in it he

had made contributions original enough to be named a Fellow of the Royal Society.

In the later part of the century, attitudes changed. When the 1998 film Good
Will Hunting featured a famous mathematician at the Massachusetts Institute
of Technology who had won a Fields Medal for combinatorics, many found
this somewhat unbelievable; nonetheless, the ‘unsolvable math problem’ in this
film is based on the actual experience of George B. Dantzig, who as a student
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solved twoproblems posed by JerzyNeyman at Berkeley in 1940 (see [8]). In this
case, however, life followed art later in 1998 when Fields Medals were awarded
to Tim Gowers and Richard Borcherds for their work, much of which was in
combinatorics (though John McKay points out that Borcherds would probably
not regard his work as being combinatorial). In 2012, the Abel prizewinner was
Endre Szemerédi, the distinguished Hungarian combinatorialist.

A more remarkable instance of life following art involves Stanisław Lem’s
1968 novel His Master’s Voice [33]. The narrator, a mathematician, describes
how he single-mindedly attacked his rival’s work:

I do not think I ever finished any larger paper in all my younger work without imagining Dill’s

eyes on the manuscript.What effort it cost me to prove that the Dill variable combinatorics

was only a rough approximation of an ergodic theorem! Not before or since, I daresay, did

I polish a thing so carefully; and it is even possible that the whole concept of groups later

called Hogarth groups came out of that quiet, constant passion with which I plowed Dill’s

axioms under.

In 1975, Szemerédi [46] published his remarkable combinatorial proof that a
set of natural numbers with positive density contains arbitrarily long arithmetic
progressions; in 1977, Furstenberg [15] gave a proof based on ergodic theory!
(This is not to suggest that Furstenberg’s attitude to Szemerédi parallels Hoga-
rth’s to Dill in the novel.)

In this chapter, I have attempted to tease apart some of the interrelated rea-
sons for this change, and perhaps to throw some light on present trends and
future directions. I have divided the causes into four groups:

• the influence of the computer;

• the growing sophistication of combinatorics;

• its strengthening links with the rest of mathematics;

• wider changes in society.

I have told the story mostly through examples.

The influence of the computer

Even before computers were built, pioneers such as Charles Babbage and Alan
Turing realized that they would be designed on discrete principles, and would
raise theoretical issues that would lead to important mathematics.
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Kurt Gödel [18] showed that there are true statements about the natural
numbers that cannot be deduced from the axioms of a standard system such as
Peano’s. This result was highly significant for the foundations of mathematics,
butGödel’s unprovable statement itself had no significance in the actual practice
of mathematics.The first example of a natural mathematical statement which is
unprovable in Peano arithmetic was discovered by Paris and Harrington [36],
and is a theorem in combinatorics (it is a slight strengthening of Ramsey’s
theorem). It is unprovable from the axioms because the corresponding ‘Paris–
Harrington function’ grows faster than any provably computable function. Sev-
eral further examples of this phenomenon have been discovered,mostly combi-
natorial in nature. For instance, calculating precise values for Ramsey numbers,
or even close estimates, appears to be among the most fiendishly difficult open
combinatorial problems.

More recently, attention has turned from computability to computational
complexity: given that something can be computed, what resources (time,mem-
ory, etc.) are required for the computation? Recall (fromChapter 14) that a class
of problems is said to be polynomial-time computable, or in P, if any instance
can be solved in a number of steps bounded by a polynomial in the input size.
A class is in NP if the same assertion holds if we are allowed to make a number
of lucky guesses (or, what amounts to the same thing, if a proposed solution
can be checked in a polynomial number of steps). The great unsolved problem
of complexity theory asks:

Is P = NP?

On 24 May 2000, the Clay Mathematics Institute announced a list of seven
unsolved problems, for each of which a prize of one million dollars was offered.
The P = NP? problem was the first on the list [9]. This problem is particularly
important for combinatorics, sincemany hundreds of intractable combinatorial
problems (including the existence of a Hamiltonian cycle in a graph) are known
to be in NP. In the unlikely event of an affirmative answer, ‘fast’ algorithms
would exist for all these problems.

Now we turn to the practical use of computers. Computer systems, such as
GAP [16], have also been developed which can treat algebraic or combinatorial
objects, such as a group or a graph, in a way similar to the handling of complex
numbers ormatrices inmore traditional systems.These give themathematician
a very powerful tool for exploring structures and testing (or even formulating)
conjectures.
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But what has caught the public eye is the use of computers to prove theorems.
This was dramatically the case in 1976 when Kenneth Appel and Wolfgang
Haken [1] announced that they had proved the four-colour theorem by com-
puter (see Chapter 14). Their announcement started a wide discussion over
whether a computer proof is really a ‘proof ’ at all: see, for example, Swart
[45] and Tymoczko [50] for contemporary responses, and Wilson [52] for a
survey.An evenmoremassive computation byClement Lamandhis co-workers
[29], discussed by Lam in [28], showed the non-existence of a projective plane
of order 10 (see Chapters 10 and 11). Other recent achievements include the
classification of Steiner triple systems of order 19 (see [27]).

Computers have also been used in other parts of mathematics. For exam-
ple, in the classification of finite simple groups (discussed below), many of
the sporadic simple groups were constructed with the help of computers. The
very practical study of fluid dynamics depends on massive computation. What
distinguishes combinatorics? Two factors seem important:

• in a sense, the effort of the proof consists mainly in detailed case analysis, or

generates large amounts of data, and so the computer does most of the work;

• the problem and solution are both discrete; the results are not invalidated by

rounding errors or chaotic behaviour.

Finally, the advent of computers has given rise to many new areas of math-
ematics related to the processing and transmission of data. Since computers
are digital, these areas are naturally related to combinatorics. They include
coding theory (discussed below), cryptography, integer programming, discrete
optimization, and constraint satisfaction.

The nature of the subject

The last two centuries of mathematics have been dominated by the trend
towards axiomatization. A structure which fails to satisfy the axioms is not to be
considered. (As one of my colleagues put it to a student in a class, ‘For a ring to
pass the exam, it has to get 100%.’) Combinatorics has never fitted this pattern
very well.

When Gian-Carlo Rota and various co-workers wrote an influential series of
papers with the title ‘On the foundations of combinatorial theory’ in the 1960s
and 1970s (see [40] and [10], for example), one reviewer compared combinato-
rialists to nomads on the steppes who had not managed to construct the cities
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in which other mathematicians dwell, and expressed the hope that these papers
would at least found a thriving settlement.

While Rota’s papers have been very influential, this view has not prevailed. To
see this, we turn to the more recent series on ‘Graph minors’ by Neil Robertson
and Paul Seymour [39]. These are devoted to the proof of a single major theo-
rem, that aminor-closed class of graphs is determined by finitelymany excluded
minors. Along the way, a rich tapestry is woven, which is descriptive (giving a
topological embedding of graphs) and algorithmic (showing that many graph
problems lie in P), as well as deductive.

The work of Robertson and Seymour and its continuation is certainly one of
the major themes in graph theory at present, and has contributed to a shorter
proof of the four-colour theorem, as well as to a proof of the strong perfect
graph conjecture. Various authors – notably Gerards, Geelen, andWhittle – are
extending it to classes of matroids (see [17]).

What is clear, though, is that combinatorics will continue to elude attempts
at formal specification.

Relationships

In 1974 anAdvanced Study Institute onCombinatorics was held at Nijenrode in
the Netherlands, organized by Marshall Hall and Jack van Lint. This was one of
the first presentations, aimed at young researchers, of combinatorics as amature
mathematical discipline.The subject was divided into five sections: the theory of
designs, finite geometry, coding theory, graph theory, and combinatorial group
theory.

It is very striking to look at the four papers in coding theory [22]. This
was the youngest of the sections, having begun with the work of Hamming
and Golay in the late 1940s. Yet the methods being used involved the most
sophisticated mathematics: invariant theory, harmonic analysis, Gauss sums,
and Diophantine equations.

This trend has continued. In the 1970s the Russian school (notably Goppa,
Manin, and Vladut) developed links between coding theory and algebraic
geometry (specifically, divisors on algebraic curves); these links were definitely
‘two-way’, and both subjects benefited. More recently, codes over rings and
quantum codes have revitalized the subject and made new connections with
ring theory and group theory. In the related field of cryptography, one of the
most widely used ciphers is based on elliptic curves.
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Another example is provided by the most exciting development in mathe-
matics in the late 1980s, which grew from the work of Vaughan Jones, for which
he received a FieldsMedal in 1990.His research on traces ofVonNeumann alge-
bras came together with representations of the Artin braid group to yield a new
invariant of knots, with ramifications in mathematical physics and elsewhere
(see the citation by Joan Birman [3] and her popular account [4] for a map of
this territory).

Later, it was pointed out that the Jones polynomial is a specialization of the
Tutte polynomial, which had been defined for arbitrary graphs by Tutte and
Whitney and generalized to matroids by Tutte; Tutte himself gave two accounts
of his discovery (see [48] and [49]). The connections led to further researches.
Therewas thework of François Jaeger [25], whoderived a spinmodel, and hence
an evaluation of the Kauffman polynomial, from the strongly regular graph
associated with the Higman–Sims simple group; and also the work of Dominic
Welsh and his collaborators (described in his book [51]) on the computational
complexity of the new knot invariants.

Sokal’s article [44] discusses the close relations between the Tutte polyno-
mial and the partition function for the Potts model in statistical mechanics.
This interaction has led to important advances in both areas. The connection
actually goes back to Fortuin and Kasteleyn [14], with later contributions by
Zaslavsky and by Bollobás and Riordan. (I am grateful to Jo Ellis-Monaghan
for information about this.)

By their nature, examples such as this of unexpected connections cannot be
predicted. However, combinatorics is likely to be involved in such discoveries: it
seems that deep links in mathematics often reveal themselves in combinatorial
patterns.

One of the best examples concerns the ubiquity of the Coxeter–Dynkin
diagrams An, Dn, E6, E7, and E8. To guide the development of mathematics,
Arnol’d (see [7]) proposed finding an explanation of their ubiquity as a modern
equivalent of a Hilbert problem. He noted their occurrence in areas such as
Lie algebras (the simple Lie algebras over the complex numbers), Euclidean
geometry (root systems), group theory (Coxeter groups), representation theory
(algebras of finite representation type), and singularity theory (singularities
with definite intersection form), as well as their connection with the regular
polyhedra. To this list could be added mathematical physics (instantons) and
combinatorics (eigenvalues of graphs). Indeed, graph theory provides the most
striking specification of the diagrams: they are just the connected graphs with
all eigenvalues smaller than 2.
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Recently this subject has been revived with the discovery by Fomin and
Zelevinsky [13] of the role of these ADE diagrams in the theory of cluster
algebras: this is a new topic with combinatorial foundations and applications
in Poisson geometry, integrable systems, representation theory, and total
positivity.

Other developments include the relationship of combinatorics to finite group
theory.The classification of finite simple groups [19] is the greatest collaborative
effort ever in mathematics, running to about 15 000 journal pages. (Ironically,
although the theoremwas announced in 1980, the proof contained a gap which
has only just been filled.) Combinatorial ideas (graphs, designs, codes, and
geometries) were involved in the proof – perhaps, most notably, the classifi-
cation of spherical buildings by Jacques Tits [47]. Also, the result has had a
great impact in combinatorics, with consequences both for symmetric objects
such as graphs and designs (see Praeger’s survey [38]), and (more surprisingly)
elsewhere, as in Luks’s proof [34] that the graph isomorphism problem for
graphs of bounded valency is in P.

This account would not be complete without a mention of the work of
Borcherds [5] on ‘monstrousmoonshine’, connecting the Golay code, the Leech
lattice, and the Monster simple group with generalized Kac–Moody algebras
and vertex operators in mathematical physics, and throwing up a number of
product identities of the kind familiar from the classical work of Jacobi and
others.

In science and in society

Like any human endeavour, combinatorics has been affected by the great
changes in society during the last century. The first influence to be mentioned
is a single individual, Paul Erdős, who is the subject of two recent best-selling
biographies [23], [41].

Erdős’s mathematical interests were wide, but combinatorics was central
to them. As we saw in Chapter 13, he spent a large part of his life without
a permanent abode, travelling the world and collaborating with hundreds of
mathematicians. In the days before electronic mail he was a vital communica-
tion link between mathematicians in the East and the West. He also inspired a
vast body of research – his more than 1500 papers dwarf the output of any other
modern mathematician (see [21]).
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Erdős also stimulatedmathematics by publicizing his vast collection of prob-
lems; for many of them, he offered financial rewards for solutions. As an exam-
ple, here is one of his most valuable problems:

Let A = {a1, a2, . . . } be a set of positive integers with the property that the sum of the

reciprocals of the members of A diverges. Is it true that A contains arbitrarily long arithmetic

progressions?

Themotivating special case (recently solved in the affirmative by Green and Tao
[20]) is whereA is the set of prime numbers; this is a problem in number theory,
but Erdős’s extension to an arbitrary set transforms it into combinatorics.

Increased collaboration among mathematicians goes beyond the influence
of Erdős; combinatorics seems to lead the trend. Aspects of this trend include
large international conferences (the Southeastern Conference on Combina-
torics, Graph Theory, and Computing, which held its 43rd meeting in 2012,
attracts over five hundred people annually), and electronic journals (the Elec-
tronic Journal of Combinatorics [12], founded in 1994, was one of the first
refereed specialist electronic journals in mathematics). Electronic publishing is
particularly attractive to combinatorialists; often, arguments require long case
analysis, which editors of traditional print journals may be reluctant to include
in full.

On a popular level, the sudoku puzzle (a variant of the problem of complet-
ing a critical set in a Latin square) daily engages many thousands of people
throughout the world in combinatorial reasoning (see Chapter 11). Mathe-
maticians have not been immune to its attractions. At the time of writing,
MathSciNet lists over forty publications with ‘sudoku’ in their title, linking it to
topics as diverse as spreads and reguli, neural networks, fractals, and Shannon
entropy.

Our time has seen a change in the scientific viewpoint from the continuous to
the discrete. Twomathematical developments of the 20th century – catastrophe
theory and chaos theory – have shown how discrete effects can be produced by
continuous causes. (Perhaps their dramatic names reflect the intellectual shock
of this discovery.) But the trend has been even more widespread. In their 1944
book introducing a new branch of discrete mathematics (game theory), John
von Neumann and Oskar Morgenstern [35] wrote:

The emphasis on mathematical methods seems to be shifted more towards combinatorics

and set theory – and away from the algorithm of differential equations which dominates

mathematical physics.
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How does discreteness arise in nature? Segerstråle [42] quotes JohnMaynard
Smith as saying:

today we really do have amathematics for thinking about complex systems and things which

undergo transformations from quantity into quality

or from continuous to discrete, mentioning Hopf bifurcations as a mechanism
for this.

On the importance of discreteness in nature, Steven Pinker [37] has no doubt.
He wrote:

It may not be a coincidence that the two systems in the universe that most impress us with

their open-ended complex design – life and mind – are based on discrete combinatorial

systems.

Here, ‘mind’ refers primarily to language, whose combinatorial structure is
well described in Pinker’s book; ‘life’ refers to the genetic code, where DNA
molecules can be regarded as words in an alphabet of four letters (the bases
adenine, cytosine, guanine, and thymine), and three-letter subwords encode
amino acids, the building blocks of proteins.

TheHumanGenomeProject, whose completionwas announced in 2001, was
amajor scientific enterprise designed to describe completely the genetic code of
humans (see [2] for an account of the mathematics involved, and [32] for sub-
sequent developments). At Pinker’s institution (the Massachusetts Institute of
Technology), the Whitehead Laboratory was engaged in this project. Its direc-
tor, Eric Lander, serves to round off this final chapter and illustrate its major
themes. His doctoral thesis [30] was in combinatorics, involving a ‘modern’
subject (coding theory), links within combinatorics (codes and designs), and
links to other parts ofmathematics (lattices and local fields), and furthermore he
is a fourth-generation academic descendant of Henry Whitehead. Eric Lander
honoured me at my 60th birthday conference by giving a talk entitled ‘The
human genome: an asymmetric design’; the title was a parody of the book he
wrote based on his thesis: Symmetric Designs: An Algebraic Approach [31].

But there are now hints that discreteness plays an even more fundamental
role. One of the goals of physics at present is the construction of a theory
which could reconcile the two pillars of 20th-century physics: general relativity
and quantum mechanics. In describing string theory, loop quantum gravity,
and a variety of other approaches (including non-commutative geometry and
causal set theory), Smolin [43] argued that all of them involve discreteness at
a fundamental level (roughly, the Planck scale, which is much too small and
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fleeting to be directly observed). Causal set theory is based on discrete partially
ordered sets and has already attracted the attention of combinatorialists (see [6]
and [11]). Indeed, developments such as the holographic principle suggest that
the basic currency of the universe may not be space and time, but information
measured in bits. Maybe the ‘theory of everything’ will be combinatorial!
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Inclusion–exclusion theorem,

310–13
India, 5–7, 40–61, 168–71,

252–3, 261
Induction, 116–17
Integer partition, 27–9
Invariant theory, 196, 214
Islamic combinatorics,

82–104, 254
Isomers, 195–6, 198
Izquierdo, Sebastián, 19,

137

J
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