
This is the 100% identical eBook (PDF) version of CP4 Book 2
that was released on 19 July 2020

Please read https://cpbook.net/errata
for the latest known updates to this PDF

c� Steven, Felix, Suhendry

ii

Contents

Authors’ Profiles vii

5 Mathematics 273
5.1 Overview and Motivation . 273
5.2 Ad Hoc Mathematical Problems . 274
5.3 Number Theory . 282

5.3.1 Prime Numbers . 282
5.3.2 Probabilistic Prime Testing (Java Only) 284
5.3.3 Finding Prime Factors with Optimized Trial Divisions 284
5.3.4 Functions Involving Prime Factors 286
5.3.5 Modified Sieve . 288
5.3.6 Greatest Common Divisor & Least Common Multiple 288
5.3.7 Factorial . 289
5.3.8 Working with Prime Factors . 289
5.3.9 Modular Arithmetic . 290
5.3.10 Extended Euclidean Algorithm . 292
5.3.11 Number Theory in Programming Contests 293

5.4 Combinatorics . 298
5.4.1 Fibonacci Numbers . 298
5.4.2 Binomial Coe�cients . 299
5.4.3 Catalan Numbers . 300
5.4.4 Combinatorics in Programming Contests 301

5.5 Probability Theory . 305
5.6 Cycle-Finding . 308

5.6.1 Problem Description . 308
5.6.2 Solutions using E�cient Data Structures 308
5.6.3 Floyd’s Cycle-Finding Algorithm . 309

5.7 Game Theory (Basic) . 312
5.8 Matrix Power . 315

5.8.1 Some Definitions and Sample Usages 315
5.8.2 E�cient Modular Power (Exponentiation) 316
5.8.3 E�cient Matrix Modular Power (Exponentiation) 317
5.8.4 DP Speed-up with Matrix Power . 318

5.9 Solution to Non-Starred Exercises . 321
5.10 Chapter Notes . 324

6 String Processing 325
6.1 Overview and Motivation . 325
6.2 Ad Hoc String (Harder) . 326
6.3 String Processing with DP . 329

iii

CONTENTS c� Steven, Felix, Suhendry

6.3.1 String Alignment (Edit Distance) . 329
6.3.2 Longest Common Subsequence . 331
6.3.3 Non Classical String Processing with DP 331

6.4 String Matching . 333
6.4.1 Library Solutions . 333
6.4.2 Knuth-Morris-Pratt (KMP) Algorithm 333
6.4.3 String Matching in a 2D Grid . 336

6.5 Su�x Trie/Tree/Array . 338
6.5.1 Su�x Trie and Applications . 338
6.5.2 Su�x Tree . 340
6.5.3 Applications of Su�x Tree . 341
6.5.4 Su�x Array . 343
6.5.5 Applications of Su�x Array . 351

6.6 String Matching with Hashing . 355
6.6.1 Hashing a String . 355
6.6.2 Rolling Hash . 355
6.6.3 Rabin-Karp String Matching Algorithm 357
6.6.4 Collisions Probability . 358

6.7 Anagram and Palindrome . 359
6.7.1 Anagram . 359
6.7.2 Palindrome . 359

6.8 Solution to Non-Starred Exercises . 363
6.9 Chapter Notes . 364

7 (Computational) Geometry 365
7.1 Overview and Motivation . 365
7.2 Basic Geometry Objects with Libraries . 368

7.2.1 0D Objects: Points . 368
7.2.2 1D Objects: Lines . 371
7.2.3 2D Objects: Circles . 376
7.2.4 2D Objects: Triangles . 378
7.2.5 2D Objects: Quadrilaterals . 381

7.3 Algorithms on Polygon with Libraries . 384
7.3.1 Polygon Representation . 384
7.3.2 Perimeter of a Polygon . 384
7.3.3 Area of a Polygon . 385
7.3.4 Checking if a Polygon is Convex . 386
7.3.5 Checking if a Point is Inside a Polygon 387
7.3.6 Cutting Polygon with a Straight Line 388
7.3.7 Finding the Convex Hull of a Set of Points 390

7.4 3D Geometry . 396
7.5 Solution to Non-Starred Exercises . 398
7.6 Chapter Notes . 400

8 More Advanced Topics 401
8.1 Overview and Motivation . 401
8.2 More Advanced Search Techniques . 402

8.2.1 Backtracking with Bitmask . 402
8.2.2 State-Space Search with BFS or Dijkstra’s 405
8.2.3 Meet in the Middle . 407

iv

CONTENTS c� Steven, Felix, Suhendry

8.3 More Advanced DP Techniques . 411
8.3.1 DP with Bitmask . 411
8.3.2 Compilation of Common (DP) Parameters 412
8.3.3 Handling Negative Parameter Values with O↵set 412
8.3.4 MLE/TLE? Use Better State Representation 414
8.3.5 MLE/TLE? Drop One Parameter, Recover It from Others 415
8.3.6 Multiple Test Cases? No Memo Table Re-initializations 416
8.3.7 MLE? Use bBST or Hash Table as Memo Table 417
8.3.8 TLE? Use Binary Search Transition Speedup 417
8.3.9 Other DP Techniques . 418

8.4 Network Flow . 420
8.4.1 Overview and Motivation . 420
8.4.2 Ford-Fulkerson Method . 420
8.4.3 Edmonds-Karp Algorithm . 422
8.4.4 Dinic’s Algorithm . 423
8.4.5 Flow Graph Modeling - Classic . 428
8.4.6 Flow Graph Modeling - Non Classic 432
8.4.7 Network Flow in Programming Contests 433

8.5 Graph Matching . 435
8.5.1 Overview and Motivation . 435
8.5.2 Graph Matching Variants . 435
8.5.3 Unweighted MCBM . 436
8.5.4 Weighted MCBM and Unweighted/Weighted MCM 439

8.6 NP-hard/complete Problems . 441
8.6.1 Preliminaries . 441
8.6.2 Pseudo-Polynomial: Knapsack, Subset-Sum, Coin-Change . . . 442
8.6.3 Traveling-Salesman-Problem (TSP) 443
8.6.4 Hamiltonian-Path/Tour . 445
8.6.5 Longest-Path . 446
8.6.6 Max-Independent-Set and Min-Vertex-Cover 447
8.6.7 Min-Set-Cover . 453
8.6.8 Min-Path-Cover . 454
8.6.9 Satisfiability (SAT) . 455
8.6.10 Steiner-Tree . 457
8.6.11 Graph-Coloring . 459
8.6.12 Min-Clique-Cover . 460
8.6.13 Other NP-hard/complete Problems 461
8.6.14 Summary . 462

8.7 Problem Decomposition . 465
8.7.1 Two Components: Binary Search the Answer and Other 465
8.7.2 Two Components: Involving E�cient Data Structure 467
8.7.3 Two Components: Involving Geometry 468
8.7.4 Two Components: Involving Graph 468
8.7.5 Two Components: Involving Mathematics 468
8.7.6 Two Components: Graph Preprocessing and DP 469
8.7.7 Two Components: Involving 1D Static RSQ/RMQ 470
8.7.8 Three (or More) Components . 470

8.8 Solution to Non-Starred Exercises . 478
8.9 Chapter Notes . 480

v

CONTENTS c� Steven, Felix, Suhendry

9 Rare Topics 481
9.1 Overview and Motivation . 481
9.2 Sliding Window . 483
9.3 Sparse Table Data Structure . 485
9.4 Square Root Decomposition . 488
9.5 Heavy-Light Decomposition . 493
9.6 Tower of Hanoi . 496
9.7 Matrix Chain Multiplication . 497
9.8 Lowest Common Ancestor . 499
9.9 Tree Isomorphism . 501
9.10 De Bruijn Sequence . 505
9.11 Fast Fourier Transform . 508
9.12 Pollard’s rho Algorithm . 528
9.13 Chinese Remainder Theorem . 530
9.14 Lucas’ Theorem . 534
9.15 Rare Formulas or Theorems . 536
9.16 Combinatorial Game Theory . 538
9.17 Gaussian Elimination Algorithm . 543
9.18 Art Gallery Problem . 546
9.19 Closest Pair Problem . 547
9.20 A* and IDA*: Informed Search . 548
9.21 Pancake Sorting . 551
9.22 Egg Dropping Puzzle . 554
9.23 Dynamic Programming Optimization . 558
9.24 Push-Relabel Algorithm . 566
9.25 Min Cost (Max) Flow . 571
9.26 Hopcroft-Karp Algorithm . 573
9.27 Kuhn-Munkres Algorithm . 574
9.28 Edmonds’ Matching Algorithm . 577
9.29 Chinese Postman Problem . 580
9.30 Constructive Problem . 582
9.31 Interactive Problem . 585
9.32 Linear Programming . 586
9.33 Gradient Descent . 589
9.34 Chapter Notes . 590

Bibliography 593

vi

Authors’ Profiles

Steven Halim, PhD1

stevenhalim@gmail.com
Steven Halim is a senior lecturer in School of Comput-
ing, National University of Singapore (SoC, NUS). He
teaches several programming courses in NUS, rang-
ing from basic programming methodology, intermedi-
ate to hard data structures and algorithms, web pro-
gramming, and also the ‘Competitive Programming’
module that uses this book. He is the coach of both
the NUS ICPC teams and the Singapore IOI team. He participated in several ICPC Re-
gionals as a student (Singapore 2001, Aizu 2003, Shanghai 2004). So far, he and other
trainers @ NUS have successfully groomed various ICPC teams that won ten di↵erent ICPC
Regionals (see below), advanced to ICPC World Finals eleven times (2009-2010; 2012-2020)
with current best result of Joint-14th in ICPC World Finals Phuket 2016 (see below), as
well as seven gold, nineteen silver, and fifteen bronze IOI medalists (2009-2019). He is also
the Regional Contest Director of ICPC Asia Singapore 2015+2018 and is the Deputy Di-
rector+International Committee member for the IOI 2020+2021 in Singapore. He has been
invited to give international workshops about ICPC/IOI at various countries, e.g., Bolivia
ICPC/IOI camp in 2014, Saudi Arabia IOI camp in 2019, Cambodia NOI camp in 2020.

Steven is happily married to Grace Suryani Tioso and has two daughters and one son:
Jane Angelina Halim, Joshua Ben Halim, and Jemimah Charissa Halim.

ICPC Regionals # Year(s)
Asia Jakarta 5 2013 (ThanQ), 2014 (ThanQ+), 2015 (RRwatameda),

2017 (DomiNUS), 2019 (Send Bobs to Alice)
Asia Manila 2 2017 (Pandamiao), 2019 (7 Halim)
Asia Nakhon Pathom 1 2018 (Pandamiao)
Asia Yangon 1 2018 (3body2)
Asia Kuala Lumpur 1 2019 (3body3)

Table 1: NUS ICPC Regionals Wins in 2010s

ICPC World Finals Team Name Rank Year
Phuket, Thailand RRwatameda Joint-14/128 2016
Ekaterinburg, Russia ThanQ+ Joint-19/122 2014
Rapid City, USA TeamTam Joint-20/133 2017

Table 2: NUS ICPC World Finals Top 3 Results in 2010s

1PhD Thesis: “An Integrated White+Black Box Approach for Designing and Tuning Stochastic Local
Search Algorithms”, 2009.

vii

AUTHORS’ PROFILES c� Steven, Felix, Suhendry

Felix Halim, PhD2

felix.halim@gmail.com

Felix Halim is a senior software engineer at Google.
While in Google, he worked on distributed system
problems, data analysis, indexing, internal tools, and
database related stu↵. Felix has a passion for web
development. He created uHunt to help UVa on-
line judge users find the next problems to solve.
He also developed a crowdsourcing website, https:
//kawalpemilu.org, to let the Indonesian public to
oversee and actively keep track of the Indonesia gen-
eral election in 2014 and 2019.

As a contestant, Felix participated in IOI 2002 Ko-
rea (representing Indonesia), ICPCManila 2003-2005,
Kaohsiung 2006, and World Finals Tokyo 2007 (rep-
resenting Bina Nusantara University). He was also
one of Google India Code Jam 2005 and 2006 final-
ists. As a problem setter, Felix set problems for ICPC
Jakarta 2010, 2012, 2013, ICPC Kuala Lumpur 2014,
and several Indonesian national contests.

Felix is happily married to Siska Gozali. The picture on the right is one of their Europe
honeymoon travel photos (in Switzerland) after ICPC World Finals @ Porto 2019. For more
information about Felix, visit his website at https://felix-halim.net.

Suhendry E↵endy, PhD3

suhendry.e↵endy@gmail.com

Suhendry E↵endy is a research fellow in the School
of Computing of the National University of Singa-
pore (SoC, NUS). He obtained his bachelor degree
in Computer Science from Bina Nusantara University
(BINUS), Jakarta, Indonesia, and his PhD degree in
Computer Science from National University of Singa-
pore, Singapore. Before completing his PhD, he was
a lecturer in BINUS specializing in algorithm anal-
ysis and served as the coach for BINUS competitive
programming team (nicknamed as “Jollybee”).

Suhendry is a recurring problem setter for the
ICPC Asia Jakarta since the very first in 2008. From
2010 to 2016, he served as the chief judge for the
ICPC Asia Jakarta collaborating with many other
problem setters. He also set problems in many other
contests, such as the ICPC Asia Kuala Lumpur, the
ICPC Asia Singapore, and Olimpiade Sains Nasional
bidang Komputer (Indonesia National Science Olympiad in Informatic) to name but a few.

2PhD Thesis: “Solving Big Data Problems: from Sequences to Tables and Graphs”, 2012.
3PhD Thesis: “Graph Properties and Algorithms in Social Networks: Privacy, Sybil Attacks, and the

Computer Science Community”, 2017.

viii

Chapter 5

Mathematics

We all use math every day; to predict weather, to tell time, to handle money.
Math is more than formulas or equations; it’s logic, it’s rationality,

it’s using your mind to solve the biggest mysteries we know.
— TV show NUMB3RS

5.1 Overview and Motivation

The appearance of mathematics-related problems in programming contests is not surprising
since Computer Science is deeply rooted in Mathematics. Many interesting real life problems
can be modeled as mathematical problems as you will frequently see in this chapter.

Recent ICPC problem sets (based on our experience in Asian Regionals) usually contain
one or two mathematical problems. Recent IOIs usually do not contain pure mathematics
tasks, but many tasks do require mathematical insights. This chapter aims to prepare
contestants in dealing with many of these mathematical problems.

We are aware that di↵erent countries place di↵erent emphases in mathematics training
in pre-University education. Thus, some contestants are familiar with the mathematical
terms listed in Table 5.1. But for others, these mathematical terms do not ring a bell,
perhaps because the contestant has not learnt it before, or perhaps the term is di↵erent in
the contestant’s native language. In this chapter, we want to make a more level-playing
field for the readers by listing as many common mathematical terminologies, definitions,
problems, and algorithms that frequently appear in programming contests as possible.

Arithmetic Progression Geometric Progression Polynomial
Algebra Logarithm/Power Big Integer
Number Theory Prime Number Sieve of Eratosthenes
Miller-Rabin Greatest Common Divisor Lowest Common Multiple
Factorial Euler Phi Modified Sieve
Extended Euclidean Linear Diophantine Modular Inverse
Combinatorics Fibonacci Golden Ratio
Binet’s Formula Zeckendorf’s Theorem Pisano Period
Binomial Coe�cients Fermat’s little theorem Lucas’ Theorem
Catalan Numbers Inclusion-Exclusion Probability Theory
Cycle-Finding Game Theory Zero-Sum Game
Decision Tree Perfect Play Minimax
Nim Game Sprague-Grundy Theorem Matrix Power

Table 5.1: List of some mathematical terms discussed in this chapter

273

5.2. AD HOC MATHEMATICAL PROBLEMS c� Steven, Felix, Suhendry

5.2 Ad Hoc Mathematical Problems

We start this chapter with something light: the Ad Hoc mathematical problems. These
are programming contest problems that require no more than basic programming skills and
some fundamental mathematics. As there are still too many problems in this category, we
further divide them into sub-categories, as shown below. These problems are not placed in
Book 1 as they are Ad Hoc problems with (heavier) mathematical flavor. But remember that
many of these Ad Hoc mathematical problems are the easier ones. To do well in the actual
programming contests, contestants must also master the other sections of this chapter.

• Finding (Simple) Formula or Pattern
These problems require the problem solver to read the problem description carefully
to get a simplified formula or to spot the pattern. Attacking them directly will usually
result in a TLE verdict. The actual solutions are usually short and do not require
loops or recursions. Example: Let set S be an infinite set of square integers : {1, 4, 9,
16, 25, . . . }. Given an integer X (1 X 1018), count how many integers in S are
less than X. The answer is simply: b

p
X � 1c. This is an O(1) solution.

Note that in Section 5.4, we will discuss Combinatorics problems that will also end
up with some (not necessarily simple) formula. We also have Section 9.15 where we
discuss a few known but very rare mathematical formulas.

• Base Number Conversion or Variants
These are the mathematical problems involving base numbers. The most frequent type
involves the standard conversion problems that can be easily solved manually or with
C/C++/Python/OCaml (limited) or Java Integer/BigInteger (most generic) library.

For example, to convert 132 in base 8 (octal) into base 2 (binary), we can use base 10
(decimal) as the intermediate step: (132)8 is 1⇥82+3⇥81+2⇥80 = 64+24+2 = (90)10
and (90)10 is 90 ! 45(0) ! 22(1) ! 11(0) ! 5(1) ! 2(1) ! 1(0) ! 0(1) =
(1011010)2 (that is, divide by 2 until 0, then read the remainders from backwards).

However, we can also use built-in libraries:

– C/C++:

int v; scanf("%o", &v); // read v in octal
bitset<32> bin(v); // use bitset
printf("%s\n", bin.to_string().c_str()); // print in binary

– Python:

print("{0:b}".format(int(str(input()), 8))) # octal to binary

– OCaml:

Printf.sprintf "%X" (int_of_string "0o374");; # octal to hexa

– Java:
If we know Java Integer/BigInteger class, we can actually construct an instance
of Integer/BigInteger class in any base (radix) and use its toString(int radix)
method to print the value of that instance in any base (radix). This is a much more
flexible library solution than C/C++ or Python solutions earlier that are limited
to popular bases = 2/8/10/16. See an example below for Kattis - basicremains
(also available at UVa 10551 - Basic Remains). Given a base b and two non-
negative integers p and m—both in base b, compute p % m and print the result
as a base b integer. The solution is as follows:

274

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

class Main {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in); // a few test cases
while (true) {

int b = sc.nextInt(); if (b == 0) break;
BigInteger p = new BigInteger(sc.next(), b); // 2nd parameter
BigInteger m = new BigInteger(sc.next(), b); // is the base
System.out.println((p.mod(m)).toString(b)); // print in base b

}
}

}

Source code: ch5/basicremains UVa10551.java

• Number Systems or Sequences
Some Ad Hoc mathematical problems involve definitions of existing (or made-up) Num-
ber Systems or Sequences, and our task is to produce either the number (sequence)
within some range or just the n-th number, verify if the given number (sequence) is
valid according to the definition, etc. Usually, following the problem description care-
fully is the key to solving the problem. But some harder problems require us to simplify
the formula first. Some well-known examples are:

1. Fibonacci numbers (Section 5.4.1): 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

2. Factorial (Section 5.3.7): 1, 1, 2, 6, 24, 120, 720, 5 040, 40 320, 362 880, . . .

3. Derangement (Section 5.5 and 9.15): 1, 0, 1, 2, 9, 44, 265, 1 854, 14 833, . . .

4. Catalan numbers (Section 5.4.3): 1, 1, 2, 5, 14, 42, 132, 429, 1 430, 4 862, . . .

5. Bell numbers (Section 9.15): 1, 1, 2, 5, 15, 52, 203, 877, 4 140, . . .

6. Arithmetic progression sequence: a, (a+d), (a+2⇥d), (a+3⇥d), . . ., e.g., 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, . . . that starts with a = 1 and with di↵erence of d = 1 between
consecutive terms. The sum of the first n terms of this arithmetic progression
series is Sn = n

2 ⇥ (2⇥ a+ (n� 1)⇥ d).

7. Geometric progression sequence: a, a ⇥ r, a ⇥ r2, a ⇥ r3, . . ., e.g., 1, 2, 4, 8,
16, 32, 64, 128, 256, 512, . . . that starts with a = 1 and with common ratio
r = 2 between consecutive terms. The sum of the first n terms of this geometric
progression series is Sn =a⇥1�rn

1�r . Note that r > 1.

• Logarithm, Exponentiation, or Power
These problems involve the (clever) usage of log(), exp(), and/or pow() functions.
Some of the important techniques are shown below:

These are library solutions to compute logarithm of a decimal a in any base b � 2:

– <cmath> library in C/C++ has functions: log(a) (base e), log2(a) (base 2),
and log10(a) (base 10);

– Java.lang.Math has log(a) (base e) and log10(a).

– Python has log(a, Base) (any base, default is e), log2(a), and log10(a).

– OCaml has log(a) (base e) and log10(a).

275

5.2. AD HOC MATHEMATICAL PROBLEMS c� Steven, Felix, Suhendry

Note that if a certain programming language only has log function in a specific base,
we can get logb(a) (base b) by using the fact that logb(a) = log(a)/log(b).

A nice feature of the logarithmic function is that it can be used to count the number
of digits of a given decimal a. This formula (int)floor(1 + log10((double)a)) re-
turns the number of digits in decimal number a. To count the number of digits in other
base b, we can use: (int)floor(1 + log10((double)a) / log10((double)b)).

We are probably aware of the square root function, e.g., sqrt(a), but some of us stum-
ble when asked to compute n

p
a (the n-th root of a). Fortunately, n

p
a can be rewritten

as a1/n. We can then use built in formula like pow((double)a, 1.0 / (double)n) or
exp(log((double)a) * 1.0 / (double)n).

• Grid
These problems involve grid manipulation. The grid can be complex, but the grid
follows some primitive rules. The ‘trivial’ 1D/2D grid are not classified here (review
1D/2D array section in Book 1). The solution usually depends on the problem solver’s
creativity in finding the patterns to manipulate/navigate the grid or in converting the
given one into a simpler one.

See an example for Kattis - beehouseperimeter. You are given a honeycomb structure
described by R, the number of cells of the side of honeycomb. The cells are numbered
from 1 to R3 � (R � 1)3 in row major order. For example for R = 3, the honeycomb
looks like Figure 5.1.

Figure 5.1: A Honeycomb Grid

Working on this honeycomb structure directly is hard, but we will get a familiar 2D
array after we do this transformation: let N = 2 ⇤R-1. We fill the transformed N ⇥N
2D array row by row, initially R cells, grows to 2 ⇤ R-1 cells, and then shrinks again
to R (with prefix o↵set). For R = 3 in Figure 5.1 above, N = 5 and here is the
transformed 5⇥ 5 2D array (-1 to indicate unused cell).

0 1 2 3 4

0 | 1 2 3 -1 -1
1 | 4 5 6 7 -1
2 | 8 9 10 11 12
3 | -1 13 14 15 16
4 | -1 -1 17 18 19

Now, we can easily navigate from any cell in this transformed 2D array to its 6 direc-
tions: E/SE/S/W/NW/N (no SW nor NE directions).

• Polynomial
These problems involve polynomial evaluation, multiplication, division, di↵erentiation,

276

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

etc. We can represent a polynomial by storing the coe�cients of the polynomial’s terms
sorted by (descending order of) their powers. The (basic) operations on polynomials
usually require some careful usage of loops. Some polynomials are special:

Degree-2, e.g., g(x) = ax2 + bx+ c (with classic roots r = (�b±
p
b2 � 4ac)/2a), and

Degree-3, e.g., h(x) = ax3 + bx2 + cx + d that on some applications can be derived
back into a Degree-2 polynomial of h0(x) = 3ax2 + 2bx+ c.

Later in Section 9.11, we discuss O(n2) straightforward polynomial multiplication and
the faster O(n log n) one using Fast Fourier Transform.

• Fraction
These problems involve representing number as fraction: numerator

denominator . Most frequent
operation is to simplify the given fraction to its simplest form. We can do this by
dividing both numerator n and denominator d with their greatest common divisor
(gcd(n, d), also see Section 5.3.6). Another frequent operations are to add, subtract,
multiply two (or more) fractions. Python has a built-in Fraction class that are well
equipped to deal with all these basic fraction operations.

See an example below for UVa 10814 - Simplifying Fractions where we are asked to
reduce a large fraction to its simplest form.

class Main {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
while (N-- > 0) { // we have to use > 0

BigInteger p = sc.nextBigInteger();
String ch = sc.next(); // ignore this char
BigInteger q = sc.nextBigInteger();
BigInteger gcd_pq = p.gcd(q); // wow :)
System.out.println(p.divide(gcd_pq) + " / " + q.divide(gcd_pq));

}
}

}

from fractions import Fraction # Python’s built in
N = int(input())
for _ in range(N):

frac = Fraction("".join(input().split(" "))) # simplified form
print(str(frac.numerator) + " / " + str(frac.denominator))

Source code: ch5/UVa10814.java|py

• Really Ad Hoc
These are other mathematics-related problems outside the sub-categories above.

We suggest that the readers—especially those who are new to mathematical problems—kick-
start their training programme on mathematical problems by solving at least 2 or 3 problems
from each sub-category, especially the ones that we highlighted as must try *.

277

5.2. AD HOC MATHEMATICAL PROBLEMS c� Steven, Felix, Suhendry

Exercise 5.2.1*: All these sequence of numbers below have at least one formula(s)/pattern(s).
Please give your best guess of what are the next three numbers in each sequence!

1. 1, 2, 4, 8, 16, . . .

2*. 1, 2, 4, 8, 16, 31, . . .

3. 2, 3, 5, 7, 11, 13, . . .

4*. 2, 3, 5, 7, 11, 13, 19, . . .

Exercise 5.2.2*: Study (Ru�ni-)Horner’s method for finding the roots of a polynomial
equation f(x) = 0.

Exercise 5.2.3*: Given 1 < a < 10, 1 n 109, show how to compute the value of
(1⇥ a+ 2⇥ a2 + 3⇥ a3 + . . .+ n⇥ an) modulo 109 + 7 e�ciently, i.e., in O(log n). Both a
and n are integers. Note that the näıve O(n) solution is not acceptable. You may need to
read Section 5.3.9 (modular arithmetic) and Section 5.8 (fast (modular) exponentiation).

Programming Exercises related to Ad Hoc Mathematical problems:

a. Finding (Simple) Formula (or Pattern), Easier

1. Entry Level: Kattis - twostones * (just check odd or even)

2. UVa 10751 - Chessboard * (trivial for N = 1 and N = 2; derive the
formula first for N > 2; hint: use diagonal as much as possible)

3. UVa 12004 - Bubble Sort * (try small n; get the pattern; use long long)

4. UVa 12918 - Lucky Thief * (sum of arithmetic progression; long long)

5. Kattis - averageshard * (find O(n) formula; also see Kattis - averageseasy)

6. Kattis - bishops * (chess pattern involving bishops; from IPSC 2004)

7. Kattis - crne * (simulate cutting process on small numbers; get formula)

Extra UVa: 01315, 10014, 10110, 10170, 10499, 10696, 10773, 10940, 11202,
11393, 12027, 12502. 12725, 12992, 13049, 13071, 13216.

Extra Kattis: alloys, averageseasy, chanukah, limbo1, pauleigon, sequential-
manufacturing, soylent, sumkindofproblem.

b. Finding (Simple) Formula (or Pattern), Harder

1. Entry Level: UVa 10161 - Ant on a Chessboard * (sqrt and ceil)

2. UVa 11038 - How Many O’s * (define a function f that counts the
number of 0s from 1 to n; also available at Kattis - howmanyzeros *)

3. UVa 11231 - Black and White Painting * (there is an O(1) formula)

4. UVa 11718 - Fantasy of a Summation * (convert loops to a closed form
formula; use modPow to compute the results)

5. Kattis - mortgage * (geometric progression; divergent but finite; special case
when r = 1.0 (no interest))

6. Kattis - neighborhoodwatch * (sum of AP; inclusion-exclusion)

7. Kattis - nine * (find the required formula)

Extra UVa: 00651, 00913, 10493, 10509, 10666, 10693, 10710, 10882, 10970,
10994, 11170, 11246, 11296, 11298, 11387, 12909, 13096, 13140.

Extra Kattis: appallingarchitecture, beautifulprimes, dickandjane, doorman,
eatingout, limbo2, loorolls, otherside, rectangularspiral, sequence.

278

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

c. Base Number Conversion

1. Entry Level: Kattis - basicremains * (also involving BigInteger mod; also
available at UVa 10551 - Basic Remains)

2. UVa 00343 - What Base Is This? * (try all possible pair of bases)

3. UVa 00389 - Basically Speaking * (use Java Integer
1 class)

4. UVa 11952 - Arithmetic * (check base 2 to 18; special case for base 1)

5. Kattis - arithmetic * (conversion of octal (per 4 bits) to hexa (per 3 bits);
be careful with leading zeroes)

6. Kattis - allaboutthatbase * (check base 1 to 36; base 1 is special; BigInteger)

7. Kattis - oktalni * (convert each 3-bits of binary strings to octal; BigInteger)

Extra UVa: 00290, 00355, 00446, 10473, 11185.

Extra Kattis: whichbase.

d. Base Number Variants

1. Entry Level: UVa 00575 - Skew Binary * (base modification)

2. UVa 00377 - Cowculations * (base 4 operations)

3. UVa 10931 - Parity * (convert decimal to binary; count number of 1s)

4. UVa 11121 - Base -2 * (search for the term ‘negabinary’)

5. Kattis - aliennumbers * (source base to decimal; decimal to target base)

6. Kattis - ignore * (actually a base 7 conversion problem as only 7 digits are
meaningful when rotated)

7. Kattis - mixedbasearithmetic * (mix of base 10 and two versions of base 26)

Extra UVa: 00636, 10093, 10677, 11005, 11398, 12602.

Extra Kattis: babylonian, basic, crypto, parsinghex, sumsquareddigits.

Others: IOI 2011 - Alphabets (practice task; use space-e�cient base 26).

e. Number Systems or Sequences

1. Entry Level: Kattis - collatz *2 (similar to UVa 00694; just do as asked)

2. UVa 00443 - Humble Numbers * (try all 2i ⇥ 3j ⇥ 5k ⇥ 7l; sort)

3. UVa 10408 - Farey Sequences * (first, generate (i, j) pairs such that
gcd(i, j) = 1; then sort)

4. UVa 11970 - Lucky Numbers * (square numbers; divisibility; brute force)

5. Kattis - candlebox * (sum of arithmetic series [1..N]; -6 for Rita or -3 for
Theo; brute force Rita’s age; also available at UVa 13161 - Candle Box)

6. Kattis - permutedarithmeticsequence * (sort di↵erences of adjacent items)

7. Kattis - rationalsequence * (pattern finding; tree traversal on a special tree)

Extra UVa: 00136, 00138, 00413, 00640, 00694, 00927, 00962, 00974, 10006,
10042, 10049, 10101, 10930, 11028, 11063, 11461, 11660, 12149, 12751.

Extra Kattis: hailstone, sheldon.

1Using Java BigInteger class gets TLE verdict for this problem. For base number conversion of
32-bit (i.e., not big) integers, we can just use parseInt(String s, int radix) and toString(int i,

int radix) in the faster Java Integer class. Additionally, you can also use BufferedReader and
BufferedWriter for faster I/O.

2The (Lothar) Collatz’s Conjecture is an open problem in Mathematics.

279

5.2. AD HOC MATHEMATICAL PROBLEMS c� Steven, Felix, Suhendry

f. Logarithm, Exponentiation, Power

1. Entry Level: UVa 12416 - Excessive Space Remover * (the answer is
log2 of the max consecutive spaces in a line)

2. UVa 00701 - Archaelogist’s Dilemma * (use log to count # of digits)

3. UVa 11384 - Help is needed for Dexter * (find the smallest power of
two greater than n; can be solved easily using ceil(eps+ log2(n)))

4. UVa 11847 - Cut the Silver Bar * (O(1) math formula exists: blog2(n)c)
5. Kattis - cokolada * (the answers involve powers of two and a simulation)

6. Kattis - factstone * (use logarithm; power; also available at UVa 10916 -
Factstone Benchmark)

7. Kattis - thebackslashproblem * (actually power of two)

Extra UVa: 00107, 00113, 00474, 00545, 11636, 11666, 11714, 11986.

Extra Kattis: 3dprinter, bestcompression, bus, di↵erentdistances, lemonade-

trade, pot, schoolspirit, slatkisi, stirlingsapproximation, tetration, triangle.

g. Grid

1. Entry Level: UVa 00264 - Count on Cantor * (grid; pattern)

2. UVa 10022 - Delta-wave * (this is not an SSSP problem; find the pattern
in this grid (triangle)-like system)

3. UVa 10182 - Bee Maja * (grid)

4. UVa 10233 - Dermuba Triangle * (the number of items in row forms
arithmetic progression series; use hypot)

5. Kattis - beehouseperimeter * (transform the hexagonal grid like Kattis - hon-
eyheist; flood fill from outside Alice’s house; count #walls touched)

6. Kattis - honeyheist * (transform the hexagonal grid input into 2D grid first;
then run SSSP on unweighted graph; BFS)

7. Kattis - maptiles2 * (simple conversion between two grid indexing systems)

Extra UVa: 00121, 00808, 00880, 10642, 10964, 12705.

Extra Kattis: fleaonachessboard, settlers2.

h. Polynomial

1. Entry Level: UVa 10302 - Summation of ... * (use long double)

2. UVa 00930 - Polynomial Roots * (Ru�ni’s rule; roots of quadratic eq)

3. UVa 10268 - 498’ * (polynomial derivation; Horner’s rule)

4. UVa 10586 - Polynomial Remains * (division; manipulate coe�cients)

5. Kattis - ada * (polynomial problem; apply the given procedure recursively)

6. Kattis - curvyblocks * (di↵erentiate degree 3 to degree 2 polynomial; get
roots of quadratic equation; the two blocks will touch at either roots)

7. Kattis - plot * (analyze the given pseudocode; the required pattern involves
Binomial Coe�cients)

Extra UVa: 00126, 00392, 00498, 10215, 10326, 10719.

Extra Kattis: polymul1.

Also see Section 9.11 about Fast Fourier Transform algorithm.

280

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

i. Fraction

1. Entry Level: Kattis - mixedfractions * (convert fraction to mixed fraction)

2. UVa 00332 - Rational Numbers ... * (use GCD)

3. UVa 00834 - Continued Fractions * (do as asked)

4. UVa 12068 - Harmonic Mean * (involving fraction; use LCM and GCD)

5. Kattis - deadfraction * (try every single possible repeating decimals; also
available at UVa 10555 - Dead Fraction)

6. Kattis - fraction * (continued fraction to normal fraction and vice versa)

7. Kattis - thermostat * (convert one temperature to another; use fraction; use
Java BigInteger; gcd)

Extra UVa: 10814, 10976. 12848, 12970.

Extra Kattis: fractionallotion, jointattack, rationalarithmetic, rationalratio,
temperatureconfusion.

j. Really Ad Hoc

1. Entry Level: UVa 00496 - Simply Subsets * (set manipulation)

2. UVa 11241 - Humidex * (the hardest case is computing Dew point given
temperature and Humidex; derive it with Algebra)

3. UVa 11526 - H(n) * (brute force up to
p
n; find the pattern; avoid TLE)

4. UVa 12036 - Stable Grid * (use pigeon hole principle)

5. Kattis - matrix * (use simple linear algebra; one special case when c = 0)

6. Kattis - trip * (be careful with precision error; also available at UVa 10137
- The Trip)

7. Kattis - yoda * (ad hoc; 9 digits comparison)

Extra UVa: 00276, 00613, 10023, 10190, 11042, 11055, 11715, 11816.

Profile of Algorithm Inventors

Eratosthenes of Cyrene (⇡ 300-200 years BC) was a Greek mathematician. He invented
geography, did measurements of the circumference of Earth, and invented a simple algorithm
to generate prime numbers which we discussed in this book.

Marin Mersenne (1588-1648) was a French mathematicians best known for Mersenne
primes, prime number that can be written as 2n-1 for some integer n.

Gary Lee Miller is a professor of Computer Science at Carnegie Mellon University. He is
the initial inventor of Miller-Rabin primality test algorithm.

Michael Oser Rabin (born 1931) is an Israeli computer scientist. He improved Miller’s
idea and invented the Miller-Rabin primality test algorithm. Together with Richard Manning
Karp, he also invented Rabin-Karp’s string matching algorithm.

Leonhard Euler (1707-1783) was a Swiss mathematician and one of the greatest mathe-
matician from the 18th century. Some of his inventions mentioned in this book include the
frequently used f(x)/⌃/e/⇡ mathematical notations, the Euler totient (Phi) function, the
Euler tour/path (Graph), and Handshaking lemma.

281

5.3. NUMBER THEORY c� Steven, Felix, Suhendry

5.3 Number Theory

Number Theory is the study of the integers and integer-valued functions. Mastering as many
topics as possible in the field of number theory is important as some mathematical problems
become easy (or easier) if you know the theory behind the problems. Otherwise, either a
plain brute force attack leads to a TLE response, or you simply cannot work with the given
input as it is too large without some pre-processing.

5.3.1 Prime Numbers

A natural number starting from 2: {2, 3, 4, 5, 6, 7, . . .} is considered a prime if it is only
divisible by 1 and itself. The first and only even prime is 2. The next prime numbers are:
3, 5, 7, 11, 13, 17, 19, 23, 29, . . . , and infinitely many more primes (proof in [33]). There
are 25 primes in range [0..100], 168 primes in [0..1000], 1000 primes in [0..7919], 1229
primes in [0..10 000], etc. Some large prime numbers are3 104 729, 1 299 709, 1e9 + 7 (easy
to remember4), 2 147 483 647 (8th Mersenne5 prime, or 231-1), 112 272 535 095 293, etc.

Prime number is an important topic in number theory and the source for many program-
ming problems. In this section, we will discuss algorithms involving prime numbers.

Optimized Prime Testing Function

The first algorithm presented in this section is for testing whether a given natural number N
is prime, i.e., bool isPrime(N). The most näıve version is to test by definition, i.e., test if
N is divisible by divisor 2 [2..N-1]. This works, but runs in O(N)—in terms of number
of divisions. This is not the best way and there are several possible improvements.

The first improvement is to test if N is divisible by a divisor 2 [2..b
p
Nc], i.e., we

stop when the divisor is greater than
p
N . We claim that if a ⇥ b = N , then a

p
N or

b
p
N . Quick proof by contradiction: Let’s suppose that it is not the case, i.e., a >

p
N

and b >
p
N . This implies that a⇥ b >

p
N ⇥
p
N or a⇥ b > N . Contradiction. Thus a = d

and b = N
d cannot both be greater than

p
N . This improvement is O(

p
N) which is already

much faster than the previous version, but can still be improved to be twice as fast.
The second improvement is to test if N is divisible by divisor 2 [3, 5, ..,

p
N], i.e.,

we only test odd numbers up to
p
N . This is because there is only one even prime number,

i.e., number 2, which can be tested separately. This is O(
p
N/2), which is also O(

p
N).

The third improvement6 which is already good enough for contest problems is to test
if N is divisible by prime divisors

p
N (but see below for probabilistic prime testing).

This is because if a prime number X cannot divide N , then there is no point testing whether
multiples of X divide N or not. This is faster than O(

p
N) and is about O(#primes

p
N).

For example, there are 500 odd numbers in [1..
p
106], but there are only 168 primes in the

same range. Prime number theorem [33] says that the number of primes less than or equal
to M—denoted by ⇡(M)—is bounded by O(M/(ln(M)-1)). Therefore, the complexity of
this prime testing function is about O(

p
N/ ln(

p
N)). The code is shown below.

3Having a list of large prime numbers is good for testing as these are the numbers that are hard for
algorithms like the prime testing/factoring algorithms. At least, remember 1e9 + 7 and 231-1 are primes.

4But 1e6+7 is not a prime.
5A Mersenne prime is a prime number that is one less than a power of two.
6This is a bit recursive—testing whether a number is a prime by using another (smaller) prime number.

But the reason should be obvious after reading the next section.

282

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

Sieve of Eratosthenes: Generating List of Prime Numbers

If we want to generate a list of prime numbers within the range [0..N], there is a better
algorithm than testing each number in the range for primality. The algorithm is called ‘Sieve
of Eratosthenes ’ invented by Eratosthenes of Cyrene.

First, this Sieve algorithm sets all integers in the range to be ‘probably prime’ but sets 0
and 1 to be not prime. Then, it takes 2 as prime and crosses out all multiples7 of 2 starting
from 2 ⇥ 2 = 4, 6, 8, 10, . . . until the multiple is greater than N . Then it takes the next
non-crossed 3 as a prime and crosses out all multiples of 3 starting from 3⇥3 = 9, 12, 15,
Then it takes 5 and crosses out all multiples of 5 starting from 5⇥ 5 = 25, 30, 35, And
so on After that, integers that remain uncrossed within the range [0..N] are primes.
This algorithm does approximately (N⇥ (1/2 + 1/3 + 1/5 + 1/7 + . . . + 1/last prime in
range N)) operations. Using ‘sum of reciprocals8 of primes up to N ’, we end up with the
time complexity of roughly O(N log logN).

Since generating a list of primes 10K using the sieve is fast (our code below can go up
to 107 in ⇡ 1s), we opt to use the sieve for smaller primes and reserve the optimized prime
testing function for larger primes—see previous discussion.

typedef long long ll;

ll _sieve_size;
bitset<10000010> bs; // 10^7 is the rough limit
vll p; // compact list of primes

void sieve(ll upperbound) { // range = [0..upperbound]
_sieve_size = upperbound+1; // to include upperbound
bs.set(); // all 1s
bs[0] = bs[1] = 0; // except index 0+1
for (ll i = 2; i < _sieve_size; ++i) if (bs[i]) {

// cross out multiples of i starting from i*i
for (ll j = i*i; j < _sieve_size; j += i) bs[j] = 0;
p.push_back(i); // add prime i to the list

}
}

bool isPrime(ll N) { // good enough prime test
if (N < _sieve_size) return bs[N]; // O(1) for small primes
for (int i = 0; i < (int)p.size() && p[i]*p[i] <= N; ++i)

if (N%p[i] == 0)
return false;

return true; // slow if N = large prime
} // note: only guaranteed to work for N <= (last prime in vll p)^2

// inside int main()
sieve(10000000); // up to 10^7 (<1s)
printf("%d\n", isPrime((1LL<<31)-1)); // 8th Mersenne prime
printf("%d\n", isPrime(136117223861LL)); // 104729*1299709

7Slower implementation is to start from 2 ⇥ i instead of i ⇥ i, but the di↵erence is not that much.
8Reciprocal is also known as multiplicative inverse. A number multiplied by its reciprocal yield 1.

283

5.3. NUMBER THEORY c� Steven, Felix, Suhendry

5.3.2 Probabilistic Prime Testing (Java Only)

We have just discussed the Sieve of Eratosthenes algorithm and a deterministic prime testing
algorithm that is good enough for many contest problems. However, you have to type in a
few lines of C++/Java/Python code to do that. If you just need to check whether a single
(or at most, a few9) and usually (very) large integer (beyond the limit of 64-bit integer) is a
prime, e.g., UVa 10235 below to decide if the given N is not a prime, an ‘emirp’ (the reverse
of its digits is also a prime), or just a normal prime, then there is an alternative and shorter
approach with the function isProbablePrime in Java10 BigInteger11—a probabilistic prime
testing function based on Miller-Rabin algorithm [26, 32]. There is an important parameter
of this function: certainty. If this function returns true, then the probability that the tested
BigInteger is a prime exceeds 1 � 1

2

certainty
. Usually, certainty = 10 should be enough12

as 1 � (12)
10 = 0.9990234375 is ⇡ 1.0. Note that using larger value of certainty obviously

decreases the probability of WA but doing so slows down your program and thus increases
the risk of TLE13.

class Main {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {

int N = sc.nextInt(); System.out.printf("%d is ", N);
BigInteger BN = BigInteger.valueOf(N);
String R = new StringBuffer(BN.toString()).reverse().toString();
int RN = Integer.parseInt(R);
BigInteger BRN = BigInteger.valueOf(RN);
if (!BN.isProbablePrime(10)) // certainty 10 is enough

System.out.println("not prime.");
else if ((N != RN) && BRN.isProbablePrime(10))

System.out.println("emirp.");
else

System.out.println("prime.");
}

}
}

Source code: ch5/UVa10235.java

5.3.3 Finding Prime Factors with Optimized Trial Divisions

In number theory, we know that a prime number N only has 1 and itself as factors but
a composite number N , i.e., the non-primes, can be written uniquely as a product of its
prime factors. That is, prime numbers are multiplicative building blocks of integers (the
fundamental theorem of arithmetic). For example, N = 1200 = 2⇥ 2⇥ 2⇥ 2⇥ 3⇥ 5⇥ 5 =
24 ⇥ 3⇥ 52 (the latter form is called as prime-power factorization).

9Note that if your aim is to generate a list of the first few million prime numbers, the Sieve of Eratosthenes
algorithm should run faster than a few million calls of this isProbablePrime function.

10A note for pure C/C++/Python/OCaml programmers: It is good to be a multi -lingual programmer by
switching to Java whenever it is more beneficial to do so, like in this instance.

11As of year 2020, there is no equivalent C++/Python/OCaml library for to do this, yet.
12This rule of thumb setting is a result of our empirical testings over the years.
13This randomized algorithm is a ‘Monte Carlo Algorithm’ that can give a WA with a (small) probability.

284

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

A näıve algorithm generates a list of primes (e.g., with sieve) and checks which prime(s)
can actually divide the integer N—without changing N . This can be improved!

A better algorithm utilizes a kind of Divide and Conquer spirit. An integer N can be
expressed as: N = p ⇥ N 0, where p is a prime factor and N 0 is another number which is
N/p—i.e., we can reduce the size of N by taking out its prime factor p. We can keep doing
this until eventually N 0 = 1. To speed up the process even further, we utilize the divisibility
property that there is no more than one prime divisor greater than

p
N , so we only repeat

the process of finding prime factors until p >
p
N . Stopping at

p
N entails a special case: if

(current p)2 > N and N is still not 1, then N is the last prime factor. The code below takes
in an integer N and returns the list of prime factors.

In the worst case, when N is prime, this prime factoring algorithm with trial division
requires testing all smaller primes up to

p
N , mathematically denoted as O(⇡(

p
N)) =

O(
p
N/ln

p
N) can be very slow14—see the example of factoring a large composite number

136 117 223 861 into two large prime factors: 104 729⇥1 299 709 in the code below. However,
if given composite numbers with lots of small prime factors, this algorithm is reasonably
fast15—see 142 391 208 960 which is 210 ⇥ 34 ⇥ 5⇥ 74 ⇥ 11⇥ 13.

vll primeFactors(ll N) { // pre-condition, N >= 1
vll factors;
for (int i = 0; (i < (int)p.size()) && (p[i]*p[i] <= N); ++i)

while (N%p[i] == 0) { // found a prime for N
N /= p[i]; // remove it from N
factors.push_back(p[i]);

}
if (N != 1) factors.push_back(N); // remaining N is a prime
return factors;

}

// inside int main()
sieve(10000000);
vll r;

r = primeFactors((1LL<<31)-1); // Mersenne prime
for (auto &pf : r) printf("> %lld\n", pf);

r = primeFactors(136117223861LL); // large prime factors
for (auto &pf : r) printf("> %lld\n", pf); // 104729*1299709

r = primeFactors(5000000035LL); // large prime factors
for (auto &pf : r) printf("> %lld\n", pf); // 5*1000000007

r = primeFactors(142391208960LL); // large composite
for (auto &pf : r) printf("> %lld\n", pf); // 2^10*3^4*5*7^4*11*13

r = primeFactors(100000380000361LL); // 10000019^2
for (auto &pf : r) printf("> %lld\n", pf); // fail to factor! (why?)

14In real life applications, very large primes are commonly used in cryptography and encryption (e.g., RSA
algorithm) because it is computationally challenging to factor a very large number into its prime factors,
i.e., x = p1p2 where both p1 and p2 are very large primes.

15Also see Section 9.12 for a faster (but rare) integer factoring algorithm.

285

5.3. NUMBER THEORY c� Steven, Felix, Suhendry

5.3.4 Functions Involving Prime Factors

There are other well-known number theoretic functions involving prime factors shown below.
All variants have similar O(

p
N/ln

p
N) time complexity with the basic prime factoring via

trial division. Interested readers can read Chapter 7: “Multiplicative Functions” of [33].

1. numPF(N): Count the number of prime factors of integer N.

For example: N = 60 has 4 prime factors: {2, 2, 3, 5}. The solution is a simple tweak
of the trial division algorithm to find prime factors shown earlier.

int numPF(ll N) {
int ans = 0;
for (int i = 0; (i < (int)p.size()) && (p[i]*p[i] <= N); ++i)

while (N%p[i] == 0) { N /= p[i]; ++ans; }
return ans + (N != 1);

}

2. numDiv(N): Count the number of divisors of integer N.

A divisor of N is defined as an integer that divides N without leaving a remainder. If
a number N = ai ⇥ bj ⇥ . . .⇥ ck, then N has (i+ 1)⇥ (j + 1)⇥ . . .⇥ (k + 1) divisors.
This is because there are i+ 1 ways to choose prime factor a (0, 1, . . . , i� 1, i times),
j + 1 ways to choose prime factor b, . . ., and k+ 1 ways to choose prime factor c. The
total number of ways is the multiplication of these numbers.

Example: N = 60 = 22 ⇥ 31 ⇥ 51 has (2 + 1) ⇥ (1 + 1) ⇥ (1 + 1) = 3 ⇥ 2 ⇥ 2 = 12
divisors. The 12 divisors are: {1,2,3, 4,5, 6, 10, 12, 15, 20, 30, 60}. The prime factors
of 60 are highlighted. See that N has more divisors than prime factors.

int numDiv(ll N) {
int ans = 1; // start from ans = 1
for (int i = 0; (i < (int)p.size()) && (p[i]*p[i] <= N); ++i) {

int power = 0; // count the power
while (N%p[i] == 0) { N /= p[i]; ++power; }
ans *= power+1; // follow the formula

}
return (N != 1) ? 2*ans : ans; // last factor = N^1

}

3. sumDiv(N): Sum the divisors of integer N.

In the previous example, N = 60 has 12 divisors. The sum of these divisors is 168.
This can be computed via prime factors too. If a number N = ai ⇥ bj ⇥ . . . ⇥ ck,
then the sum of divisors of N is ai+1�1

a�1 ⇥
bj+1�1
b�1 ⇥ ... ⇥ ck+1�1

c�1 . This closed form is

derived from summation of geometric progression series. ai+1�1
a�1 is the summation of

a0, a1, . . . , ai�1, ai. The total sum of divisors is the multiplication of these summation
of geometric progression series of each prime factor.

Example: N = 60 = 22⇥31⇥51, sumDiv(60) = 22+1�1
2�1 ⇥

31+1�1
3�1 ⇥

51+1�1
5�1 = 7⇥8⇥24

1⇥2⇥4 = 168.

We can avoid raising a prime factor pi to a certain power k using O(log k) exponenti-
ation (see Section 5.8) by writing this sumDiv(N) function iteratively:

286

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

ll sumDiv(ll N) {
ll ans = 1; // start from ans = 1
for (int i = 0; (i < (int)p.size()) && (p[i]*p[i] <= N); ++i) {

ll multiplier = p[i], total = 1;
while (N%p[i] == 0) {

N /= p[i];
total += multiplier;
multiplier *= p[i];

} // total for
ans *= total; // this prime factor

}
if (N != 1) ans *= (N+1); // N^2-1/N-1 = N+1
return ans;

}

4. EulerPhi(N): Count the number of positive integers < N that are relatively prime
to N . Recall: Two integers a and b are said to be relatively prime (or coprime) if
gcd(a, b) = 1, e.g., 25 and 42. A näıve algorithm to count the number of positive
integers < N that are relatively prime to N starts with counter = 0, iterates through
i 2 [1..N-1], and increases the counter if gcd(i, N) = 1. This is slow for large N .

A better algorithm is the Euler’s Phi (Totient) function '(N) = N ⇥
Q

pi
(1� 1

pi
),

where pi is prime factor of N .

Example: N = 36 = 22 ⇥ 32. '(36) = 36⇥ (1� 1
2)⇥ (1� 1

3) = 12. Those 12 positive
integers that are relatively prime to 36 are {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35}.

ll EulerPhi(ll N) {
ll ans = N; // start from ans = N
for (int i = 0; (i < (int)p.size()) && (p[i]*p[i] <= N); ++i) {

if (N%p[i] == 0) ans -= ans/p[i]; // count unique
while (N%p[i] == 0) N /= p[i]; // prime factor

}
if (N != 1) ans -= ans/N; // last factor
return ans;

}

Source code: ch5/primes.cpp|java|py|ml

Exercise 5.3.4.1: Implement numDiffPF(N) and sumPF(N) that are similar to numPF(N)!
numDiffPF(N): Count the number of di↵erent prime factors of N.
sumPF(N): Sum the prime factors of N.

Exercise 5.3.4.2: What are the answers for numPF(N), numDiffPF(N), sumPF(N), numDiv(N),
sumDiv(N), and EulerPhi(N) when N is a prime?

287

5.3. NUMBER THEORY c� Steven, Felix, Suhendry

5.3.5 Modified Sieve

If the number of di↵erent prime factors has to be determined for many (or a range of)
integers, then there is a better solution than calling numDiffPF(N) as shown in Section 5.3.4
many times. The better solution is the modified sieve algorithm. Instead of finding the
prime factors and then calculating the required values, we start from the prime numbers and
modify the values of their multiples. The short modified sieve code is shown below:

int numDiffPFarr[MAX_N+10] = {0}; // e.g., MAX_N = 10^7
for (int i = 2; i <= MAX_N; ++i)

if (numDiffPFarr[i] == 0) // i is a prime number
for (int j = i; j <= MAX_N; j += i)

++numDiffPFarr[j]; // j is a multiple of i

Similarly, this is the modified sieve code to compute the Euler Totient function:

int EulerPhi[MAX_N+10];
for (int i = 1; i <= MAX_N; ++i) EulerPhi[i] = i;
for (int i = 2; i <= MAX_N; ++i)

if (EulerPhi[i] == i) // i is a prime number
for (int j = i; j <= MAX_N; j += i)

EulerPhi[j] = (EulerPhi[j]/i) * (i-1);

These O(N log logN) modified sieve algorithms should be preferred over (up to) N individual
calls to O(

p
N/ln

p
N) numDiffPF(N) or EulerPhi(N) if there are many queries over a large

range, e.g., [1..n], but MAX N is at most 107 (note that we need to prepare a rather big array
in a sieve method). However, if we just need to compute the number of di↵erent prime
factors or Euler Phi for a single (or a few) but (very) large integer N , it may be faster to
just use individual calls of numDiffPF(N) or EulerPhi(N).

Exercise 5.3.5.1*: Can we write the modified sieve code for the other functions listed in
Section 5.3.4 (i.e., other than numDiffPF(N) and EulerPhi(N)) without increasing the time
complexity of sieve? If we can, write the required code! If we cannot, explain why!

5.3.6 Greatest Common Divisor & Least Common Multiple

The Greatest Common Divisor (GCD) of two integers: a, b denoted by gcd(a, b), is the
largest positive integer d such that d | a and d | b where x | y means that x divides y.
Example of GCD: gcd(4, 8) = 4, gcd(6, 9) = 3, gcd(20, 12) = 4. One practical usage of GCD
is to simplify fractions (see UVa 10814 in Section 5.2), e.g., 6

9 = 6/gcd(6,9)
9/gcd(6,9) =

6/3
9/3 = 2

3 .
Finding the GCD of two integers is an easy task with an e↵ective Divide and Conquer

Euclid algorithm [33, 7] which can be implemented as a one liner code (see below). Thus
finding the GCD of two integers is usually not the main issue in a Mathematics-related
contest problem, but just part of a bigger solution.

288

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

The GCD is closely related to Least (or Lowest) Common Multiple (LCM). The LCM
of two integers (a, b) denoted by lcm(a, b), is defined as the smallest positive integer l such
that a | l and b | l. Example of LCM: lcm(4, 8) = 8, lcm(6, 9) = 18, lcm(20, 12) = 60.

It has been shown (see [33]) that: lcm(a, b) = a⇥ b/gcd(a, b) = a/gcd(a, b)⇥ b. This can
also be implemented as a one liner code (see below). Both GCD and LCM algorithms run
in O(log10 n) = O(log n), where n = min(a, b).

int gcd(int a, int b) { return b == 0 ? a : gcd(b, a%b); }
int lcm(int a, int b) { return a / gcd(a, b) * b; }

Note16 that since C++17, both gcd and lcm functions are already built-in <numeric>
library. In Java, we can use method gcd(a, b) in BigInteger class. In Python, we can use
gcd(a, b) in math module.

The GCD of more than 2 numbers can be found via multiple calls of gcd of 2 numbers,
e.g., gcd(a, b, c) = gcd(a, gcd(b, c)). The strategy to find the LCM of more than 2 numbers
is similar.

Exercise 5.3.6.1: The LCM formula is lcm(a, b) = a⇥b / gcd(a, b) but why do we
use a / gcd(a, b) ⇥ b instead? Try a = 2⇥ 109 and b = 8 using 32-bit signed integers.

Exercise 5.3.6.2: Please write the gcd(a, b) routine in iterative fashion!

Exercise 5.3.6.3*: Study alternative ‘binary gcd’ computation that replaces division (inside
modulo operation) with bit shift operations, subtractions, and comparisons. This version is
known as Stein’s algorithm.

5.3.7 Factorial

Factorial17 of n, i.e., n! or fac(n) is defined as 1 if n = 0 and n⇥fac(n-1) if n > 0. However, it
is usually more convenient to work with the iterative version, i.e., fac(n) = 2⇥ 3⇥ 4⇥ . . .⇥
(n-1) ⇥ n (loop from 2 to n, skipping 1). The value of fac(n) grows very fast. We are
only able to use C/C++ long long/Java long/OCaml Int64 for up to fac(20). Beyond
that, we may need to work with the prime factors of a factorial (see Section 5.3.8), get the
intermediate and final results modulo a smaller (usually a prime) number (see Section 5.3.9),
or to use either Python or Java BigInteger for precise but slow computation (see Book 1).

5.3.8 Working with Prime Factors

Other than using the Big Integer technique (see Book 1) which is ‘slow’, we can work with the
intermediate computations of large integers accurately by working with the prime factors of
the integers instead of the actual integers themselves. Therefore, for some non-trivial number
theoretic problems, we have to work with the prime factors of the input integers even if the
main problem is not really about prime numbers. After all, prime factors are the building
blocks of integers. Let’s see the next case study.

16There is no built-in gcd function in OCaml.
17We can also have multifactorial. The most common form of multifactorial is the double factorial, denoted

as n!!, e.g., 14!! = 14⇥ 12⇥ 10⇥ . . .⇥ 2 = 645 120. This is used in Section 8.2.1.

289

5.3. NUMBER THEORY c� Steven, Felix, Suhendry

Kattis - factovisors/UVa 10139 - Factovisors

Abridged problem description: “Does m divide n! (0 n,m 231-1)?”. Recall that in
Section 5.3.7, we note that n!, i.e., fac(n), grows very fast. We mention that with built-in
data types, the largest factorial that we can still compute precisely is only 20!. In Book 1,
we show that we can compute large integers with Big Integer technique. However, it is very
slow to precisely compute the exact value of n! for large n.

The solution for this problem is to work with the prime factors of m and check if each
of those prime factors has ‘support’ in n!. This check is called the Legendre’s formula. Let
vp(n!) be the highest power of p that divides n. We can compute vp(n!) via

P1
i=1 b npi c.

For example, when n = 6, we have 6! = 2⇥3⇥4⇥5⇥6 = 2⇥3⇥(22)⇥5⇥(2⇥3) = 24⇥32⇥5
when expressed as its prime power factorization (we do not actually need to do this). Now
if m1 = 9 = 32, then this prime factor 32 has support in 6! because v3(6!) = 2 and 32 32.
Thus, m1 = 9 divide 6!. However, m2 = 54 = 21 ⇥ 33 has no support because although
v2(6!) = 4 and 21 24, we have v3(6!) = 2 and 33 > 32. Thus m2 = 54 does not divide 6!.

Source code: ch5/factovisors UVa10139.cpp|java|py

Exercise 5.3.8.1: Determine what is the GCD and LCM of (26 ⇥ 33 ⇥ 971, 25 ⇥ 52 ⇥ 112)?

Exercise 5.3.8.2: Count the number of trailing zeroes of n! (assume 1 n 200 000).

5.3.9 Modular Arithmetic

Some (mathematical) computations in programming problems can end up having very large
positive (or very small negative) intermediate/final integer results that are beyond the range
of the largest built-in integer data type (currently the 64-bit long long in C++ or long
in Java). In Book 1, we have shown a way to compute Big Integers precisely. In Section
5.3.8, we have shown another way to work with Big Integers via its prime factors. For some
other problems18, we are only interested in the result modulo a number (usually a prime,
to minimize collision) so that the intermediate/final results always fit inside built-in integer
data type. In this subsection, we discuss these types of problems.

In UVa 10176 - Ocean Deep! Make it shallow!!, we are asked to convert a long binary
number (up to 100 digits) to decimal. A quick calculation shows that the largest possible
number is 2100-1 which is beyond the range of a 64-bit integer. But the problem only asks
if the result is divisible by 131 071 (a prime number). So what we need to do is to convert
binary to decimal digit by digit, while performing % 131 071 operation to the intermediate
result (note that ‘%’ is a symbol of modulo operation). If the final result is 0, then the actual
number in binary (which we never compute in its entirety), is divisible by 131 071.

Important: The modulo of a negative integer can be surprising to some who are not
aware of their programming language specific behavior, e.g., �10 % 7 = 4 (in Python) but
C++/Java % operator and OCaml mod operator produces �3 instead. To be safer if we
need to find a non-negative integer a (mod m), we use ((a % m) +m) % m. For the given
example, we have ((�10 % 7) + 7) % 7 = (�3 + 7) % 7 = 4 % 7 = 4.

18As of year 2020, we observe that the number of problems that require Big Integer technique is decreasing
whereas the number of problems that require modular arithmetic technique is increasing.

290

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

The following are true involving modular arithmetic:

1. (a+ b) % m = ((a % m) + (b % m)) % m
Example: (15 + 29) % 8
= ((15 % 8) + (29 % 8)) % 8 = (7 + 5) % 8 = 4

2. (a� b) % m = ((a % m)� (b % m)) % m
Example: (37 - 15) % 6
= ((37 % 6) - (15 % 6)) % 6 = (1 - 3) % 6 = -2 or 4

3. (a⇥ b) % m = ((a % m)⇥ (b % m)) % m
Example: (23 ⇥ 12) % 5
= ((23 % 5) ⇥ (12 % 5)) % 5 = (3 ⇥ 2) % 5 = 1

Modular Multiplicative Inverse

Now, (a / b) % m is harder to compute assuming a is very large, otherwise, simply divide a
by b and modulo the result by b. Note that amight appear in the form of a = a1⇥a2⇥· · ·⇥an
where each ai is small enough to fit in a built-in integer data type. Thus, it might be tempting
to modulo a and b to m independently, perform the division, and modulo the result again.
However, this approach is wrong! (((a1 ⇥ a2 ⇥ · · · ⇥ an) % m) / (b % m)) % m does not
necessarily equal to (a / b) % m, i.e., the previous modular arithmetic does not work for
division. For example, (30 / 5) % 10 = 6 is not equal to ((30 % 10) / (5 % 10)) % 10 = 0.
Another example, (27 / 3) % 13 = 9 is not equal to ((27 % 13) / (3 % 13)) % 13 = 1

3 .
Fortunately, we can rewrite (a / b) % m as (a ⇥ b�1) % m where b�1 is the modular

multiplicative inverse of b with respect to modulus m. In other words, b�1 is an integer such
that (b⇥ b�1) % m = 1. Then, all we have to do is solving (a⇥ b�1) % m using the previous
modular arithmetic (for multiplication). So, how do we find b�1 % m?

If m is a prime number, then we can use Fermat’s little theorem for b and m where
gcd(b,m) = 1, i.e., bm�1 ⌘ 1 (mod m). If we multiply both sides with b�1, then we will
obtain bm�1 · b�1 ⌘ 1 · b�1 (mod m) or simply bm�2 ⌘ b�1 (mod m). Then, to find the
modular multiplicative inverse of b (i.e., b�1 % m), simply compute bm�2 % m, e.g., us-
ing e�cient modular exponentiation discussed in Section 5.8.2 combined with the previous
modular arithmetic for multiplication. Therefore, (a⇥ b�1) % m when m is a prime number
equals to ((a % m)⇥ (bm�2 % m)) % m.

If m is not necessarily a prime number but gcd(b,m) = 1, then we can use Euler’s
Theorem, i.e., b'(m) ⌘ 1 (mod m) where '(m) is the Euler’s Phi (Totient) of m, the number
of positive integers < m which are relative prime to m. Observe that when m is a prime
number, Euler’s Theorem reduces to Fermat’s little theorem, i.e., '(m) = m � 1. Similar
to the previous, we simply need to compute b'(m)�1 % m to get the modular multiplicative
inverse of b. Therefore, (a⇥ b�1) % m equals to ((a % m)⇥ (b'(m)�1 % m)) % m.
Example 1: a = 27, b = 3, m = 13. (27 / 3) % 13 = ((27 % 13) ⇥ (3�1 % 13)) % 13
= ((27 % 13) ⇥ (311 % 13)) % 13 = (1 ⇥ 9) % 13 = 9.
Example 2: a = 27, b = 3, m = 10. (27 / 3) % 10 = ((27 % 10) ⇥ (3�1 % 10)) % 10
= ((27 % 10) ⇥ (33 % 10)) % 10 = (1 ⇥ 9) % 10 = 9.

Alternatively, we can also use the Extended Euclid algorithm to compute the modular
multiplicative inverse of b (while still assuming gcd(b,m) = 1). We discuss this version in the
next Section 5.3.10. Note that if gcd(b,m) 6= 1, then b does not have a modular multiplicative
inverse with respect to modulus m.

291

5.3. NUMBER THEORY c� Steven, Felix, Suhendry

5.3.10 Extended Euclidean Algorithm

In Section 5.3.6, we have seen that gcd(a, 0) = a and gcd(a, b) = gcd(b, a%b) but this
Euclid’s algorithm can be extended. On top of computing the gcd(a, b) = d, the Extended
Euclidean algorithm can also computes the coe�cients of Bézout identity (lemma), i.e.,
integers x and y such that ax + by = gcd(a, b). The implementation is as follows:

int extEuclid(int a, int b, int &x, int &y) { // pass x and y by ref
int xx = y = 0;
int yy = x = 1;
while (b) { // repeats until b == 0

int q = a/b;
int t = b; b = a%b; a = t;
t = xx; xx = x-q*xx; x = t;
t = yy; yy = y-q*yy; y = t;

}
return a; // returns gcd(a, b)

}

For example: a = 25, b = 18
extendedEuclid(25, 18, x, y) updates x = �5, y = 7, and returns d = 1.
This means 25⇥�5 + 18⇥ 7 = gcd(25, 18) = 1.

Solving Linear Diophantine Equation

Problem: Suppose a housewife buys apples and oranges with cost of 8.39 dollars.
An apple costs 25 cents. An orange costs 18 cents. How many of each fruit does she buy?

This problem can be modeled as a linear equation with two variables: 25x+ 18y = 839.
Since we know that both x and y must be integers, this linear equation is called the Linear
Diophantine Equation. We can solve Linear Diophantine Equation with two variables even
if we only have one equation! The solution is as follows:

Let a and b be integers with d = gcd(a, b). The equation ax + by = c has no integral
solutions if d | c is not true. But if d | c, then there are infinitely many integral solutions.
The first solution (x0, y0) can be found using the Extended Euclidean algorithm and the rest
can be derived from x = x0 + (b/d)n, y = y0 � (a/d)n, where n is an integer. Programming
contest problems may have additional constraints to make the output finite (and unique).

Using extendedEuclid, we can solve the motivating problem shown earlier above:
The Linear Diophantine Equation with two variables 25x+ 18y = 839.
Recall that extendedEuclid(25, 18) helps us get:
25⇥�5 + 18⇥ 7 = gcd(25, 18) = 1.

We multiply the left and right hand side of the equation above by 839/gcd(25, 18) = 839:
25⇥�4195 + 18⇥ 5873 = 839.
Thus x = �4195 + (18/1)n and y = 5873� (25/1)n.

Since we need to have non-negative x and y (non-negative number of apples and oranges),
we have two more additional constraints:
�4195 + 18n � 0 and 5873� 25n � 0, or
4195/18 n 5873/25, or
233.05 n 234.92.

292

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

The only possible integer n is 234. Thus the unique solution is x = �4195 + 18⇥ 234 = 17
and y = 5873� 25⇥ 234 = 23, i.e., 17 apples (of 25 cents each) and 23 oranges (of 18 cents
each) for a total of 8.39 dollars.

Modular Multiplicative Inverse with Extended Euclidean Algorithm

Now let’s compute x such that b⇥ x = 1 (mod m). This b⇥ x = 1 (mod m) is equivalent to
b⇥x = 1+m⇥y where y can be any integer. We rearrange the formula into b⇥x�m⇥y = 1
or b ⇥ x +m ⇥ y = 1 as y is a variable that can absorb the negative sign. This is a Linear
Diophantine Equation that can be solved with the Extended Euclidean algorithm to obtain
the value of x (and y—ignored). This x = b�1 (mod m).

Note that the result b�1 (mod m) can only be found if b and m are relatively prime, i.e.,
gcd(b, m) = 1. It can be implemented as follows (notice our safeguard mod sub-routine to
deal with the case when a % m is negative):

int mod(int a, int m) { // returns a (mod m)
return ((a%m) + m) % m; // ensure positive answer

}

int modInverse(int b, int m) { // returns b^(-1) (mod m)
int x, y;
int d = extEuclid(b, m, x, y); // to get b*x + m*y == d
if (d != 1) return -1; // to indicate failure
// b*x + m*y == 1, now apply (mod m) to get b*x == 1 (mod m)
return mod(x, m);

}

Now we can compute (a ⇥ b�1) % m even if m is not a prime but gcd(b, m) == 1 via ((a
% m) ⇥ modInverse(b, m)) % m.

Example 1: ((27 * 3�1) % 7
= ((27 % 7) ⇥ modInverse(3, 7)) % 7 = (6 ⇥ 5) % 7 = 30 % 7 = 2.

Example 2: ((27 * 4�1) % 7
= ((27 % 7) ⇥ modInverse(4, 7)) % 7 = (6 ⇥ 2) % 7 = 12 % 7 = 2.

Example 3 (m is not a prime but gcd(b, m) == 1: ((520 * 25�1) % 18
= ((520 % 18) ⇥ modInverse(25, 18) % 18 = (16 ⇥ 13) % 18 = 208 % 18 = 10.
This is because extendedEuclid(25, 18, x, y) updates x = �5, y = 7, and returns d = 1,
so we have x = ((-5%18) + 18) % 18 = (-5 + 18) % 18 = 13 % 18 = 13.

Source code: ch5/modInverse.cpp|java|py

5.3.11 Number Theory in Programming Contests

We will discuss Pollard’s rho (a faster integer factoring algorithm than the one shown in
Section 5.3.3) in Section 9.12. We will also discuss Chinese Remainder Theorem (CRT)
(that uses the Extended Euclidean algorithm in Section 5.3.10) in Section 9.13.

However, there are many other number theoretic problems that cannot be discussed one
by one in this book (e.g., the various divisibility properties). Based on our experience,
number theory problems frequently appear in ICPCs especially in Asia. It is a good idea for
one team member to specifically study number theory listed in this book and beyond.

293

5.3. NUMBER THEORY c� Steven, Felix, Suhendry

Programming Exercises related to Number Theory:

a. Prime Numbers

1. Entry Level: UVa 00543 - Goldbach’s Conjecture * (sieve; complete
search; Goldbach’s conjecture19; similar to UVa 00686, 10311, and 10948)

2. UVa 01644 - Prime Gap * (LA 3883 - Tokyo07; sieve; prime check, upper
bound - lower bound)

3. UVa 10650 - Determinate Prime * (3 uni-distance consecutive primes)

4. UVa 11752 - The Super ... * (try base 2 to 216; composite power; sort)

5. Kattis - enlarginghashtables * (use sieve up to 40 000; prime test numbers
greater than 2n; check primality of n itself)

6. Kattis - primesieve * (use sieve up to 108; it is fast enough)

7. Kattis - reseto * (sieve of Eratosthenes until the k-th crossing)

Extra UVa: 00406, 00686, 00897, 00914, 10140, 10168, 10311, 10394, 10490,
10852, 10948.

b. (Probabilistic) Prime Testing

1. Entry Level: Kattis - pseudoprime * (yes if !isPrime(p) && a.modPow(p,

p) = a; Big Integer; also available at UVa 11287 - Pseudoprime Numbers)

2. UVa 01180 - Perfect Numbers * (LA 2350 - Dhaka01; small prime check)

3. UVa 01210 - Sum of Consecutive ... * (LA 3399 - Tokyo05; simple)

4. UVa 10235 - Simply Emirp * (case analysis: prime/emirp/not prime;
emirp is prime number that if reversed is still a prime number)

5. Kattis - flowergarden * (Euclidean dist; small prime check; use isProba-
blePrime; simulation; faster solutions exist)

6. Kattis - goldbach2 * (simple brute force problem; use isProbablePrime; faster
solutions exist)

7. Kattis - primes2 * (convert input to either base 2/8/10/16; skip those that
cause NumberFormatException error; use isProbablePrime test and gcd)

Extra UVa: 00960, 10924, 12542.

c. Finding Prime Factors

1. Entry Level: UVa 00583 - Prime Factors * (basic factorization problem)

2. UVa 11466 - Largest Prime Divisor * (use e�cient sieve implementation
to get the largest prime factors)

3. UVa 12703 - Little Rakin * (uses small Fibonacci numbers up to 40 and
simple prime factorization as a and b can be non primes)

4. UVa 12805 - Raiders of the Lost Sign * (prime check; primes of format
4m� 1 and 4m+ 1; simple prime factorization)

5. Kattis - pascal * (find lowest prime factor of N ; special case: N = 1)

6. Kattis - primalrepresentation * (factorization problem; use sieve to avoid
TLE; use long long; 231 � 1 is a prime)

7. Kattis - primereduction * (factorization problem)

Extra UVa: 00516, 10392.

Also see Section 9.12 for a faster (but rare) integer factoring algorithm.

19Christian Goldbach’s conjecture (updated by Leonhard Euler) is as follows: Every even number � 4 can
be expressed as the sum of two prime numbers

294

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

d. Functions Involving Prime Factors

1. Entry Level: UVa 00294 - Divisors * (numDiv(N))

2. UVa 10179 - Irreducible Basic ... * (EulerPhi(N))

3. UVa 11353 - A Di↵erent kind of ... * (numPF(N); sort variant)

4. UVa 11728 - Alternate Task * (sumDiv(N))

5. Kattis - almostperfect * (sumDiv(N)-N; minor variation)

6. Kattis - divisors * (return numDiv(nCk); but do not compute nCk directly;
work with its prime factors)

7. Kattis - relatives * (EulerPhi(N); also available at UVa 10299 - Relatives)

Extra UVa: 00884, 01246, 10290, 10820, 10958, 11064, 11086, 11226, 12005,
13185, 13194.

Extra Kattis: listgame.

e. Modified Sieve

1. Entry Level: UVa 10699 - Count the ... * (numDiffPF(N) for a range)

2. UVa 10990 - Another New Function * (compute a range of Euler Phi
values; DP to compute depth Phi values; finally Max 1D Range Sum DP)

3. UVa 11426 - GCD - Extreme (II) * (pre-calculate EulerPhi(N), the
answer involves EulerPhi)

4. UVa 12043 - Divisors * (sumDiv(N) and numDiv(N); brute force)

5. Kattis - data * (numDiffPF(V) for V up to N ⇥ 1 000; Brute force combina-
tion/all subsets; DP Subset)

6. Kattis - farey * (pre-calculate EulerPhi(N); do prefix sum (1D RSQ) of
EulerPhi(N) from 1 to each N ; the answer is related to this value)

7. Kattis - nonprimefactors * (numDiv(i) - numDiffPF(i) 8i in the range; the
I/O files are large so Bu↵ered I/O speed is needed)

Extra UVa: 10738, 11327.

f. GCD and/or LCM20

1. Entry Level: UVa 11417 - GCD * (just use brute force as input is small)

2. UVa 10407 - Simple Division * (subtract the set s with s[0]; find gcd)

3. UVa 10892 - LCM Cardinality * (number of divisor pairs of N : (m,n)
such that lcm(m,n) = N)

4. UVa 11388 - GCD LCM * (use GCD-LCM relationship)

5. Kattis - prsteni * (GCD of first circle radius with subsequent circle radiuses)

6. Kattis - jackpot * (similar to Kattis - smallestmultiple; use Java BigInteger
or other faster solutions)

7. Kattis - smallestmultiple * (simple LCMs of all numbers; use Java BigInteger
to be safe)

Extra UVa: 00106, 00412, 10193, 11774, 11827, 12708, 12852.

Extra Kattis: doodling, dasblinkenlights.

20GCD and/or LCM problems that requires factorization are in ‘Working with Prime Factors’ category.

295

5.3. NUMBER THEORY c� Steven, Felix, Suhendry

g. Factorial21

1. Entry Level: Kattis - tutorial * (factorial is just part of the problem; pruning)

2. UVa 11076 - Add Again * (do not use next permutation for 12!, TLE;
observe the digits in all permutations; hint: the solution involves factorial)

3. UVa 12335 - Lexicographic Order * (given the k-th permutation, recover
the 1st permutation; use factorial; use Java BigInteger)

4. UVa 12869 - Zeroes * (LA 6847 - Bangkok 2014; every zero in factorial(n)
is due to product of factor 2 and 5; factor 2 grows faster than factor 5)

5. Kattis - inversefactorial * (good problem; number of digits in factorial)

6. Kattis - loworderzeros * (last non zero digit of factorial; classic)

7. Kattis - namethatpermutation * (permutation number; involving factorial)

Extra UVa: 00324, 00568, 00623, 10220, 10323, 10338, 12934.

Extra Kattis eulersnumber, howmanydigits.

h. Working with Prime Factors

1. Entry Level: Kattis - factovisors * (factorize m; see if it has support in n!;
Legendre’s formula; also available at UVa 10139 - Factovisors)

2. UVa 10680 - LCM * (use primefactors([1..N]) to get LCM(1, 2, . . . , N))

3. UVa 11347 - Multifactorials * (prime-power factorization; numDiv(N))

4. UVa 11395 - Sigma Function * (key hint: a square number multiplied
by powers of two, i.e., 2k ⇥ i2 for k � 0, i � 1 has odd sum of divisors)

5. Kattis - consecutivesums * (work with factor; sum of AP series)

6. Kattis - fundamentalneighbors * (reverse prime power notation)

7. Kattis - iks * (sieve of Eratosthenes; prime factorize each number; spread
the factors around to maximize final GCD/minimize total operations)

Extra UVa: 00160, 00993, 10061, 10484, 10780, 10791, 11889, 13067.

Extra Kattis: olderbrother, parket, perfectpowers, persistent.

i. Modular Arithmetic

1. Entry Level: UVa 10176 - Ocean Deep; Make it ... * (convert binary
to decimal digit by digit; do modulo 131071 to the intermediate result)

2. UVa 10174 - Couple-Bachelor- ... * (no Spinster number)

3. UVa 10212 - The Last Non-zero ... * (multiply numbers from N down
to N -M+1; use /10 to discard the trailing zero(es); use %1 Billion)

4. UVa 10489 - Boxes of Chocolates * (keep values small with modulo)

5. Kattis - anothercandies * (simple modular arithmetic)

6. Kattis - ones * (no factor of 2 and 5 implies that there is no trailing zero;
also available at UVa 10127 - Ones)

7. Kattis - threedigits * (simulate factorial computation; remove trailing zeroes;
keep many last few non-zero digits using modulo)

Extra UVa: 00128.

Extra Kattis: modulo, vauvau.

21Factorial problems that requires factorization are categorized in ‘Working with Prime Factors’ category.

296

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

j. Extended Euclidean

1. Entry Level: UVa 10104 - Euclid Problem * (pure Ext Euclid problem)

2. UVa 10090 - Marbles * (use solution for Linear Diophantine Equation)

3. UVa 10633 - Rare Easy Problem * (let C = N -M , N = 10a+b, and
M = a; Linear Diophantine Equation: 9a+b = C)

4. UVa 10673 - Play with Floor and Ceil * (uses Extended Euclidean)

5. Kattis - candydistribution * (the problem boils down to finding C�1 (mod
K); be careful when the answer is “IMPOSSIBLE” or K)

6. Kattis - modulararithmetic * (the division operation requires modular in-
verse; use Extended Euclidean algorithm)

7. Kattis - soyoulikeyourfoodhot * (Linear Diophantine Equation; still solvable
with brute force)

Extra Kattis: jughard, wipeyourwhiteboards.

k. Divisibility Test

1. Entry Level: UVa 10929 - You can say 11 * (test divisibility by 11)

2. UVa 10922 - 2 the 9s * (test divisibility by 9)

3. UVa 11344 - The Huge One * (use divisibility theory of [1..12])

4. UVa 11371 - Number Theory for ... * (the solving strategy is given)

5. Kattis - divisible * (divisibility; linear pass algorithm)

6. Kattis - meowfactor * (divisibility test of 9ans; small range of ans)

7. Kattis - thinkingofanumber * (simple range; use min/max properly; then
small divisibility tests)

Extra Kattis: cocoacoalition, magical3.

Profile of Algorithm Inventors

Christian Goldbach (1690-1764) was a German mathematician. He is remembered today
for Goldbach’s conjecture that he discussed extensively with Leonhard Euler.

Diophantus of Alexandria (⇡ 200-300 AD) was an Alexandrian Greek mathematician.
He did a lot of study in algebra. One of his works is the Linear Diophantine Equations.

Leonardo Fibonacci (or Leonardo Pisano) (1170-1250) was an Italian mathematician.
He published a book titled ‘Liber Abaci’ (Book of Abacus/Calculation) in which he discussed
a problem involving the growth of a population of rabbits based on idealized assumptions.
The solution was a sequence of numbers now known as the Fibonacci numbers.

Edouard Zeckendorf (1901-1983) was a Belgian mathematician. He is best known for his
work on Fibonacci numbers and in particular for proving Zeckendorf’s theorem.

Jacques Philippe Marie Binet (1786-1856) was a French mathematician. He made sig-
nificant contributions to number theory. Binet’s formula expressing Fibonacci numbers in
closed form is named in his honor, although the same result was known earlier.

Blaise Pascal (1623-1662) was a French mathematician. One of his famous inventions
discussed in this book is the Pascal’s triangle of binomial coe�cients.

Eugène Charles Catalan (1814-1894) was a French and Belgian mathematician. He is
the one who introduced the Catalan numbers to solve a combinatorial problem.

297

5.4. COMBINATORICS c� Steven, Felix, Suhendry

5.4 Combinatorics

Combinatorics is a branch of discrete mathematics22 concerning the study of countable
discrete structures. In programming contests, problems involving combinatorics are usually
titled ‘How Many [Object]’, ‘Count [Object]’, etc, though some problem authors choose to
hide this fact from their problem titles. Enumerating the objects one by one in order to count
them usually leads to TLE. The solution code is usually short, but finding the (potentially
recursive) formula takes some mathematical brilliance and also patience.

It is also a good idea to study/memorize the common ones like the Fibonacci-related
formulas (see Section 5.4.1), Binomial Coe�cients (see Section 5.4.2), and Catalan Numbers
(see Section 5.4.3) to quickly recognize them. In a team-based competition like ICPC, if such
a problem exists in the given problem set, ask one team member who is strong in mathematics
to derive the formula (a quick revision on more general combinatorics techniques is in Section
5.4.4) whereas the other two concentrate on other problems. Quickly code the usually short
formula once it is obtained—interrupting whoever is currently using the computer.

Some of these combinatorics formulas may yield overlapping subproblems that entail the
need to use DP (review Book 1). Some computation values can also be large and entail the
need to use Big Integer (see Book 1) or modular arithmetic (see Section 5.3.9).

5.4.1 Fibonacci Numbers

Leonardo Fibonacci ’s numbers are defined as fib(0) = 0, fib(1) = 1, and for n � 2, fib(n) =
fib(n-1) + fib(n-2). This generates the following familiar pattern: 0, 1, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, 144, 233, 377, 610, and so on. This pattern sometimes appears in contest
problems which do not mention the term ‘Fibonacci’ at all, like in some problems in the list
of programming exercises in this section (e.g., UVa 10334, Kattis - anti11, etc).

We usually derive the Fibonacci numbers with a ‘trivial’ O(n) (usually bottom-up) DP
technique and not implement the given recurrence directly (as it is very slow). However, the
O(n) DP solution is not the fastest for all cases. Later in Section 5.8, we will show how to
compute the n-th Fibonacci number (where n is large) in O(log n) time using the e�cient
matrix power. As a note, there is an O(log n) closed-form formula to get the n-th Fibonacci
number: We compute the value of (�n-(-�)�n)/

p
5 (Binet’s formula) where � (golden ratio)

is ((1+
p
5)/2) ⇡ 1.618. This value is theoretically exact, however this is not so accurate for

large Fibonacci numbers due to imprecision in floating point computations.
Fibonacci numbers have many interesting properties. One of them is Zeckendorf’s theo-

rem: every positive integer can be written in a unique way as a sum of one or more distinct
Fibonacci numbers such that the sum does not include any two consecutive Fibonacci num-
bers. For any given positive integer, a representation that satisfies Zeckendorf’s theorem can
be found by using a Greedy algorithm: choose the largest possible Fibonacci number at each
step. For example: 100 = 89 + 8 + 3; 77 = 55 + 21 + 1, 18 = 13 + 5, etc.

Another property is the Pisano Period where the last one/last two/last three/last four
digit(s) of a Fibonacci number repeats with a period of 60/300/1 500/15 000, respectively.

Exercise 5.4.1.1: Try fib(n) = (�n�(��)�n)/
p
5 on small n and see if this Binet’s formula

really produces fib(7) = 13, fib(9) = 34, fib(11) = 89. Now, write a simple program to find
out the first value of n such that the actual value of fib(n) di↵ers from this formula?

22Discrete mathematics is a study of structures that are discrete (e.g., integers {0, 1, 2, . . . }, graphs/trees
(vertices and edges), logic (true/false)) rather than continuous (e.g., real numbers).

298

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

5.4.2 Binomial Coe�cients

Another classical combinatorics problem is in finding the coe�cients of the algebraic ex-
pansion of powers of a binomial23. These coe�cients are also the numbers of ways that n
items can be taken k at a time, usually written as C(n, k) or nCk. For example, (x+y)3 =
1x3 + 3x2y + 3xy2 + 1y3. The {1, 3, 3, 1} are the binomial coe�cients of n = 3 with
k = {0, 1, 2, 3} respectively. Or in other words, the numbers of ways that n = 3 items can
be taken k = {0, 1, 2, 3} item(s) at a time are {1, 3, 3, 1}, respectively.

We can compute a single (exact) value of C(n, k) with this formula: C(n, k) = n!
(n�k)!⇥k!

implemented iteratively. However, computing C(n, k) can be a challenge when n and/or
k are large. There are several techniques like: making k smaller (if k > n-k, then we set
k = n-k) because nCk = nC(n�k); during intermediate computations, we divide the numbers
first before multiplying it with the next number; or use Big Integer technique discussed in
Book 1 (this should be used only as the last resort as Big Integer operations are slow).

We can also compute the value of C(n, k) using top-down DP recurrences as shown below
and then use a 2D memo table to avoid re-computations.

C(n, 0) = C(n, n) = 1 // base cases.
C(n, k) = C(n-1, k-1) + C(n-1, k) // take or ignore an item, n > k > 0.

Alternatively, we can also compute the values of C(n, k) from n = 0 up to a certain value
of n by constructing the Pascal’s Triangle, a triangular array of binomial coe�cients. The
leftmost and rightmost entries at each row are always 1. The inner values are the sum of two
values diagonally above it, as shown for row n = 4 below. This is essentially the bottom-up
version of the DP solution above. Notice that the sum of each row is always 2n.

n = 0 1 row sum = 1 = 2^0
n = 1 1 1 row sum = 2 = 2^1
n = 2 1 2 1 row sum = 4 = 2^2
n = 3 1 3 3 1 <- as shown above, row sum = 8 = 2^3

\ / \ / \ /
n = 4 1 4 6 4 1 row sum = 16 = 2^4, and so on

As the values of C(n, k) grows very fast, modern programming problems often ask for the
value of C(n, k)%p instead where p is a prime number. If time limit is not strict, we can
modify the DP formula above to compute the correct values of C(n, k)%p. For a faster
solution, we can apply Fermat’s little theorem on the standard C(n, k) formula (if p is a
su�ciently large prime number greater than MAX N) – see the implementation below with
O(n) pre-calculation of the values of n!%p – or Lucas’ Theorem (if p is just a prime number
but without the greater than MAX N guarantee) – see Section 9.14.

typedef long long ll;
const int MAX_N = 100010;
const int p = 1e9+7; // p is a prime > MAX_N

ll inv(ll a) { // Fermat’s little theorem
return modPow(a, p-2, p); // modPow in Section 5.8

} // that runs in O(log p)

ll fact[MAX_N];

23Binomial is a special case of polynomial that only has two terms.

299

5.4. COMBINATORICS c� Steven, Felix, Suhendry

ll C(int n, int k) { // O(log p)
if (n < k) return 0; // clearly
return (((fact[n] * inv(fact[k])) % p) * inv(fact[n-k])) % p;

}

// inside int main()
fact[0] = 1;
for (int i = 1; i < MAX_N; ++i) // O(MAX_N) pre-processing

fact[i] = (fact[i-1]*i) % p; // fact[i] in [0..p-1]
cout << C(100000, 50000) << "\n"; // the answer is 149033233

Exercise 5.4.2.1: A frequently used k for C(n, k) is k = 2. Show that C(n, 2) = O(n2).

Exercise 5.4.2.2: Why the code above only works when p > MAX N? Try p = 997 (also a
prime) and compute C(100000, 50000)%p again! What should we use to address this issue?
Is it helpful if we use Extended Euclidean algorithm instead of Fermat’s little theorem?

Exercise 5.4.2.3: In the given code above, we pre-calculate the values of n!%p 8n 2 [0..n]
in O(n). Actually, we can also pre-calculate the values of inv[n!%p] 8n 2 [0..n] in O(n).
Then, each computation of C(n, k) can be O(1). Show how to do it!

5.4.3 Catalan Numbers

First, let’s define the n-th Catalan number — written using binomial coe�cients notation
nCk above — as: Cat(n) = ((2⇥n)Cn)/(n+ 1); Cat(0) = 1. We will see its purposes below.

If we are asked to compute the values of Cat(n) for several values of n, it may be better
to compute the values using (bottom-up) DP. If we know Cat(n), we can compute Cat(n+1)
by manipulating the formula like shown below.

Cat(n) = (2n)!
n!⇥n!⇥(n+1)

Cat(n+1) = (2⇥(n+1))!
(n+1)!⇥(n+1)!⇥((n+1)+1) =

(2n+2)⇥(2n+1)⇥(2n)!
(n+1)⇥n!⇥(n+1)⇥n!⇥(n+2) =

(2⇥(n+1))⇥(2n+1)⇥[(2n)!]
(n+2)⇥(n+1)⇥[n!⇥n!⇥(n+1)] .

Therefore, Cat(n+1) = (4n+2)
(n+2) ⇥ Cat(n).

The values of Cat(n) also grows very fast so sometimes the value of Cat(n)%p is the one
asked. If p is prime (and p is a su�ciently large prime number greater than MAX N), we can
use the following Fermat’s little theorem implementation.

ll Cat[MAX_N];

// inside int main()
Cat[0] = 1;
for (int n = 0; n < MAX_N-1; ++n) // O(MAX_N log p)

Cat[n+1] = ((4*n+2)%p * Cat[n]%p * inv(n+2)) % p;
cout << Cat[100000] << "\n"; // the answer is 945729344

We provide our modular arithmetic-style implementations in the source code below:

Source code: ch5/combinatorics.cpp|java|py

300

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

Catalan numbers are (surprisingly) found in various combinatorial problems. Here, we list
down some of the more interesting ones (there are several others). All examples below use
n = 3 and Cat(3) = ((2⇥3)C3)/(3 + 1) = (6C3)/4 = 20/4 = 5.

1. Cat(n) counts the number of distinct binary trees with n vertices, e.g., for n = 3:

* * * * *
/ / / \ \ \

* * * * * *
/ \ / \

* * * *

2. Cat(n) counts the number of expressions containing n pairs of parentheses which are
correctly matched, e.g., for n = 3, we have: ()()(), ()(()), (())(), ((())), and (()()). For
more details about this problem, see Book 1.

3. Cat(n) counts the number of di↵erent ways n+ 1 factors can be completely parenthe-
sized, e.g., for n = 3 and 3 + 1 = 4 factors: {a, b, c, d}, we have: (ab)(cd), a(b(cd)),
((ab)c)d, (a(bc))d, and a((bc)d).

4. Cat(n) counts the number of ways a convex polygon (see Section 7.3) of n + 2 sides
can be triangulated. See Figure 5.2—left.

5. Cat(n) counts the number of monotonic paths along the edges of an n⇥ n grid, which
do not pass above the diagonal. A monotonic path is one which starts in the lower
left corner, finishes in the upper right corner, and consists entirely of edges pointing
rightwards or upwards. See Figure 5.2—right.

Figure 5.2: Left: Triangulation of a Convex Polygon, Right: Monotonic Paths

Exercise 5.4.3.1*: Which one is the hardest to factorize (see Section 5.3.3) assuming that
n is an arbitrary large integer: fib(n), C(n, k) (assume that k = n/2), or Cat(n)? Why?

Exercise 5.4.3.2*: Catalan numbers Cat(n) appear in some other interesting problems
other than the ones shown in this section. Investigate!

5.4.4 Combinatorics in Programming Contests

The classic combinatorics-related problems involving (pure) Fibonacci and Catalan numbers
are getting rare as of year 2020. However, there are still many other combinatorics problems
involving permutations (Section 5.3.7) and combinations (that is, Binomial Coe�cients,
Section 5.4.2). Some of the basic ones are listed in the programming exercises below and
the more interesting ones (but (very) rare) are listed in Section 9.15. Note that a pure
and/or classic combinatorics problem is rarely used in modern IOI/ICPC but combinatorics
is usually a subproblem of a bigger problem (Section 8.7).

301

5.4. COMBINATORICS c� Steven, Felix, Suhendry

In online programming contests where contestant can access the Internet, there is one
more technique that may be useful. First, generate the output for small instances and
then search for that sequence at OEIS (The On-Line Encyclopedia of Integer Sequences)
hosted at https://oeis.org/. If you are lucky, OEIS can tell you the name of the sequence
and/or the required general formula for the larger instances. Moreover, you can also use
https://wolframalpha.com/ to help you process/simplify mathematical formulas.

There are still many other counting principles and formulas, too many to be discussed
in this book. As this is not a pure (discrete) mathematics book, we close this section by
giving a quick revision on some combinatorics techniques and give a few written exercises to
test/further improve your combinatorics skills.

• Fundamental counting principle (rule of sum): If there are n ways to do one action,
m ways to do another action, and these two actions cannot be done at the same time,
then there are n +m ways to choose one of these combined actions. We can classify
Counting Paths on DAG (review Book 1 and also see Section 8.3) as this.

• Fundamental counting principle (rule of product): If there are n ways to do one action
and m ways to do another action afterwards, then there are n⇥m ways to do both.

• A permutation is an arrangement of objects without repetition and the order is impor-
tant. There are n! permutations of a set of size n distinct elements.

• If the set is actually a multiset (with duplicates), then there are fewer than n! per-
mutations. Suppose that there are k distinct elements, then the actual number of
permutations is : n!

(n1)!⇥(n2)!⇥...⇥(nk)!
where ni is the frequency of each distinct element i

and n1 + n2 + . . .+ nk = n. This formula is also called as the multinomial coe�cients,
the generalization of the binomial coe�cients discussed in Section 5.4.2.

• A k-permutation is an arrangement of a fixed length k of distinct elements taken from
a given set of size n distinct elements. The formula is nPk =

n!
(n�k)! and can be derived

from the fundamental counting principle above.

• Principle of inclusion-exclusion: |A
S
B| = |A|+ |B|� |A

T
B|

• There 2n subsets (or combinations) of n distinct elements.

• There are C(n, k) number of ways to take k items out of a set of n distinct elements.

Exercise 5.4.4.1: Count the number of di↵erent possible outcomes if you roll two 6-sided
dices and flip three 2-sided coins? Will the answer be di↵erent if we do this (rolling and
flipping) one by one in some order versus if we do this in one go?

Exercise 5.4.4.2: How many ways to form a three digits number from {0, 1, 2, . . . , 9},
each digit can only be used once, 0 cannot be used as the leading digit, and one of the digit
must be 7?

Exercise 5.4.4.3: How many possible passwords are there if the length of the password
is between 1 to 10 characters and each character can either be alphabet letters [‘a’..‘z’] or
[‘A’..‘Z’] or digits [0..9]? Please output the answer modulo 1e9+7.

Exercise 5.4.4.4: Suppose you have a 6-letter word ‘FACTOR’. If we take 3 letters from
this word ‘FACTOR’, we may have another word, like ‘ACT’, ‘CAT’, ‘ROT’, etc. What is
the number of di↵erent 3-letter words that can be formed with the letters from ‘FACTOR’?

302

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

Exercise 5.4.4.5: Given the 5-letter word ‘BOBBY’, rearrange the letters to get another
word, e.g., ‘BBBOY’, ‘YOBBB’, etc. How many di↵erent permutations are possible?

Exercise 5.4.4.6: Using the principle of inclusion-exclusion, count this: how many integers
in [1..1M] that are multiples of 5 and 7?

Exercise 5.4.4.7: Solve UVa 11401 - Triangle Counting! “Given n rods of length 1, 2,
. . . , n, pick any 3 of them and build a triangle. How many distinct triangles can you make
(consider triangle inequality, see Section 7.2)? (3 n 1M) ”.

Exercise 5.4.4.8*: There are A boys and B girls. Count the number of ways to select a
group of people such that the number of boys is equal to the number of girls in the chosen
group, e.g., A = 3 and B = 2, then there are 1/6/3 way(s) to select a group with 0/2/4
people, respectively, with a total of 1+6+3 = 10 ways.

Programming Exercises related to Combinatorics:

a. Fibonacci Numbers

1. Entry Level: UVa 00495 - Fibonacci Freeze * (O(n) DP; Big Integer)

2. UVa 00763 - Fibinary Numbers * (Zeckendorf representation; greedy;
Big Integer)

3. UVa 10334 - Ray Through Glasses * (combinatorics; Big Integer)

4. UVa 10689 - Yet Another Number ... * (easy; Pisano period)

5. Kattis - anti11 * (this problem is a modified Fibonacci numbers)

6. Kattis - batmanacci * (Fibonacci; observation on N ; Divide and Conquer)

7. Kattis - rijeci * (simple simulation with a single loop; Fibonacci)

Extra UVa: 00580, 00900, 00948, 01258, 10183, 10450, 10497, 10579, 10862,
11000, 11089, 11161, 11780, 12281, 12620.

Extra Kattis: interestingintegers.

b. Binomial Coe�cients:

1. Entry Level: UVa 00369 - Combinations * (be careful with overflow issue)

2. UVa 10541 - Stripe * (a good combinatorics problem)

3. UVa 11955 - Binomial Theorem * (pure application; DP)

4. UVa 12712 - Pattern Locker * (the answer is
PN

i=M C(L ⇤ L, i) ⇤ i!, but
simplify the computation of this formula instead of running it directly)

5. Kattis - election * (compute the answers with help of binomial coe�cients)

6. Kattis - lockedtreasure * (the answer is nCm�1)

7. Kattis - oddbinom * (OEIS A006046)

Extra UVa: 00326, 00485, 00530, 00911, 10105, 10375, 10532.

Extra Kattis: insert, perica.

Profile of Algorithm Inventor

Pierre de Fermat (1607-1665) was a French Lawyer and a mathematician. In context
of Competitive Programming, he is best known for his Fermat’s little theorem as used
in Section 5.3.9, 5.4.2, and 5.4.3.

303

5.4. COMBINATORICS c� Steven, Felix, Suhendry

c. Catalan Numbers

1. Entry Level: UVa 10223 - How Many Nodes? * (you can precalculate
the answers as there are only 19 Catalan Numbers < 232-1)

2. UVa 00991 - Safe Salutations * (Catalan Numbers)

3. UVa 10007 - Count the Trees * (answer is Cat(n)⇥ n!; Big Integer)

4. UVa 10312 - Expression Bracketing * (number of binary bracketing =
Cat(n); number of bracketing = Super-Catalan numbers)

5. Kattis - catalan * (basic Catalan Numbers)

6. Kattis - catalansquare * (Catalan Numbers++; follow the description)

7. Kattis - fiat * (N -th Catalan Number; use Fermat’s little theorem)

Extra UVa: 10303, 10643.

c. Others, Easier

1. Entry Level: UVa 11401 - Triangle Counting * (spot the pattern)

2. UVa 11310 - Delivery Debacle * (requires DP: let dp[i] be the number
of ways the cakes can be packed for a box 2⇥ i)

3. UVa 11597 - Spanning Subtree * (graph theory; trivial)

4. UVa 12463 - Little Nephew * (double the socks and the shoes first)

5. Kattis - character * (OEIS A000295)

6. Kattis - honey * (OEIS A002898)

7. Kattis - integerdivision * (count frequencies of each remainder of [0..d-1]; add
C(freq, 2) per such remainder)

Extra UVa: 10079, 11115, 11480, 11609.

c. Others, Harder

1. Entry Level: UVa 10784 - Diagonal * (the number of diagonals in n-gon
= n ⇤ (n� 3)/2; use it to derive the solution)

2. UVa 01224 - Tile Code * (LA 3904 - Seoul07; derive formula from ob-
serving the small instances first)

3. UVa 11069 - A Graph Problem * (use Dynamic Programming)

4. UVa 11538 - Chess Queen * (count along rows/columns/diagonals)

5. Kattis - anagramcounting * (use Java BigInteger)

6. Kattis - incognito * (count frequencies; combinatorics; minus one)

7. Kattis - tritiling * (there are two related recurrences here; also available at
UVa 10918 - Tri Tiling)

Extra UVa: 00153, 00941, 10359, 10733, 10790, 11204, 11270, 11554, 12001,
12022.

Extra Kattis: kitchencombinatorics.

c. Also see Section 9.15 for a few rare (combinatorics) formulas and theorems.

Profile of Algorithm Inventor

François Édouard Anatole Lucas (1842-1891) was a French mathematician. Lucas is
known for his study of the Fibonacci and Lucas sequence. In this book, we discuss Lucas’
Theorem to compute the remainder of division of the binomial coe�cient C(n, k) by a prime
number p in terms of the base p expansions of the integers m and n. This solution that is
discussed in Section 9.14 is stronger than the one presented in Section 5.4.2.

304

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

5.5 Probability Theory

Probability Theory is a branch of mathematics dealing with the analysis of random phe-
nomena. Although an event like an individual (fair) coin toss is random, the sequence of
random events will exhibit certain statistical patterns if the event is repeated many times.
This can be studied and predicted. For example, the probability of a head appearing is 1/2
(similarly with a tail). Therefore, if we flip a (fair) coin n times, we expect that we see heads
n/2 times.

In programming contests, problems involving probability are either solvable with:

• Closed-form formula. For these problems, one has to derive the required (usually O(1))
formula. For example, let’s discuss how to derive the solution for UVa 10491 - Cows
and Cars24, which is a generalized version of a TV show: ‘The Monty Hall problem’25.

You are given NCOWS number of doors with cows, NCARS number of doors with cars,
and NSHOW number of doors (with cows) that are opened for you by the presenter.
Now, you need to count the probability of winning a car (by opening a door that has
a car behind it) assuming that you will always switch to another unopened door.

The first step is to realize that there are two ways to get a car. Either you pick a cow
first and then switch to a car, or you pick a car first, and then switch to another car.
The probability of each case can be computed as shown below.

In the first case, the chance of picking a cow first is (NCOWS/(NCOWS + NCARS)).
Then, the chance of switching to a car is (NCARS/(NCARS +NCOWS �NSHOW � 1)).
Multiply these two values together to get the probability of the first case. The -1 is to
account for the door that you have already chosen, as you cannot switch to it.

The probability of the second case can be computed in a similar manner. The chance
of picking a car first is (NCARS/(NCARS +NCOWS)). Then, the chance of switching to
a car is ((NCARS � 1)/(NCARS +NCOWS �NSHOW � 1)). Both -1 accounts for the car
that you have already chosen.

Sum the probability values of these two cases together to get the final answer.

• Exploration of the search (sample) space to count number of events (usually harder to
count; may deal with combinatorics—see Section 5.4, Complete Search—see Book 1,
or Dynamic Programming–see Book 1) over the countable sample space (usually much
simpler to count). Examples:

– ‘UVa 12024 - Hats’ is a problem of n people who store their n hats in a cloakroom
for an event. When the event is over, these n people take their hats back. Some
take a wrong hat. Compute how likely is that everyone takes a wrong hat.

This problem can be solved via brute-force and pre-calculation by trying all n!
permutations and see how many times the required events appear over n! because
n 12 in this problem and such O(n!⇥ n) näıve solution will only take about a
minute to run. However, a more math-savvy contestant can use this Derangement
(DP) formula instead: An = (n-1) ⇥ (An�1 + An�2) that will be fast enough for
much higher n, possibly combined with modular arithmetic.

24You may be interested to attempt an interactive problem : Kattis - askmarilyn too.
25This is an interesting probability puzzle. Readers who have not heard this problem before are encouraged

to do some Internet search and read the history of this problem. In the original problem, NCOWS = 2,
NCARS = 1, and NSHOW = 1. The probability of staying with your original choice is 1

3 and the probability
of switching to another unopened door is 2

3 and therefore it is always beneficial to switch.

305

5.5. PROBABILITY THEORY c� Steven, Felix, Suhendry

– Abridged problem description of UVa 10759 - Dice Throwing: n common cubic
dice are thrown. What is the probability that the sum of all thrown dices is at
least x? (constraints: 1 n 24, 0 x < 150).

The sample space (the denominator of the probability value) is very simple to
compute. It is 6n.

The number of events is slightly harder to compute. We need a (simple) DP
because there are lots of overlapping subproblems. The state is (dice left, score)
where dice left keeps track of the remaining dice that we can still throw (starting
from n) and score counts the accumulated score so far (starting from 0). DP can
be used as there are only n⇥ (n⇥ 6) = 6n2 distinct states for this problem.

When dice left = 0, we return 1 (event) if score � x, or return 0 otherwise;
When dice left > 0, we try throwing one more dice. The outcome v for this dice
can be one of six values and we move to state (dice left-1, score+v). We sum all
the events. The time complexity is O(6n2 ⇥ 6) = O(36n2) which is very small as
n 24 in this problem.

One final requirement is that we have to use gcd (see Section 5.3.6) to simplify the
probability fraction (see Section 5.2). In some other problems, we may be asked to
output the probability value correct to a certain digit after decimal point (either
between [0.0..1.0] or as percentages [0.0..100.0]).

– Abridged problem description of Kattis - bobby: Betty has an S-sided fair dice
(having values 1 through S). Betty challenges Bobby to obtain a total value � R
on at least X out of Y rolls. If Bobby is successful, Betty will give Bobby W
times of his initial bet. Should Bobby take the bet? Or in another word, is his
expected return greater than his original bet?

To simplify, let’s assume that Bobby bets 1 unit of currency, is his expected return
strictly greater than 1 unit?

For a single roll of an S-sided fair dice, Bobby’s chance to hit R or higher (a
success) is psuccess =

S�R+1
S and consequently Bobby’s chance to hit R-1 or lower

(a failure) is R�1
S (or 1� psuccess).

We can then write a recursive function exp val(num roll, num success). We
simulate the roll one by one. The base case is when num roll == Y where
we return W if num success � X or 0 otherwise. In general case, we do one
more throw that can be either a success with probability psuccess or a failure
with probability (1 � psuccess) and add both expected values due to linearity of
expectation. The time complexity is O(Y 2) which is very small as Y 10.

Exercise 5.5.1: Instead of memorizing the formula, show how to derive the Derangement
DP formula An = (n-1)⇥ (An�1 + An�2).

Exercise 5.5.2: There are 15 students in a class. 8 of them are boys and the other 7 are
girls. The teacher wants to form a group of 5 students in random fashion. What is the
probability that the formed group consists of all girls?

306

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

Programming Exercises about Probability Theory:

a. Probability Theory, Easier

1. Entry Level: UVa 10491 - Cows and Cars * (2 ways: either pick a cow
first, then switch to a car; or pick a car first, and then switch to another car)

2. UVa 01636 - Headshot * (LA 4596 - NorthEasternEurope09; ad hoc
probability question, one tricky special case involving all zeroes)

3. UVa 10238 - Throw the Dice * (DP; s: (dice left, score); try F values;
Big Integer; no need to simplify the fraction; see UVa 10759)

4. UVa 11181 - Probability (bar) Given * (iterative brute force; try all
possibilities)

5. Kattis - bobby * (computation of expected value)

6. Kattis - dicebetting * (s: (dice left, distinct numbers so far); each throw can
increase distinct numbers so far or not)

7. Kattis - odds * (complete search; simple probability)

Extra UVa: 10328, 10759, 12024, 12114, 12230, 12457, 12461.

Extra Kattis: dicegame, orchard, password, secretsanta.

b. Probability Theory, Harder

1. Entry Level: UVa 11628 - Another lottery * (p[i] = ticket bought by i
at the last round/total tickets bought at the last round by all n; gcd)

2. UVa 10056 - What is the Probability? * (get the closed form formula)

3. UVa 10648 - Chocolate Box * (DP; s: (rem boxes, num empty))

4. UVa 11176 - Winning Streak * (DP, s: (rem games, streak); t: lose this
game, or win the next W = [1..n] games and lose the (W+1)-th game)

5. Kattis - anthony * (DP probability; need to drop one parameter (N or M)
and recover it from the other one)

6. Kattis - goodcoalition * (DP probability; like Knapsack)

7. Kattis - lostinthewoods * (simulate random walks of various lengths and dis-
tribute the probabilities per iteration; the answer will converge eventually)

Extra UVa: 00542, 00557, 10218, 10777, 11021, 11346, 11500, 11762.

Extra Kattis: 2naire, anotherdice, bond, bribe, explosion, genius, gnollhypoth-
esis, pollygone, ra✏e, redsocks.

Profile of Algorithm Inventors

John M. Pollard (born 1941) is a British mathematician who has invented algorithms for
the factorization of large numbers (the Pollard’s rho algorithm, see Section 9.12) and for the
calculation of discrete logarithms (not discussed in this book).

Richard Peirce Brent (born 1946) is an Australian mathematician and computer scientist.
His research interests include number theory (in particular factorization), random number
generators, computer architecture, and analysis of algorithms. He has invented or co-invented
various mathematics algorithms.

307

5.6. CYCLE-FINDING c� Steven, Felix, Suhendry

5.6 Cycle-Finding

5.6.1 Problem Description

Given a function f : S ! S (that maps a natural number from a finite set S to another
natural number in the same finite set S) and an initial value x0 2 N , the sequence of iterated
function values: {x0, x1 = f(x0), x2 = f(x1), . . . , xi = f(xi�1), . . .} must eventually use
the same value twice, i.e., 9i < j such that xi = xj. Once this happens, the sequence must
then repeat the cycle of values from xi to xj�1. Let µ (the start of cycle) be the smallest
index i and � (the cycle length) be the smallest positive integer such that xµ = xµ+�. The
cycle-finding problem26 is defined as the problem of finding µ and � given f(x) and x0.

For example, in UVa 00350 - Pseudo-Random Numbers, we are given a pseudo-random
number generator f(x) = (Z⇥x+ I)%M with x0 = L and we want to find out the sequence
length before any number is repeated (i.e., the �). A good pseudo-random number generator
should have a large �. Otherwise, the numbers generated will not look ‘random’.

Let’s try this process with the sample test case Z = 7, I = 5,M = 12, L = 4, so we
have f(x) = (7 ⇥ x + 5)%12 and x0 = 4. The sequence of iterated function values is
{4, 9, 8, 1, 0, 5, 4, . . .}. We have µ = 0 and � = 6 as x0 = xµ+� = x0+6 = x6 = 4. The
sequence of iterated function values cycles from index 6 onwards.

On another test case Z = 26, I = 11,M = 80, L = 7, we have f(x) = (26 ⇥ x + 11)%80
and x0 = 7. The sequence of iterated function values is {7, 33, 69, 45, 61, 77, 13, 29, 45, . . .}.
This time, we have µ = 3 and � = 5.

5.6.2 Solutions using E�cient Data Structures

A simple algorithm that will work for many cases and/or variants of this cycle-finding
problem uses an e�cient data structure to store key to value information: a number xi

(the key) has been first encountered at iteration i (the value) in the sequence of iterated
function values. Then for xj that is encountered later (j > i), we test if xj is already stored
in the data structure. If it is, it implies that xj = xi, µ = i, � = j � i. This algorithm
runs in O((µ + �) ⇥ DS cost) where DS cost is the cost per one data structure operation
(insert/search). This algorithm requires at least O(µ+ �) space to store past values.

For many cycle-finding problems with rather large S (and likely large µ+ �), we can use
O(µ + � + buffer) space C++ STL unordered map/Java HashMap/Python dict/OCaml
Hashtbl to store/check the iteration indices of past values in O(1) time. But if we just need
to stop the algorithm upon encountering the first repeated number, we can use C++ STL
unordered set/Java HashSet/Python set (curly braces {}) instead.

For other cycle-finding problems with relatively small S (and likely small µ + �), we
may even use the O(|S|) space Direct Addressing Table (DAT) to store/check the iteration
indices of past values also in O(1) time.

Note that by trading-o↵ (large, up to O(µ + �)) memory space, we can actually solve
this cycle-finding problem in e�cient O(µ+ �) runtime.

Exercise 5.6.2.1: Notice that on many random test cases of UVa 00350, the values of µ
and � are close to 0. However, generate a simple test case (choose Z, I, M , and L) for UVa
00350 so that even an O(µ+�) algorithm really runs in O(M), i.e., almost, if not all possible
integers 2 [0..M -1] are used before a cycle is detected.

26We can also view this problem as a graph problem, i.e., finding the start and length of a cycle in a
functional graph/pseudo tree.

308

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

5.6.3 Floyd’s Cycle-Finding Algorithm

However, there is an even better algorithm called Floyd’s cycle-finding algorithm that also
runs in O(µ + �) time complexity but only uses O(1) memory27 space—much smaller than
the solutions using e�cient data structures above. This algorithm is also called ‘the tortoise
and hare (rabbit)’ algorithm. It has three components that we describe below using the
function f(x) = (Z ⇥ x+ I)%M and Z = 26, I = 11,M = 80, L = 7.

1. E�cient Way to Detect a Cycle: Finding k�

Observe that for any i � µ, xi = xi+k�, where k > 0, e.g., in Table 5.2, x3 = x3+1⇥5 = x8 =
x3+2⇥5 = x13 = 45, and so on. If we set k� = i, we get xi = xi+i = x2i. Floyd’s cycle-finding
algorithm exploits this technique.

i x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

7 33 69 45 61 77 13 29 45 61 77 13 29 45
0 TH
1 T H
2 T H
3 T H
4 T H
5 T H

Table 5.2: Part 1: Finding k�, f(x) = (26⇥ x+ 11)%80, x0 = 7

Figure 5.3: An Example of Finding k� = 5 (one step before t and h point at x5 = x10 = 77)

The Floyd’s cycle-finding algorithm maintains two pointers called the ‘tortoise’ (the slower
one) at xi and the ‘hare’ (the faster one) at x2i. Initially, both are at x0. At each step of
the algorithm, tortoise is moved one step to the right and the hare is moved two steps to
the right28 in the sequence. Then, the algorithm compares the sequence values at these two
pointers. The smallest value of i > 0 for which both tortoise and hare point to equal values
is the value of k� (multiple of �). We will determine the actual � from k� using the next
two steps. In Table 5.2 and Figure 5.3, when i = 5, we have x5 = x10 = x5+5 = x5+k� = 77.
So, k� = 5. In this example, we will see below that k is eventually 1, so � = 5 too.

27But this advantage is hard to test in an online judge setup though, thus the e�cient data structure
solutions shown earlier are probably enough to solve most cycle-finding problems.

28To move right one step from xi, we use xi = f(xi). To move right two steps from xi, we use xi = f(f(xi)).

309

5.6. CYCLE-FINDING c� Steven, Felix, Suhendry

2. Finding µ

Next, we reset hare back to x0 and keep tortoise at its current position. Now, we advance
both pointers to the right one step at a time, thus maintaining the k� gap between the two
pointers. When tortoise and hare points to the same value, we have just found the first
repetition of length k�. Since k� is a multiple of �, it must be true that xµ = xµ+k�. The
first time we encounter the first repetition of length k� is the value of the µ. In Table 5.3
and Figure 5.4—left, we find that µ = 3.

µ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

7 33 69 45 61 77 13 29 45 61 77 13 29 45
0 H T
1 H T
2 H T
3 H T

Table 5.3: Part 2: Finding µ

Figure 5.4: Left: Finding µ = 3; Right: Finding � = 5

3. Finding �

� x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

7 33 69 45 61 77 13 29 45 61 77 13 29 45
1 T H
2 T H
3 T H
4 T H
5 T H

Table 5.4: Part 3: Finding �

Once we get µ, we let the tortoise stay in its current position and set hare next to it. Now,
we move the hare iteratively to the right one by one. The hare will point to a value that is
the same as the tortoise for the first time after � steps. In Table 5.4 and Figure 5.4—right,
we see that after the hare moves five times, x8 = x8+5 = x13 = 45. So, � = 5. Therefore, we
report µ = 3 and � = 5 for f(x) = (26 ⇥ x + 11)%80 and x0 = 7. Overall, this algorithm
runs in O(µ+ �) with only O(1) memory space.

310

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

4. The Implementation of Floyd’s Cycle-Finding Algorithm

The working C/C++ implementation of this algorithm (with comments) is shown below:

ii floydCycleFinding(int x0) { // f(x) is defined above
// 1st part: finding k*mu, hare h’s speed is 2x tortoise t’s
int t = f(x0), h = f(f(x0)); // f(x0) is after x0
while (t != h) { t = f(t); h = f(f(h)); }
// 2nd part: finding mu, hare h and tortoise t move at the same speed
int mu = 0; h = x0;
while (t != h) { t = f(t); h = f(h); ++mu; }
// 3rd part: finding lambda, hare h moves, tortoise t stays
int lambda = 1; h = f(t);
while (t != h) { h = f(h); ++lambda; }
return {mu, lambda};

}

For more examples, visit the VisuAlgo, cycle-finding visualization and define your own29

f(x) = (a⇥ x2 + b⇥ x+ c)%M and your own x0 to see this algorithm in action.

Visualization: https://visualgo.net/en/cyclefinding

Source code: ch5/UVa00350.cpp|java|py|ml

Exercise 5.6.3.1*: Richard Peirce Brent invented an improved version of Floyd’s cycle-
finding algorithm shown above. Study and implement Brent’s algorithm [4].

Programming Exercises related to Cycle-Finding:

1. Entry Level: UVa 00350 - Pseudo-Random Numbers * (very basic cycle-
finding problem; simply run Floyd’s cycle-finding algorithm)

2. UVa 11036 - Eventually periodic ... * (cycle-finding; evaluate Reverse Polish
f with a stack)

3. UVa 11053 - Flavius Josephus ... * (cycle-finding; the answer is N -�)

4. UVa 11511 - Frieze Patterns * (cycle-finding on vectors; notice that the
pattern will cycle fast)

5. Kattis - dragondropped * (interactive cycle finding problem; tight constraints)

6. Kattis - fibonaccicycles * (detect cycle of fib(n)%k using fast data structure)

7. Kattis - rats * (string processing plus cycle-finding; unordered set)

Extra UVa: 00202, 00275, 00408, 00547, 00942, 00944, 10162, 10515, 10591,
11549, 11634, 12464, 13217.

Extra Kattis: cool1, happyprime, partygame.

29This is slightly more generic than the f(x) = (Z ⇥ x+ I)%M shown in this section.

311

5.7. GAME THEORY (BASIC) c� Steven, Felix, Suhendry

5.7 Game Theory (Basic)

Problem Description

Game Theory is a mathematical model of strategic situations (not necessarily games as
in the common meaning of ‘games’) in which a player’s success in making choices depends
on the choices of others. Many programming problems involving game theory are classified
as Zero-Sum Games—a mathematical way of saying that if one player wins, then the
other player loses. For example, a game of Tic-Tac-Toe (e.g., UVa 10111), Chess, various
number/integer games (e.g., UVa 10368, 10578, 10891, 11489, Kattis - amultiplicationgame),
and others (Kattis - bachetsgame) are games with two players playing alternately (usually
perfectly) and (usually) there can only be one winner.

The common question asked in programming contest problems related to game theory is
whether the starting player of a two player competitive game has a winning move assuming
that both players are doing Perfect Play. That is, each player always chooses the most
optimal choice available to him.

Decision Tree

One way is to write a recursive code to explore the Decision Tree of the game (a.k.a. the
Game Tree). If there is no overlapping subproblem, pure recursive backtracking is suitable.
Otherwise, Dynamic Programming is needed. Each vertex describes the current player and
the current state of the game. Each vertex is connected to all other vertices legally reachable
from that vertex according to the game rules. The root vertex describes the starting player
and the initial game state. If the game state at a leaf vertex is a winning state, it is a win
for the current player (and a lose for the other player). At an internal vertex, the current
player chooses a vertex that guarantees a win with the largest margin (or if a win is not
possible, chooses a vertex with the least loss). This is called the Minimax strategy.

For example, in UVa 10368 - Euclid’s Game, there are two players: Stan (player 0)
and Ollie (player 1). The state of the game is a triple of integers (id, a, b). The current
player id can subtracts any positive multiple of the lesser of the two numbers, integer b,
from the greater of the two numbers, integer a, provided that the resulting number must be
nonnegative. We always maintain that a � b. Stan and Ollie plays alternately, until one
player is able to subtract a multiple of the lesser number from the greater to reach 0, and
thereby wins. The first player is Stan. The decision tree for a game with initial state id = 0,
a = 34, and b = 12 is shown in Figure 5.5.

Let’s trace what happens in Figure 5.5. At the root (initial state), we have triple
(0, 34, 12). At this point, player 0 (Stan) has two choices: either to subtract a�b = 34�12 =
22 and move to vertex (1, 22, 12) (the left branch) or to subtract a�2⇥ b = 34�2⇥12 = 10
and move to vertex (1, 12, 10) (the right branch). We try both choices recursively.

Let’s start with the left branch. At vertex (1, 22, 12)—(Figure 5.5—B), the current player
1 (Ollie) has no choice but to subtract a�b = 22�12 = 10. We are now at vertex (0, 12, 10)—
(Figure 5.5—C). Again, Stan only has one choice which is to subtract a� b = 12� 10 = 2.
We are now at leaf vertex (1, 10, 2)—(Figure 5.5—D). Ollie has several choices but Ollie can
definitely win as a� 5⇥ b = 10� 5⇥ 2 = 0 and it implies that vertex (0, 12, 10) is a losing
state for Stan and vertex (1, 22, 12) is a winning state for Ollie.

Now we explore the right branch. At vertex (1, 12, 10)—(Figure 5.5—E), the current
player 1 (Ollie) has no choice but to subtract a � b = 12 � 10 = 2. We are now at leaf
vertex (0, 10, 2)—(Figure 5.5—F). Stan has several choices but Stan can definitely win as
a� 5⇥ b = 10� 5⇥ 2 = 0 and it implies that vertex (1, 12, 10) is a losing state for Ollie.

312

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

Figure 5.5: Decision Tree for an instance of ‘Euclid’s Game’

Therefore, for player 0 (Stan) to win this game, Stan should choose a�2⇥b = 34�2⇥12
first, as this is a winning move for Stan—(Figure 5.5—A).

Implementation wise, the first integer id in the triple can be dropped as we know that
depth 0 (root), 2, 4, . . . are always Stan’s turns and depth 1, 3, 5, . . . are always Ollie’s turns.
This integer id is used in Figure 5.5 to simplify the explanation.

Mathematical Insights to Speed-up the Solution

Not all game theory problems can be solved by exploring the entire decision tree of the game,
especially if the size of the tree is large. If the problem involves numbers, we may need to
come up with some mathematical insights to speed up the computation.

For example, in UVa 00847 - A multiplication game, there are two players: Stan (player
0) and Ollie (player 1) again. The state of the game30 is an integer p. The current player
can multiply p with any number between 2 to 9. Stan and Ollie again play alternately, until
one player is able to multiply p with a number between 2 to 9 such that p � n (n is the
target number), and thereby win. The first player is Stan with p = 1.

Figure 5.6 shows an instance of this multiplication game with n = 17. Initially, player 0
(Stan) has up to 8 choices (to multiply p = 1 by [2..9]). However, all of these 8 states are
winning states of player 1 as player 1 can always multiply the current p by [2..9] to make
p � 17—(Figure 5.6—B). Therefore player 0 (Stan) will surely lose—(Figure 5.6—A).

As 1 < n < 4 294 967 295, the resulting decision tree on the largest test case can be
extremely huge. This is because each vertex in this decision tree has a huge branching factor
of 8 (as there are 8 possible numbers to choose from between 2 to 9). It is not feasible to
actually explore the decision tree.

It turns out that the optimal strategy for Stan to win is to always multiply p with
9 (the largest possible) while Ollie will always multiply p with 2 (the smallest possible).
Such optimization insights can be obtained by observing the pattern found in the output of
smaller instances of this problem. Note that math-savvy contestant may want to prove this
observation first before coding the solution.

30This time we omit the player id. However, this parameter id is still shown in Figure 5.6 for clarity.

313

5.7. GAME THEORY (BASIC) c� Steven, Felix, Suhendry

Figure 5.6: Partial Decision Tree for an instance of ‘A multiplication game’

Game Theory in Programming Contests

Game Theory problems that are discussed in this section are the basic ones that can still
be solved with basic problem solving paradigms/algorithms discussed earlier. However,
there are more challenging forms of Game Theory-related problems that is discussed later
in Section 9.16.

Programming Exercises related to Game Theory (Basic):

1. Entry Level: Kattis - euclidsgame * (minimax; backtracking; also available at
UVa 10368 - Euclid’s Game)

2. UVa 10111 - Find the Winning ... * (Tic-Tac-Toe; minimax; backtracking)

3. UVa 10536 - Game of Euler * (model the 4 ⇥ 4 board and 48 possible pins
as bitmask; then this is a simple two player game)

4. UVa 11489 - Integer Game * (game theory; reducible to simple math)

5. Kattis - bachetsgame * (2 players game; Dynamic Programming; also available at
UVa 10404 - Bachet’s Game)

6. Kattis - blockgame2 * (observe the pattern; 2 winnable cases if N == M and
N%M == 0; only 1 move if M < N < 2M ; we can always win if N > 2M)

7. Kattis - linije * (game theory; check conditions on how Mirko can win and when
Slavko can win; involves MCBM)

Extra UVa: 10578, 12293, 12469.

Extra Kattis: amultiplicationgame, cuttingbrownies, irrationaldivision, ivana, joy-
lessgame, peggamefortwo.

314

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

5.8 Matrix Power

5.8.1 Some Definitions and Sample Usages

In this section, we discuss a special case of matrix31: the square matrix, a matrix with the
same number of rows and columns, i.e., it has size n⇥ n. To be precise, we discuss a special
operation of square matrix: the powers of a square matrix. Mathematically, M0 = I and
Mp =

Qp
i=1 M . I is the Identity matrix32 and p is the given power of square matrix M . If

we can do this operation in O(n3 log p)—which is the main topic of this subsection, we can
solve some more interesting problems in programming contests, e.g.,:

• Compute a single33 Fibonacci number fib(p) in O(log p) time instead of O(p).
If p = 230, O(p) solution will get TLE34 but O(log2(p)) solution just needs 30 steps.
This is achievable by using the following equality35:

1 1
1 0

�p
=

fib(p+ 1) fib(p)
fib(p) fib(p� 1)

�

For example, to compute fib(11), we simply multiply the Fibonacci matrix 11 times,
i.e., raise it to the power of 11. The answer is in the secondary diagonal of the matrix.

1 1
1 0

�11
=

144 89
89 55

�
=

fib(12) fib(11)
fib(11) fib(10)

�

• Compute the number of paths of length L of a graph stored in an Adjacency Matrix—
which is a square matrix—in O(n3 logL). Example: See the small graph of size n = 4
stored in an Adjacency Matrix M below. The various paths from vertex 0 to vertex 1
with di↵erent lengths are shown in entry M [0][1] after M is raised to power L.

The graph: 0->1 with length 1: 0->1 (only 1 path)
0->1 with length 2: impossible

0--1 0->1 with length 3: 0->1->2->1 (and 0->1->0->1)
| 0->1 with length 4: impossible
2--3 0->1 with length 5: 0->1->2->3->2->1 (and 4 others)

M =

2

664

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

3

775M2 =

2

664

1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

3

775M3 =

2

664

0 2 0 1
2 0 3 0
0 3 0 2
1 0 2 0

3

775M5 =

2

664

0 5 0 3
5 0 8 0
0 8 0 5
3 0 5 0

3

775

• Speed-up some DP problems as shown later in this section.

31A matrix is a rectangular (2D) array of numbers. Matrix of size m⇥ n has m rows and n columns. The
elements of the matrix is usually denoted by the matrix name with two subscripts.

32Identity matrix is a square matrix with all zeroes except that cells along the main diagonal are all ones.
33If we need fib(n) for all n 2 [0..n], use O(n) DP solution mentioned in Section 5.4.1 instead.
34If you encounter input size of ‘gigantic’ value in programming contest problems, like 1B, the problem

author is usually looking for a logarithmic solution. Notice that log2(1B) ⇡ log2(2
30) is still just 30!

35The derivation of this Fibonacci matrix is shown in Section 5.8.4.

315

5.8. MATRIX POWER c� Steven, Felix, Suhendry

5.8.2 E�cient Modular Power (Exponentiation)

For this subsection, let’s assume that we are using C++/OCaml that does not have built-
in library function yet for raising an integer36 b to a certain integer power p (mod m)
e�ciently. This modular exponentiation function modPow(b, p, m) gets more important
in modern programming contests because the value of bp can easily go beyond the limit of
64-bit integer data type and using Big Integer technique is slow (review Book 1).

For the discussion below, let’s use UVa 01230 (LA 4104) - MODEX that simply asks
us to compute xy(mod n). Now, if we do modular exponentiation ‘by definition’ as shown
below, we will have an ine�cient O(p) solution, especially if p is large.

int mod(int a, int m) { return ((a%m)+m) % m; } // ensure positive answer

int slow_modPow(int b, int p, int m) { // assume 0 <= b < m
int ans = 1;
for (int i = 0; i < p; ++i) // this is O(p)

ans = mod(ans*b, m); // ans always in [0..m-1]
return ans;

}

There is a better solution that uses Divide & Conquer principle. We can express bp%m as:

b0 = 1 (base case).
bp = (bp/2 ⇥ bp/2)%m if p is even.
bp = (bp�1 ⇥ b)%m if p is odd.
As this approach keeps halving the value of p by two, it runs in O(log p).

Let’s assume that m is (very) large and 0 b < m.
If we compute by definition: 29 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 ⇡ O(p) multiplications.
But with Divide & Conquer: 29 = 28⇥2 = (24)2⇥2 = ((22)2)2⇥2 ⇡ O(log p) multiplications.

A typical recursive implementation of this e�cient Divide & Conquer modular exponentia-
tion that solves UVa 01230 (LA 4104) is shown below (runtime: 0.000s):

int modPow(int b, int p, int m) { // assume 0 <= b < m
if (p == 0) return 1;
int ans = modPow(b, p/2, m); // this is O(log p)
ans = mod(ans*ans, m); // double it first
if (p&1) ans = mod(ans*b, m); // *b if p is odd
return ans; // ans always in [0..m-1]

}

int main() {
ios::sync_with_stdio(false); cin.tie(NULL);
int c; cin >> c;
while (c--) {

int x, y, n; cin >> x >> y >> n;
cout << modPow(x, y, n) << "\n";

}
return 0;

}

36Technically, an integer is a 1⇥ 1 square matrix.

316

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

Java and Python Versions

Fortunately, Java and Python have built-in library functions to compute modular expo-
nentiation e�ciently in O(log p) time. The Java code uses function modPow(BigInteger
exponent, BigInteger m) of Java BigInteger class to compute (thisexponent mod m) (how-
ever, the runtime: 0.080s is slower than the manual C++/Python versions).

class Main { // UVa 01230 (LA 4104)
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
int c = sc.nextInt();
while (c-- > 0) {

BigInteger x, y, n;
x = BigInteger.valueOf(sc.nextInt()); // valueOf converts
y = BigInteger.valueOf(sc.nextInt()); // simple integer
n = BigInteger.valueOf(sc.nextInt()); // into BigInteger
System.out.println(x.modPow(y, n)); // it’s in the library!

}
}

}

Next, the Python code uses function pow(x, y[, z]) to compute (xy mod z). The resulting
code is even shorter and fast (runtime: 0.000s).

c = int(input())
while c > 0:

c -= 1
[x, y, n] = map(int, input().split()) # Big Integer by default
print(pow(x, y, n)) # it’s in the library!

Source code: ch5/UVa01230.cpp|java|py

5.8.3 E�cient Matrix Modular Power (Exponentiation)

We can use the same O(log p) e�cient exponentiation technique shown above to perform
square matrix exponentiation (matrix power) in O(n3 log p), because each matrix multipli-
cation37 is O(n3). The iterative implementation (for comparison with the recursive imple-
mentation shown earlier) is shown below:

ll MOD;

const int MAX_N = 2; // 2x2 for Fib matrix

struct Matrix { ll mat[MAX_N][MAX_N]; }; // we return a 2D array

ll mod(ll a, ll m) { return ((a%m)+m) % m; } // ensure positive answer

37There exists a faster but more complex algorithm for matrix multiplication: The O(n2.8074) Strassen’s
algorithm. Usually we do not use this algorithm for programming contests. Multiplying two Fibonacci
matrices shown in this section only requires 23 = 8 multiplications as n = 2. This can be treated as O(1).
Thus, we can compute fib(p) in O(log p).

317

5.8. MATRIX POWER c� Steven, Felix, Suhendry

Matrix matMul(Matrix a, Matrix b) { // normally O(n^3)
Matrix ans; // but O(1) as n = 2
for (int i = 0; i < MAX_N; ++i)

for (int j = 0; j < MAX_N; ++j)
ans.mat[i][j] = 0;

for (int i = 0; i < MAX_N; ++i)
for (int k = 0; k < MAX_N; ++k) {

if (a.mat[i][k] == 0) continue; // optimization
for (int j = 0; j < MAX_N; ++j) {

ans.mat[i][j] += mod(a.mat[i][k], MOD) * mod(b.mat[k][j], MOD);
ans.mat[i][j] = mod(ans.mat[i][j], MOD); // modular arithmetic

}
}

return ans;
}

Matrix matPow(Matrix base, int p) { // normally O(n^3 log p)
Matrix ans; // but O(log p) as n = 2
for (int i = 0; i < MAX_N; ++i)

for (int j = 0; j < MAX_N; ++j)
ans.mat[i][j] = (i == j); // prepare identity matrix

while (p) { // iterative D&C version
if (p&1) // check if p is odd

ans = matMul(ans, base); // update ans
base = matMul(base, base); // square the base
p >>= 1; // divide p by 2

}
return ans;

}

5.8.4 DP Speed-up with Matrix Power

In this section, we discuss how to derive the required square matrices for three DP problems
and show that raising these three square matrices to the required powers can speed-up the
computation of the original DP problems.

The Derivation of the 2⇥ 2 Fibonacci Matrix

We know that fib(0) = 0, fib(1) = 1, and for n � 2, we have fib(n) = fib(n�1)+fib(n�2).
In Section 5.4.1, we have shown that we can compute fib(n) in O(n) by using Dynamic
Programming by computing fib(n) one by one progressively from [2..n]. However, these DP
transitions can be made faster by re-writing the Fibonacci recurrence into matrix form as
shown below:

First, we write two versions of Fibonacci recurrence as there are two terms in the recurrence:

fib(n+ 1) + fib(n) = fib(n+ 2)
fib(n) + fib(n� 1) = fib(n+ 1)

318

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

Then, we re-write the recurrence into matrix form:

a b
c d

�
⇥

fib(n+ 1)
fib(n)

�
=

fib(n+ 2)
fib(n+ 1)

�

Now we have a⇥fib(n+1)+b⇥fib(n) = fib(n+2) and c⇥fib(n+1)+d⇥fib(n) = fib(n+1).
Notice that by writing the DP recurrence as shown above, we now have a 2⇥2 square matrix.
The appropriate values for a, b, c, and d must be 1, 1, 1, 0 and this is the 2 ⇥ 2 Fibonacci
matrix shown earlier in Section 5.8.1. One matrix multiplication advances DP computation
of Fibonacci number one step forward. If we multiply this 2 ⇥ 2 Fibonacci matrix p times,
we advance DP computation of Fibonacci number p steps forward. We now have:

1 1
1 0

�
⇥

1 1
1 0

�
⇥ . . .⇥

1 1
1 0

�

| {z }
p

⇥

fib(n+ 1)
fib(n)

�
=

fib(n+ 1 + p)
fib(n+ p)

�

For example, if we set n = 0 and p = 11, and then use O(log p) matrix power instead of
actually multiplying the matrix p times, we have the following calculations:

1 1
1 0

�11
⇥

fib(1)
fib(0)

�
=

144 89
89 55

�
⇥

1
0

�
=

144
89

�
=

fib(12)
fib(11)

�

This Fibonacci matrix can also be written as shown earlier in Section 5.8.1, i.e.,

1 1
1 0

�p
=

fib(p+ 1) fib(p)
fib(p) fib(p� 1)

�

The given sample source code implements this O(log p) algorithm to solve UVa 10229 -
Modular Fibonacci that simply asks for Fib(n)%2m.

Source code: ch5/UVa10229.cpp|java|py|ml

UVa 10655 - Contemplation, Algebra

Next, we discuss another example on how to derive the required square matrix for another
DP problem: UVa 10655 - Contemplation, Algebra. Abridged problem description: Given
the value of p = a+ b, q = a⇥ b, and n, find the value of an + bn.

First, we tinker with the formula so that we can use p = a+ b and q = a⇥ b:

an + bn = (a+ b)⇥ (an�1 + bn�1)� (a⇥ b)⇥ (an�2 + bn�2)

Next, we set Xn = an + bn to have Xn = p⇥Xn�1 � q ⇥Xn�2.
Then, we write this recurrence twice in the following form:

p⇥Xn+1 � q ⇥Xn = Xn+2

p⇥Xn � q ⇥Xn�1 = Xn+1

Then, we re-write the recurrence into matrix form:

p �q
1 0

�
⇥

Xn+1

Xn

�
=

Xn+2

Xn+1

�

If we raise the 2 ⇥ 2 square matrix to the power of n (in O(log n) time) and then multiply
the resulting square matrix with X1 = a1 + b1 = a + b = p and X0 = a0 + b0 = 1 + 1 = 2,
we have Xn+1 and Xn. The required answer is Xn. This is faster than O(n) standard DP
computation for the same recurrence.

p �q
1 0

�n
⇥

X1

X0

�
=

Xn+1

Xn

�

319

5.8. MATRIX POWER c� Steven, Felix, Suhendry

Kattis - linearrecurrence

We close this section by discussing yet another example on how to derive the required square
matrix for another DP problem: Kattis - linearrecurrence. This is the more general form
compared to the previous two examples. Abridged problem description: Given a linear
recurrence with degree N as N + 1 integers a0, a1, . . . , aN that describes linear recurrence
xt = a0 +

PN
i=1 ai ⇥ xt�i as well as N integers x0, x1, . . . , xN�1 giving the initial values,

compute the value of xT%M . Constraints: 0 T 1018; 1 M 109.
Notice that T is very big and thus we are expecting a O(log T) solution. A general degree

N linear recurrence has N +1 terms, so M will be an (N +1)⇥ (N +1) square matrix. We
can write N + 1 versions of consecutive xt(s) and rewrite it into matrix form.

Example 1 (Fibonacci, 1st sample test case): N = 2, a = {0, 1, 1}, and x = {0, 1},
we have xt = 0 + 1⇥ xt�1 + 1⇥ xt�2 that can be written in matrix form as:

2

4
1 0 0
0 1 1
0 1 0

3

5⇥

2

4
1
Xi

Xi�1

3

5 =

2

4
a0 = 1

Xi+1 (what we want)
Xi

3

5

Example 2 (2nd sample test case): N = 2, a = {5, 7, 9}, and x = {36 713, 5 637 282},
we have xt = 5 + 7⇥ xt�1 + 9⇥ xt�2 that can be written in matrix form as:

2

4
1 0 0
5 7 9
0 1 0

3

5⇥

2

4
1

X1 = 5637 282
X0 = 36 713

3

5 =

2

4
a0 = 1

X2 (what we want)
X1 = 5637 282

3

5

Note: the first row and column in M are needed as there is a0 in the given linear recurrence.

Exercise 5.8.4.1: Derive Tribonacci matrix using the format of Kattis - linearrecurrence:
N = 3, a = {0, 1, 1, 1}, and x = {0, 0, 1}. The first 9 terms are {0, 0, 1, 1, 2, 4, 7, 13, 24, . . .}.
Exercise 5.8.4.2*: Show how to compute C(n, k) for a very large n but small k (e.g.,
0 n 1018; 1 k 1000) in O(k2 log n) time using Matrix Power instead of O(n⇥ k) or
in O(1) after O(n) pre-processing as shown in Section 5.4.

Programming Exercises related to Matrix Power:

1. Entry Level: UVa 10229 - Modular Fibonacci * (Fibonacci; modPow)

2. UVa 10655 - Contemplation, Algebra * (derive the square matrix)

3. UVa 11582 - Colossal Fibonacci ... * (Pisano period: The sequence f(i)%n
is periodic; use modPow)

4. UVa 12796 - Teletransport * (count the number of paths of length L in an
undirected graph where L can be up to 230)

5. Kattis - checkingforcorrectness * (Java Big Integer; one subtask uses modPow)

6. Kattis - porpoises * (Fibonacci; matrix power; modulo)

7. Kattis - squawk * (count the number of paths of length L in an undirected graph
after t steps that are reachable from source s)

Extra UVa: 00374, 01230, 10518, 10870, 11029, 11486, 12470.

Extra Kattis: linearrecurrence, powers.

320

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

5.9 Solution to Non-Starred Exercises

Exercise 5.2.1*: Ability to spot patterns in data can be very crucial in Competitive Pro-
gramming. These are many possible interpretations for sequence no 1 and 3 (we show the
most probable ones). Sequence no 2 and 4 are more interesting. There are a few plausible
interpretations and we challenge you to suggest at least one.

1. 1, 2, 4, 8, 16, . . .
This is probably a sequence of powers of two.
So the next three terms are 32, 64, 12.

2*. 1, 2, 4, 8, 16, 31, . . .
Hint: the last shown term is not 32; maybe not a sequence of powers of two.

3. 2, 3, 5, 7, 11, 13, . . .
This is probably a sequence of the first few primes.
So the next three terms are 17, 19, 23.

4*. 2, 3, 5, 7, 11, 13, 19, . . .
Hint: the last shown term is not 17, maybe not a sequence of the first few primes.

Exercise 5.3.4.1:

int numDiffPF(ll N) {
int ans = 0;
for (int i = 0; i < p.size() && p[i]*p[i] <= N; ++i) {

if (N%p[i] == 0) ++ans; // count this prime factor
while (N%p[i] == 0) N /= p[i]; // only once

}
if (N != 1) ++ans;
return ans;

}

ll sumPF(ll N) {
ll ans = 0;
for (int i = 0; i < p.size() && p[i]*p[i] <= N; ++i)

while (N%p[i] == 0) { N /= p[i]; ans += p[i]; }
if (N != 1) ans += N;
return ans;

}

Exercise 5.3.4.2: When N is a prime, then numPF(N) = 1, numDiffPF(N) = 1, sumPF(N)
= N, numDiv(N) = 2, sumDiv(N) = N+1, and EulerPhi(N) = N-1.

Exercise 5.3.6.1: Multiplying a⇥ b first before dividing the result by gcd(a, b) has a higher
chance of overflow in programming contest than a/gcd(a, b) ⇥ b. In the example given, we
have a = 2 000 000 000 and b = 8. The LCM is 2 000 000 000—which should fit in 32-bit
signed integers—can only be properly computed with a/gcd(a, b)⇥ b.

Exercise 5.3.6.2: An implementation of iterative gcd:

321

5.9. SOLUTION TO NON-STARRED EXERCISES c� Steven, Felix, Suhendry

int gcd(int a, int b) {
while (b){

a %= b;
swap(a, b);

}
return a;

}

Exercise 5.3.8.1: GCD(A, B) can be obtained by taking the lower power of the common
prime factors of A and B. LCM(A, B) can be obtained by taking the greater power of
all the prime factors of A and B. So, GCD(26 ⇥ 33 ⇥ 971, 25 ⇥ 52 ⇥ 112) = 25 = 32 and
LCM(26 ⇥ 33 ⇥ 971, 25 ⇥ 52 ⇥ 112) = 26 ⇥ 33 ⇥ 52 ⇥ 112 ⇥ 971 = 507 038 400.

Exercise 5.3.8.2: We obviously cannot compute 200 000! using Big Integer technique in 1s
and see how many trailing zeroes that it has. Instead, we have to notice that a trailing zero
is produced every time a prime factor 2 is multiplied with a prime factor 5 of n! and the
number of prime factor 2 is always greater than or equal to the number of prime factor 5.
Hence, it is su�cient to just compute Legendre’s formula v5(n!) as the answer.

Exercise 5.4.1.1: Binet’s closed-form formula for Fibonacci: fib(n) = (�n � (��)�n)/
p
5

should be correct for larger n. But since double precision data type is limited, we have
discrepancies for larger n. This closed form formula is correct up to fib(75) if implemented
using typical double data type in a computer program. This is unfortunately too small to
be useful in typical programming contest problems involving Fibonacci numbers.

Exercise 5.4.2.1: C(n, 2) = n!
(n�2)!⇥2! =

n⇥(n�1)⇥(n�2)!
(n�2)!⇥2 = n⇥(n�1)

2 = 0.5n2 � 0.5n = O(n2).

Exercise 5.4.2.2: The value of n!%p = 0 when n � p as p|n! in that case. Then, the output
of C(n, k)%p when n � p will always be 0, i.e., C(100000, 50000)%997 = 0. To address
this ‘always 0’ issue (which is not about whether we use Extended Euclidean algorithm
or Fermat’s little theorem to compute the modular multiplicative inverse), we need to use
Lucas’ theorem that is discussed in Section 9.14.

Exercise 5.4.2.3: This alternative solution is commented inside ch5/combinatorics.cpp.

Exercise 5.4.4.1: 6⇥ 6⇥ 2⇥ 2⇥ 2 = 62 ⇥ 23 = 36⇥ 8 = 288 di↵erent possible outcomes.
Each (of the two) dice has 6 possible outcomes and each (of the three) coin has 2 possible
outcomes. There is no di↵erence whether we do this process one by one or in one go.

Exercise 5.4.4.2: 9⇥ 8 (if 7 is the first digit) + 2⇥ 8⇥ 8 (if 7 is the second or third digit,
recall that the first digit cannot be 0) = 200 di↵erent possible ways.

Exercise 5.4.4.3: (62 + 622 + . . . + 6210)%1e9 + 7 = 894 773 311 possible passwords with
the given criteria.

Exercise 5.4.4.4: 6!
(6�3)! = 6⇥ 5⇥ 4 = 120 3-letters words.

Exercise 5.4.4.5: 5!
3!⇥1!⇥1! =

120
6 = 20 because there are 3 ‘B’s, 1 ‘O’, and 1 ‘Y’.

Exercise 5.4.4.6: Let A be the set of integers in [1..1M] that are multiples of 5, then
|A| = 1M/5 = 200 000.
Let A be the set of integers in [1..1M] that are multiples of 7, then |A| = 1M/7 = 142 857.
Let A

T
B be the set of integers in [1..1M] that are multiples of both 5 and 7 (multiples of

5⇥ 7 = 35), then |A| = 1M/35 = 28 571.
So, |A

S
B| = 200 000 + 142 857� 28 571 = 314 286.

322

CHAPTER 5. MATHEMATICS c� Steven, Felix, Suhendry

Exercise 5.4.4.7: The answers for few smallest n = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, . . .} are
{1, 3, 7, 13, 22, 34, 50, 70, 95, 125}. You can generate these numbers using brute force solution
first. Then find the pattern and use it. Notice that the 9 di↵erences between these 10
numbers are {+2,+4,+6,+9,+12,+16,+20,+25,+30, . . .}. The 8 di↵erences of these 9
di↵erences are {+2,+2,+3,+3,+4,+4,+5,+5, . . .}, which can be exploited.

Exercise 5.5.1: Let’s label the people with p1, p2, . . . , pn and the hats with h1, h2, . . . , hn.
Now consider the first person p1. This person has n-1 choices of taking someone else’s hat
(hi not h1). Now consider the follow up action of the original owner of hi, which is pi. There
are two possibilities for pi:

• pi does not take h1, then this problem reduces to derangement problem with n-1 people
and n-1 hats because each of the other n-1 people has 1 forbidden choice from among
the remaining n-1 hats (pi is forbidden to take h1).

• pi somehow takes h1, then this problem reduces to derangement problem with n-2
people and n-2 hats.

Hence, An = (n-1)⇥ (An�1 + An�2).

Exercise 5.5.2: We need to use Combinatorics. C(7, 5)/C(15, 5) = 7⇥6
15⇥14 = 42

210 = 0.2.

Exercise 5.6.2.1: Simply set Z = 1, I = 1, M as large as possible, e.g., M = 108, and
L = 0. Then the sequence of iterated function values is {0, 1, 2, . . . ,M -2,M -1, 0, . . .}.
Exercise 5.8.4.1: For Tribonacci with N = 3, a = {0, 1, 1, 1} and x = {0, 0, 1},
we have xt = 0 + 1⇥ xt�1 + 1⇥ xt�2 + 1⇥ xt�3 that can be written in matrix form as:

2

664

1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0

3

775⇥

2

664

1
Xi

Xi�1

Xi�2

3

775 =

2

664

a0 = 1
Xi+1

Xi

Xi�1

3

775

323

5.10. CHAPTER NOTES c� Steven, Felix, Suhendry

5.10 Chapter Notes

This chapter has grown significantly since the first edition of this book. However, even
after we reach the fourth edition, we are aware that there are still many more mathematical
problems and algorithms that have not been discussed in this chapter, e.g.,

• There are many more rare combinatorics problems and formulas,

• There are other theorems, hypotheses, and conjectures,

• (Computational) Geometry is also part of Mathematics, but since we have a special
chapter for that, we reserve the discussions about geometry problems in Chapter 7.

• Later in Chapter 9, we discuss more rare mathematics algorithms/problems, e.g.,

– Fast Fourier Transform for fast polynomial multiplication (Section 9.11),

– Pollard’s rho algorithm for fast integer factorization (Section 9.12),

– Chinese Remainder Theorem to solve system of congruences (Section 9.13),

– Lucas’ Theorem to compute C(n, k)%p (Section 9.14),

– Rare Formulas or Theorems (Section 9.15),

– Sprague-Grundy Theorem in Combinatorial Game Theory (Section 9.16),

– Gaussian Elimination for solving systems of linear equations (Section 9.17).

There are really many topics about mathematics. This is not surprising since various math-
ematical problems have been investigated by people since hundreds of years ago. Some of
them are discussed in this chapter and in Chapter 7-9, many others are not, and yet only 1 or
2 will actually appear in a problem set. To do well in ICPC, it is a good idea to have at least
one strong mathematician in your ICPC team in order to have those 1 or 2 mathematical
problems solved. Mathematical prowess is also important for IOI contestants. Although the
amount of problem-specific topics to be mastered is smaller, many IOI tasks require some
form of ‘mathematical insights’.

We end this chapter by listing some pointers that may be of interest: read number theory
books, e.g., [33], investigate mathematical topics in https://www.wolframalpha.com or
Wikipedia, and attempt programming exercises related to mathematical problems like the
ones in https://projecteuler.net [14] and https://brilliant.org [5].

Statistics 1st 2nd 3rd 4th
Number of Pages 17 29 41 52 (+27%)
Written Exercises - 19 30 21+10*=31 (+3%)
Programming Exercises 175 296 369 533 (+44%)

The breakdown of the number of programming exercises from each section is shown below:

Section Title Appearance % in Chapter % in Book
5.2 Ad Hoc Mathematics ... 212 ⇡ 40% ⇡ 6.1%
5.3 Number Theory 147 ⇡ 28% ⇡ 4.3%
5.4 Combinatorics 77 ⇡ 14% ⇡ 2.2%
5.5 Probability Theory 43 ⇡ 8% ⇡ 1.2%
5.6 Cycle-Finding 22 ⇡ 4% ⇡ 0.6%
5.7 Game Theory (Basic) 16 ⇡ 3% ⇡ 0.5%
5.8 Matrix Power 16 ⇡ 3% ⇡ 0.5%

Total 533 ⇡ 15.4%

324

Chapter 6

String Processing

The Human Genome has approximately 3.2 Giga base pairs
— Human Genome Project

6.1 Overview and Motivation

In this chapter, we present one more topic that appears in ICPC—although not as frequently1

as graph and mathematics problems—string processing. String processing is common in the
research field of bioinformatics. As the strings (e.g., DNA strings) that the researchers
deal with are usually (very) long, e�cient string-specific data structures and algorithms are
necessary. Some of these problems are presented as contest problems in ICPCs. By mastering
the content of this chapter, ICPC contestants will have a better chance at tackling those
string processing problems.

String processing tasks also appear in IOI, but usually they do not require advanced
string data structures or algorithms due to syllabus [15] restrictions. Additionally, the input
and output format of IOI tasks are usually simple2. This eliminates the need to code tedious
input parsing or output formatting commonly found in the ICPC problems. IOI tasks that
require string processing are usually still solvable using basic problem solving paradigms
(Complete Search, D&C, Greedy, or DP). It is su�cient for IOI contestants to skim through
all sections in this chapter except Section 6.3 which is about string processing with DP.
However, we believe that it may be advantageous for some IOI contestants to learn some of
the more advanced materials outside of their syllabus ahead of time.

This chapter is structured as follows: it starts with a list of medium to hard/tedious Ad
Hoc string problems solvable with just basic string processing skills (but harder than the
ones discussed in Book 1). Solving many of them will definitely improve your programming
skills, but we have to make a remark that recent contest problems in ICPC (and also IOI)
usually do not ask for basic string processing solutions except for the ‘giveaway’ problem
that most teams (contestants) should be able to solve. The more important sections are the
string processing problems solvable with Dynamic Programming (DP) (Section 6.3), string
matching problems (Section 6.4), an extensive discussion on string processing problems where
we have to deal with reasonably long strings using Trie/Su�x Trie/Tree/Array (Section
6.5), an alternative string matching algorithm using hashing (Section 6.6), and finally a
discussion of medium Ad Hoc string problems that uses various string techniques: Anagram
and Palindrome (Section 6.7).

1One potential reason: String input is harder to parse correctly (due to issues like whitespaces, newlines,
etc) and string output is harder to format correctly, making such string-based I/O less preferred over the
more precise integer-based I/O.

2IOI 2010-2019 require contestants to implement functions instead of coding I/O routines.

325

6.2. AD HOC STRING (HARDER) c� Steven, Felix, Suhendry

6.2 Ad Hoc String (Harder)

Earlier in Book 1, we discussed Ad Hoc string processing problems. In this section, we list
the harder forms that are left here instead of placed in Chapter 1.

• Cipher/Encode/Encrypt/Decode/Decrypt (Harder)
This is the harder form of this big category.

• Input Parsing (Recursive)
This is the harder form involving grammars that require recursive (descent) parsers.

• Regular Expression (C++ 11 onwards/Java/Python/OCaml)

Some (but rare) string processing problems are solvable with one liner code that
uses regex match in <regex>; replaceAll(String regex, String replacement),
matches(String regex), useful functions of Java String/Pattern class, Python re,
or OCaml Str module. To be able to do this, one has to master the concept of Reg-
ular Expression (Regex). We will not discuss Regex in detail but we will show two
usage examples:

1. In UVa 00325 - Identifying Legal Pascal Real Constants, we are asked to decide if
the given line of input is a legal Pascal Real constant. Suppose the line is stored
in String s, then the following one-liner Java code is the required solution:

s.matches("[-+]?\\d+(\\.\\d+([eE][-+]?\\d+)?|[eE][-+]?\\d+)")

2. In UVa 00494 - Kindergarten Counting Game, we are asked to count how many
words are there in a given line. Here, a word is defined as a consecutive sequence
of letters (upper and/or lower case). Suppose the line is stored in String s, then
the following one-liner Java code is the required solution:

s.replaceAll("[^a-zA-Z]+", " ").trim().split(" ").length

• Output Formatting
This is the harder form of this big category.

• String Comparison
In this group of problems, the contestants are asked to compare strings with various
criteria. This sub-category is similar to the string matching problems in Section 6.4,
but these problems mostly use strcmp-related functions.

• Really Ad Hoc
These are other Ad Hoc string related problems that cannot be classified into one of
the other sub categories above.

Profile of Algorithm Inventor

Donald Ervin Knuth (born 1938) is a computer scientist and Professor Emeritus at Stan-
ford University. He is the author of the popular Computer Science book: “The Art of
Computer Programming”. Knuth has been called the ‘father’ of the analysis of algorithms.
Knuth is also the creator of the TEX, the computer typesetting system used in this book.

326

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

Programming Exercises related to Ad Hoc String Processing (Harder):

a. Cipher/Encode/Encrypt/Decode/Decrypt, Harder

1. Entry Level: Kattis - itsasecret * (playfair cipher; 2D array; quite tedious)

2. UVa 00213 - Message ... * (LA 5152 - WorldFinals SanAntonio91)

3. UVa 00554 - Caesar Cypher * (try all shifts; output formatting)

4. UVa 11385 - Da Vinci Code * (string manipulation and Fibonacci)

5. Kattis - crackingthecode * (one corner case involving the 25th to 26th char-
acter determination)

6. Kattis - playfair * (follow the description; a bit tedious; also available at UVa
11697 - Playfair Cipher)

7. Kattis - textencryption * (convert input alphabets to UPPERCASEs; loop)

Extra UVa: 00179, 00306, 00385, 00468, 00726, 00741, 00850, 00856.

Extra Kattis: goodmessages, grille, monumentmaker, kleptography, permuta-

tionencryption, progressivescramble, ummcode.

b. Input Parsing (Recursive)

1. Entry Level: Kattis - polish * (recursive parser)

2. UVa 10854 - Number of Paths * (recursive parsing plus counting)

3. UVa 11070 - The Good Old Times * (recursive grammar evaluation)

4. UVa 11291 - Smeech * (recursive grammar check)

5. Kattis - calculator * (recursive parser and evaluator)

6. Kattis - otpor * (parallel vs series evaluation; write a recursive parser; or use
linear pass with stack)

7. Kattis - subexpression * (recursive parsing; use DP; similar to https://

visualgo.net/en/recursion tree versus DAG)

Extra UVa: 00134, 00171, 00172, 00384, 00464, 00533, 00586, 00620, 00622,
00743.

Extra Kattis: selectgroup.

c. Regular Expression3

1. Entry Level: UVa 00494 - Kindergarten ... * (trivial with regex)

2. UVa 00325 - Identifying Legal ... * (trivial with regex)

3. UVa 00576 - Haiku Review * (solvable with regex)

4. UVa 10058 - Jimmi’s Riddles * (solvable with regex)

5. Kattis - apaxiaaans * (solvable with regex)

6. Kattis - hidden * (just 1D array manipulation; we can also use regex)

7. Kattis - lindenmayorsystem * (DAT; map char to string; simulation; max
answer 30⇥ 55; we can also use regex)

3There are a few other string processing problems that are solvable with regex too. However, since almost
every string processing problems that can be solved with regex can also be solved with standard ways, it is
not crucial to use regex in competitive programming.

327

6.2. AD HOC STRING (HARDER) c� Steven, Felix, Suhendry

d. Output Formatting, Harder

1. Entry Level: Kattis - imagedecoding * (simple Run-Length Encoding)

2. UVa 00918 - ASCII Mandelbrot * (tedious; follow the steps)

3. UVa 11403 - Binary Multiplication * (similar with UVa 00338; tedious)

4. UVa 12155 - ASCII Diamondi * (LA 4403 - KualaLumpur08; use proper
index manipulation)

5. Kattis - asciifigurerotation * (rotate the input 90 degrees clockwise; remove
trailing whitespaces; tedious)

6. Kattis - juryjeopardy * (tedious problem)

7. Kattis - nizovi * (formatting with indentation; not that trivial but sample
input/output helps)

Extra UVa: 00159, 00330, 00338, 00373, 00426, 00570, 00645, 00848, 00890,
01219, 10333, 10562, 10761, 10800, 10875.

Extra Kattis: mathworksheet, pathtracing, rot, wordsfornumbers.

e. String Comparison

1. Entry Level: UVa 11734 - Big Number of ... * (custom comparison)

2. UVa 00644 - Immediate Decodability * (use brute force)

3. UVa 11048 - Automatic Correction ... * (flexible string comparison
with respect to a dictionary)

4. UVa 11056 - Formula 1 * (sorting; case-insensitive string comparison)

5. Kattis - phonelist * (sort the numbers; see if num i is a prefix of num i+ 1)

6. Kattis - rhyming * (compare su�x of a common word with the list of other
given words)

7. Kattis - smartphone * (compare prefix so far with the target string and the
3 suggestions; output 1 of 4 options with shortest number of keypresses)

Extra UVa: 00409, 00671, 00912, 11233, 11713.

Extra Kattis: aaah, detaileddi↵erences, softpasswords.

f. Really Ad Hoc

1. Entry Level: Kattis - raggedright * (just simulate the requirement)

2. UVa 10393 - The One-Handed Typist * (follow problem description)

3. UVa 11483 - Code Creator * (straightforward; use ‘escape character’)

4. UVa 12916 - Perfect Cyclic String * (factorize n; string period; also see
UVa 11452)

5. Kattis - irepeatmyself * (string period; complete search)

6. Kattis - periodicstrings * (brute force; skip non divisor)

7. Kattis - zipfslaw * (sort the words to simplify this problem; also available at
UVa 10126 - Zipf’s Law)

Extra UVa: 00263, 00892, 00943, 01215, 10045, 10115, 10197, 10361, 10391,
10508, 10679, 11452, 11839, 11962, 12243, 12414.

Extra Kattis: apaxianparent, help2, kolone, nimionese, orderlyclass, quickes-
timate, rotatecut, textureanalysis, thore, tolower.

328

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

6.3 String Processing with DP

In this section, we discuss several string processing problems that are solvable with DP
technique discussed in Book 1. We discuss two classical problems: String Alignment and
Longest Common Subsequence that should be known by all competitive programmers (quite
rare nowadays) and one non classical technique: Digit DP (more popular nowadays). Addi-
tionally, we have added a collection of some known twists of these problems.

Note that for DP problems on string, we usually manipulate the integer indices of the
strings and not the actual strings (or substrings) themselves. Passing substrings as param-
eters of recursive functions is strongly discouraged as it is very slow and hard to memoize.

6.3.1 String Alignment (Edit Distance)

The String Alignment (or Edit Distance4) problem is defined as follows: Align5 two strings
A with B with the maximum alignment score (or minimum number of edit operations):

After aligning A with B, there are a few possibilities between character A[i] and B[i]:
1. Character A[i] and B[i] match and we do nothing (assume this worth ‘+2’ score),
2. Character A[i] and B[i] mismatch and we replace A[i] with B[i] (assume ‘-1’ score),
3. We insert a space in A[i] (also ‘-1’ score),
4. We delete a letter from A[i] (also ‘-1’ score).

For example: (note that we use a special symbol ‘ ’ to denote a space)

A = ‘ACAATCC’ -> ‘A_CAATCC’
B = ‘AGCATGC’ -> ‘AGCATGC_’ // A non optimal alignment

2-22--2- // Score = 4*2 + 4*-1 = 4

A brute force solution that tries all possible alignments will get TLE even for medium-length
strings A and/or B. The solution for this problem is the Needleman-Wunsch (bottom-up) DP
algorithm [34]. Consider two strings A[1..n] and B[1..m]. We define V (i, j) to be the
score of the optimal alignment between prefix A[1..i] and B[1..j], and score(C1, C2) is
a function that returns the score if character C1 is aligned with character C2.

Base cases:
V (0, 0) = 0 // no score for matching two empty strings
V (i, 0) = i⇥ score(A[i],) // delete substring A[1..i] to make the alignment, i > 0
V (0, j) = j ⇥ score(, B[j]) // insert substring B[1..j] to make the alignment, j > 0

Recurrences: For i > 0 and j > 0:
V (i, j) = max(option1, option2, option3), where
option1 = V (i� 1, j � 1) + score(A[i], B[j]) // score of match or mismatch
option2 = V (i� 1, j) + score(A[i],) // delete Ai

option3 = V (i, j � 1) + score(, B[j]) // insert Bj

In short, this DP algorithm concentrates on the three possibilities for the last pair of char-
acters, which must be either a match/mismatch, a deletion, or an insertion. Although we do
not know which one is the best, we can try all possibilities while avoiding the re-computation
of overlapping subproblems (i.e., basically a DP technique).

4Another name for ‘edit distance’ is ‘Levenshtein Distance’. One notable application of this algorithm
is the spelling checker feature commonly found in popular text editors. If a user misspells a word, like
‘probelm’, then a clever text editor that realizes that this word has a very close edit distance to the correct
word ‘problem’ can do the correction automatically.

5Aligning is a process of inserting spaces to strings A or B such that they have the same number of
characters. You can view ‘inserting spaces to B’ as ‘deleting the corresponding aligned characters of A’.

329

6.3. STRING PROCESSING WITH DP c� Steven, Felix, Suhendry

A = ‘xxx...xx’ A = ‘xxx...xx’ A = ‘xxx...x_’
| | |

B = ‘yyy...yy’ B = ‘yyy...y_’ B = ‘yyy...yy’
match/mismatch delete insert

Figure 6.1: Example: A = “ACAATCC” and B = “AGCATGC” (alignment score = 7)

With a simple scoring function where a match gets +2 points and mismatch, insert, and
delete all get -1 point, the details of the string alignment score of A = “ACAATCC” and B =
“AGCATGC” are shown in Figure 6.1. Initially, only the base cases are known. Then, we can
fill the values row by row, left to right. To fill in V (i, j) for i, j > 0, we need three other
values: V (i � 1, j � 1), V (i � 1, j), and V (i, j � 1)—see the highlighted cell at Figure 6.1,
middle, row 2, column 3. The best alignment score is stored at the bottom right cell (7).

To reconstruct the solution, we follow the back arrows (see the darker cells) from the
bottom right cell. The solution for the given strings A and B is shown below. Diagonal arrow
means a match or a mismatch (e.g., the last character ..C). Vertical arrow means a deletion
(e.g., ..CAA.. to ..C A..). Horizontal arrow means an insertion (e.g., A C.. to AGC..).

A = ‘A_CAAT[C]C’ // Optimal alignment
B = ‘AGC_AT[G]C’ // Score = 5*2 + 3*-1 = 7

The space complexity of this (bottom-up) DP algorithm is O(nm)—the size of the DP table.
We need to fill in all cells in the table in O(1) per cell. Thus, the time complexity is O(nm).

Source code: ch6/string alignment.cpp|java|py|ml

Exercise 6.3.1.1: Why is the cost of a match +2 and the costs of replace, insert, delete are
all -1? Are they magic numbers? Will +1 for match work? Can the costs for replace, insert,
delete be di↵erent? Restudy the algorithm and discover the answer.

Exercise 6.3.1.2: The example source code given in this section only shows the optimal
alignment score. Modify the given code to actually show the actual alignment !

Exercise 6.3.1.3: Show how to use the ‘space saving technique’ shown in Book 1 to improve
this Needleman-Wunsch (bottom-up) DP algorithm! What will be the new space and time
complexity of your solution? What is the drawback of using such a formulation?

Exercise 6.3.1.4: The String Alignment problem in this section is called the global align-
ment problem and runs in O(nm). If the given contest problem is limited to d insertions
or deletions only, we can have a faster algorithm. Find a simple tweak to the Needleman-
Wunsch algorithm so that it performs at most d insertions or deletions and runs faster!

Exercise 6.3.1.5: Investigate the improvement of Needleman-Wunsch algorithm (Smith-
Waterman algorithm [34]) to solve the local alignment problem!

330

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

6.3.2 Longest Common Subsequence

The Longest Common Subsequence (LCS) problem is defined as follows: Given two strings A
and B, what is the longest common subsequence between them? For example, A = “ACAATCC”
and B = “AGCATGC” have LCS of length 5, i.e., “ACATC”.

This LCS problem can be reduced to the String Alignment problem presented earlier, so
we can use the same DP algorithm. We set the score for mismatch as negative infinity (e.g.,
-1 Billion), score for insertion and deletion as 0, and the score for match as 1. This makes
the Needleman-Wunsch algorithm for String Alignment never consider mismatches.

Exercise 6.3.2.1: What is the LCS of A = “apple” and B = “people”?

Exercise 6.3.2.2: The Hamming distance problem, i.e., finding the number of di↵erent
characters between two equal-length strings can be easily done in O(n). But it can also be
reduced to a String Alignment problem. For theoretical interest, assign appropriate scores
to match, mismatch, insert, and delete so that we can compute the answer using Needleman-
Wunsch algorithm instead!

Exercise 6.3.2.3: The LCS problem can be solved in O(n log k) when all characters are
distinct, e.g., if you are given two permutations of length n as in UVa 10635. k is the length
of the answer. Solve this variant!

6.3.3 Non Classical String Processing with DP

In this section, we discuss Kattis - hillnumbers. A hill number is a positive integer, the
digits of which possibly rise and then possibly fall, but never fall and then rise, like 12321,
12223, and 33322111. However, 1232321 is not a hill number. Verifying if a given number is
a hill number or not is trivial. The hard part of the problem is this: Given a single integer
n (assume it is already vetted as a hill number), count the number of positive hill numbers
less than or equal to n. The main issue is 1 n 1018.

Initially, it may seem impossible to try all numbers n (TLE) or create a DP table
up to 1018 cells (MLE). However, if we realize that there are only up to 19 digits in 1018,
then we can actually treat the numbers as strings of at most 20 digits and process the digits
one by one. This is called ‘Digit DP’ in the competitive programming community and not
considered as a classic solution yet. Basically, there are some big numbers and the problem
is asking for some property of the number that is decomposable to its individual digits.

Realizing this, we can then quickly come up with the initial state s: (pos) and the initial
transition of trying all possible next digit [0..9] one by one. However, we will quickly realize
that we need to remember what was the previous used digit so we update our state to s:
(pos, prev digit). Now we can check if prev digit and next digit is rising, plateau, or
falling as per requirement. However, we will quickly realize that we also need to remember if
we have reached the peak before and are now concentrating on the falling part, so we update
our state to s: (pos, prev digit, is rising). We start with is rising = true and
can only set is rising at most once in a valid hill number.

Up to here, this state is almost complete but after some initial testing, we will then
realize that we count the answer wrongly. It turns out that we still need one more parameter
is lower to have this complete state s: (pos, prev digit, is rising, is lower) where
is lower = false initially and we set is lower = true once we use next digit that is
strictly lower than the actual digit of n at that pos. With this state, we can correctly
compute the required answer and the details are left behind for the readers.

331

6.3. STRING PROCESSING WITH DP c� Steven, Felix, Suhendry

Programming Exercises related to String Processing with DP:

a. Classic

1. Entry Level: UVa 10405 - Longest Common ... * (classic LCS problem)

2. UVa 01192 - Searching Sequence ... * (LA2460 - Singapore01; classic
String Alignment DP problem with a bit of (unclear) output formatting)

3. UVa 12747 - Back to Edit ... * (similar to UVa 10635)

4. UVa 13146 - Edid Tistance * (classic Edit Distance problem)

5. Kattis - inflagrantedelicto * (kp is always 2 (read the problem description);
kr is the LCS of the two permutations plus one; O(n log k) solution)

6. Kattis - pandachess * (LCS of 2 permutations ! LIS; O(n log k) solution;
also see UVa 10635)

7. Kattis - princeandprincess * (find LCS of two permutations; also available
at UVa 10635 - Prince and Princess)

Extra UVa: 00164, 00526, 00531, 01207, 01244, 10066, 10100, 10192.

Extra Kattis: declaration, ls, signals.

b. Non Classic

1. Entry Level: Kattis - stringfactoring * (s: the min weight of substring [i..j];
also available at UVa 11022 - String Factoring)

2. UVa 11258 - String Partition * (dp(i) = int from substring [i..k] + dp(k))

3. UVa 11361 - Investigating Div-Sum ... * (counting paths in DAG; need
insights for e�cient implementation; K > 90 is useless; digit DP)

4. UVa 11552 - Fewest Flops * (dp(i, c) = minimum number of chunks after
considering the first i segments ending with character c)

5. Kattis - exam * (s: (pos, correct left); t: either your friend is wrong or your
friend is right, process accordingly; easier solution exists)

6. Kattis - heritage * (s: (cur pos); t: try all N words in dictionary; output
final answer modulo a prime)

7. Kattis - hillnumbers * (digit DP; s: (pos, prev digit, is rising, is lower); try
digit by digit; see the discussion in this section)

Extra UVa: 11081, 11084, 12855,

Extra Kattis: chemistsvows, cudak, digitsum, haiku, zapis.

Also see Section 6.7.2 for a classic string problem: Palindrome that has a
few interesting variants that require DP solutions.

Profile of Algorithm Inventors

James Hiram Morris (born 1941) is a Professor of Computer Science. He is a co-discoverer
of the Knuth-Morris-Pratt algorithm for string search.

Vaughan Ronald Pratt (born 1944) is a Professor Emeritus at Stanford University. He was
one of the earliest pioneers in the field of computer science. He has made several contributions
to foundational areas such as search algorithms, sorting algorithms, and primality testing.
He is also a co-discoverer of the Knuth-Morris-Pratt algorithm for string-search.

332

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

6.4 String Matching

String Matching (a.k.a String Searching6) is a problem of finding the starting index (or
indices) of a (sub)string (called pattern P) in a longer string (called text T). Example: Let’s
assume that we have T = “STEVEN EVENT”. If P = “EVE”, then the answers are index 2 and
7 (0-based indexing). If P = “EVENT”, then the answer is index 7 only. If P = “EVENING”,
then there is no answer (no matching found and usually we return either -1 or NULL).

6.4.1 Library Solutions

For most pure String Matching problems on reasonably short strings, we can just use the
string library in our programming language. It is strstr in C <string.h>, find in C++
<string>, indexOf in Java String class, find in Python string, and search forward in
OCaml Str module. Please revisit Chapter 1 for a mini task that discusses these string
library solutions.

6.4.2 Knuth-Morris-Pratt (KMP) Algorithm

In Book 1, we have an exercise of finding all the occurrences of a substring P (of length m) in
a (long) string T (of length n), if any. The code snippet, reproduced below with comments,
is actually the näıve implementation of a String Matching algorithm.

void naiveMatching() {
for (int i = 0; i < n-m; ++i) { // try all starting index

bool found = true;
for (int j = 0; (j < m) && found; ++j)

if ((i+j >= n) || (P[j] != T[i+j])) // if mismatch found
found = false; // abort this, try i+1

if (found) // T[i..i+m-1] = P[0..m-1]
printf("P is found at index %d in T\n", i);

}
}

This näıve algorithm can run in O(n) on average if applied to natural text like the paragraphs
of this book, but it can run in O(nm) with the worst case programming contest input like this:
T = “AAAAAAAAAAB” (‘A’ ten times and then one ‘B’) and P = “AAAAB”. The näıve algorithm
will keep failing at the last character of pattern P and then try the next starting index which
is just one further than the previous attempt. This is not e�cient. Unfortunately, a good
problem author will include such test cases in their secret test data.

In 1977, Knuth, Morris, and Pratt—thus the name of KMP—invented a better String
Matching algorithm that makes use of the information gained by previous character com-
parisons, especially those that match. KMP algorithm never re-compares a character in T
that has matched a character in P. However, it works similarly to the näıve algorithm if the
first character of pattern P and the current character in T is a mismatch. In the following
example7, comparing P[j] and T[i] and from i = 0 to 13 with j = 0 (the first character
of P) is no di↵erent from the näıve algorithm.

6We deal with this String Matching problem almost every time we read/edit text using a computer. How
many times have you pressed the well-known ‘CTRL + F’ shortcut (standard Windows shortcut for the ‘find
feature’) in typical word processing softwares, web browsers, etc?

7The sentence in string T below is just for illustration. It is not grammatically correct.

333

6.4. STRING MATCHING c� Steven, Felix, Suhendry

1 2 3 4 5
012345678901234567890123456789012345678901234567890

T = I DO NOT LIKE SEVENTY SEV BUT SEVENTY SEVENTY SEVEN
P = SEVENTY SEVEN

0123456789012
1

^ the first character of P mismatches with T[i] from index i = 0 to 13
KMP has to shift the starting index i by +1, as with naive matching.

... at i = 14 and j = 0 ...
1 2 3 4 5

012345678901234567890123456789012345678901234567890
T = I DO NOT LIKE SEVENTY SEV BUT SEVENTY SEVENTY SEVEN
P = SEVENTY SEVEN

0123456789012
1
^ then mismatches at index i = 25 and j = 11

There are 11 matches from index i = 14 to 24, but one mismatch at i = 25 (j = 11). The
näıve matching algorithm will ine�ciently restart from index i = 15 but KMP can resume
from i = 25. This is because the matched characters before the mismatch are “SEVENTY
SEV”. “SEV” (of length 3) appears as BOTH proper su�x and prefix of “SEVENTY SEV”.
This “SEV” is also called the border of “SEVENTY SEV”. We can safely skip index i = 14 to
21: “SEVENTY ” in “SEVENTY SEV” as it will not match again, but we cannot rule out the
possibility that the next match starts from the second “SEV”. So, KMP resets j back to 3,
skipping 11-3 = 8 characters of “SEVENTY ” (notice the trailing space), while i remains at
index 25. This is the major di↵erence between KMP and the näıve matching algorithm.

... at i = 25 and j = 3 (This makes KMP efficient) ...
1 2 3 4 5

012345678901234567890123456789012345678901234567890
T = I DO NOT LIKE SEVENTY SEV BUT SEVENTY SEVENTY SEVEN
P = SEVENTY SEVEN

0123456789012
1

^ immediate mismatches at index i = 25, j = 3

This time the prefix of P before mismatch is “SEV”, but it does not have a border, so KMP
resets j back to 0 (or in other words, restart matching pattern P from the front again).

... mismatches from i = 25 to i = 29... then matches from i = 30 to i = 42
1 2 3 4 5

012345678901234567890123456789012345678901234567890
T = I DO NOT LIKE SEVENTY SEV BUT SEVENTY SEVENTY SEVEN
P = SEVENTY SEVEN

0123456789012
1

This is a match, so P = ‘SEVENTY SEVEN’ is found at index i = 30. After this, KMP
knows that “SEVENTY SEVEN” has “SEVEN” (of length 5) as border, so KMP resets j back
to 5, e↵ectively skipping 13-5 = 8 characters of “SEVENTY ” (notice the trailing space),
immediately resumes the search from i = 43, and gets another match. This is e�cient.

334

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

... at i = 43 and j = 5, we have matches from i = 43 to i = 50 ...
So P = ‘SEVENTY SEVEN’ is found again at index i = 38.

1 2 3 4 5
012345678901234567890123456789012345678901234567890

T = I DO NOT LIKE SEVENTY SEV BUT SEVENTY SEVENTY SEVEN
P = SEVENTY SEVEN

0123456789012
1

To get such speed up, KMP has to preprocess the pattern string and get the ‘reset table’ b
(back). If given pattern string P = “SEVENTY SEVEN”, then table b will look like this:

1
0 1 2 3 4 5 6 7 8 9 0 1 2 3

P = S E V E N T Y S E V E N
b = -1 0 0 0 0 0 0 0 0 1 2 3 4 5

This means, if mismatch happens in j = 11 (see the example above), i.e., after finding a
match for “SEVENTY SEV”, then we know that we have to retry matching P from index j =
b[11] = 3, i.e., KMP now assumes that it has matched only the first three characters of
“SEVENTY SEV”, which is “SEV”, because the next match can start with that prefix “SEV”.
The relatively short implementation of the KMP algorithm with comments is shown below.
This implementation has a time complexity of O(n+m), or usually just O(n) as n > m.

const int MAX_N = 200010;

char T[MAX_N], P[MAX_N]; // T = text, P = pattern
int n, m; // n = |T|, m = |P|
int b[MAX_N], n, m; // b = back table

void kmpPreprocess() { // call this first
int i = 0, j = -1; b[0] = -1; // starting values
while (i < m) { // pre-process P

while ((j >= 0) && (P[i] != P[j])) j = b[j]; // different, reset j
++i; ++j; // same, advance both
b[i] = j;

}
}

void kmpSearch() { // similar as above
int i = 0, j = 0; // starting values
while (i < n) { // search through T

while ((j >= 0) && (T[i] != P[j])) j = b[j]; // if different, reset j
++i; ++j; // if same, advance both
if (j == m) { // a match is found

printf("P is found at index %d in T\n", i-j);
j = b[j]; // prepare j for the next

}
}

}

335

6.4. STRING MATCHING c� Steven, Felix, Suhendry

We provide our source code that compares the library solution, näıve matching, and one
other string matching algorithm: Rabin-Karp that will be discussed in Section 6.6 with the
KMP algorithm discussed in this section.

Source code: ch6/string matching.cpp|java|py|ml

Exercise 6.4.1*: Run kmpPreprocess() on P = “ABABA” and show the reset table b!

Exercise 6.4.2*: Run kmpSearch() with P = “ABABA” and T = “ACABAABABDABABA”.
Explain how the KMP search looks like?

6.4.3 String Matching in a 2D Grid

The string matching problem can also be posed in 2D. Given a 2D grid/array of characters
(instead of the well-known 1D array of characters), find the occurrence(s) of pattern P in
the grid. Depending on the problem requirement, the search direction can be up to 4 or 8
cardinal directions, and either the pattern must be in a straight line or it can bend.

For the example from Kattis - boggle below, the pattern can bend. The solution for such
‘bendable’ string matching in a 2D grid is usually recursive backtracking (see Book 1). This
is because unlike the 1D counterpart where we always go to the right, at every coordinate
(row, col) of the 2D grid, we have more than one choice to explore. The time complexity is
exponential thus this can only work for a small grid.

To speed up the backtracking process, usually we employ this simple pruning strategy:
once the recursion depth exceeds the length of pattern P, we can immediately prune that
recursive branch. This is also called as depth-limited search (see Section 9.20).

ACMA // From Kattis - boggle
APcA // We can go to 8 directions and the pattern can bend
toGI // ‘contest’ is highlighted as lowercase in the grid
nest // can you find ‘CONTEST’, ‘ICPC’, ‘ACM’, and ‘GCPC’?

For the example from UVa 10010, the pattern can must be in a straight line. If the grid is
small we can still use the easier to code recursive backtracking mentioned earlier. However
if the grid is large, we probably need to do multiple O(n+m) string matchings, one for each
row/column/diagonal and their reverse directions.

abcdefghigg // From UVa 10010 - Where’s Waldorf?
hebkWaldork // We can go to 8 directions, but must be straight
ftyawAldorm // ‘WALDORF’ is highlighted as UPPERCASE in the grid
ftsimrLqsrc
byoarbeDeyv // Can you find ‘BAMBI’ and ‘BETTY’?
klcbqwikOmk
strebgadhRb // Can you find ‘DAGBERT’ in this row?
yuiqlxcnbjF

Note that the topic of String Matching will be revisited two more times. In Section 6.5, we
will discuss how to solve this problem using string-specific data structures. In Section 6.6,
we will discuss how to solve this problem using a probabilistic algorithm.

336

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

Programming Exercises related to String Matching:

a. Standard

1. Entry Level: Kattis - quiteaproblem * (trivial string matching per line)

2. UVa 00455 - Periodic String * (find s in s+s; similar with UVa 10298)

3. UVa 01449 - Dominating Patterns * (LA 4670 - Hefei09; just use strstr,
Su�x Array will get TLE as there are too many long strings to be processed)

4. UVa 11837 - Musical Plagiarism * (transform the input of X notes into
X � 1 distances; then apply KMP)

5. Kattis - geneticsearch * (multiple string matchings)

6. Kattis - powerstrings * (find s in s+s8; similar with UVa 00455; also available
at UVa 10298 - Power Strings)

7. Kattis - scrollingsign * (modified string matching; complete search; also avail-
able at UVa 11576 - Scrolling Sign)

Extra UVa: 00886, 11362.

Extra Kattis: avion, cargame, deathknight, fiftyshades, hangman, ostgotska,
redrover, simon, simonsays.

b. In 2D Grid

1. Entry Level: UVa 10010 - Where’s Waldorf? * (2D grid; backtracking)

2. UVa 00422 - Word Search Wonder * (2D grid; backtracking)

3. UVa 00736 - Lost in Space * (2D grid; a bit modified)

4. UVa 11283 - Playing Boggle * (2D grid; backtracking)

5. Kattis - boggle * (2D grid; backtracking)

6. Kattis - kinarow * (brute the top left point of each possible x or o row, then
straight-line (horizontal, vertical) or two diagonals 2D string matching)

7. Kattis - knightsearch * (2D grid; backtracking or DP)

Extra UVa: 00604.

Extra Kattis: hiddenwords.

Profile of Algorithm Inventors

Saul B. Needleman and Christian D. Wunsch jointly published the string alignment
Dynamic Programming algorithm in 1970. Their DP algorithm is discussed in this book.

Temple F. Smith is a Professor in biomedical engineering who helped to develop the Smith-
Waterman algorithm developed with Michael Waterman in 1981. The Smith-Waterman
algorithm serves as the basis for multi sequence comparisons, identifying the segment with the
maximum local sequence similarity for identifying similar DNA, RNA, and protein segments.

Michael S. Waterman is a Professor at the University of Southern California. Waterman
is one of the founders and current leaders in the area of computational biology. His work
has contributed to some of the most widely-used tools in the field. In particular, the Smith-
Waterman algorithm is the basis for many sequence comparison programs.

8Transforming s into s+s is a classic technique in string processing to simplify ‘wrap around’ cases.

337

6.5. SUFFIX TRIE/TREE/ARRAY c� Steven, Felix, Suhendry

6.5 Su�x Trie/Tree/Array

Su�x Trie, Su�x Tree, and Su�x Array are e�cient and related data structures for strings.
We did not discuss this topic in Book 1 as these data structures are unique to strings.

6.5.1 Su�x Trie and Applications

The su�x i (or the i-th su�x) of a string is a ‘special case’ of substring that goes from
the i-th character of the string up to the last character of the string. For example, the 2-nd
su�x of ‘STEVEN’ is ‘EVEN’, the 4-th su�x of ‘STEVEN’ is ‘EN’ (0-based indexing).

Figure 6.2: Su�x Trie

A Su�x Trie9 of a set of strings S is a tree of all pos-
sible su�xes of strings in S. Each edge label represents
a character. Each vertex represents a su�x indicated
by its path label: a sequence of edge labels from root
to that vertex. Each vertex is connected to (some of)
the other 26 vertices (assuming that we only use upper-
case Latin letters) according to the su�xes of strings in
S. The common prefix of two su�xes is shared. Each
vertex has two boolean flags. The first/second one is to
indicate that there exists a su�x/word in S terminating
in that vertex, respectively. Example: If we have S =
{‘CAR’, ‘CAT’, ‘RAT’}, we have the following su�xes
{‘CAR’, ‘AR’, ‘R’, ‘CAT’, ‘AT’, ‘T’, ‘RAT’, ‘AT’, ‘T’}.
After sorting and removing duplicates, we have: {‘AR’,
‘AT’, ‘CAR’, ‘CAT’, ‘R’, ‘RAT’, ‘T’}. Figure 6.2 shows
the Su�x Trie with 7 su�x terminating vertices (filled
circles) and 3 word terminating vertices (filled circles in-
dicated with label ‘In Dictionary’).

Su�x Trie is typically used as an e�cient data structure for a dictionary. Assuming that
the Su�x Trie of a set of strings in the dictionary has been built, we can determine if a
query/pattern string P exists in this dictionary (Su�x Trie) in O(m) where m is the length
of string P—this is e�cient10. We do this by traversing the Su�x Trie from the root. For
example, if we want to find whether the word P = ‘CAT’ exists in the Su�x Trie shown in
Figure 6.2, we can start from the root node, follow the edge with label ‘C’, then ‘A’, then
‘T’. Since the vertex at this point has the word-terminating flag set to true, then we know
that there is a word ‘CAT’ in the dictionary. Whereas, if we search for P = ‘CAD’, we go
through this path: root ! ‘C’ ! ‘A’ but then we do not have an edge with edge label ‘D’,
so we conclude that ‘CAD’ is not in the dictionary.

Below, we provide a basic implementation of a Trie (not the full Su�x Trie). Assuming
that we deal with only UPPERCASE alphabets [‘A’..‘Z’], we set each vertex to have up to
26 ordered edges that represent ‘A’ to ‘Z’ and word terminating flags. We insertion of each
(full) word/string (not the su�xes) of length up to m in S into the Trie one by one. This
runs in O(m) per insertion and there are up to n words to be inserted so the construction
can go up to O(nm). Then, given any pattern string P , we can start from the root and
follow the corresponding edge labels to decide if P is inside S or not in O(m).

9This is not a typo. The word ‘TRIE’ comes from the word ‘information reTRIEval’.
10Another data structure for dictionary is balanced BST. It has O(log n⇥m) performance for each dictio-

nary query where n is the number of words in the dictionary. This is because one string comparison already
costs O(m). Hash Table may not be suitable as we need to order the words in the dictionary.

338

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

struct vertex {
char alphabet;
bool exist;
vector<vertex*> child;
vertex(char a): alphabet(a), exist(false) { child.assign(26, NULL); }

};

class Trie { // this is TRIE
private: // NOT Suffix Trie

vertex* root;
public:

Trie() { root = new vertex(’!’); }

void insert(string word) { // insert a word into trie
vertex* cur = root;
for (int i = 0; i < (int)word.size(); ++i) { // O(n)

int alphaNum = word[i]-’A’;
if (cur->child[alphaNum] == NULL) // add new branch if NULL

cur->child[alphaNum] = new vertex(word[i]);
cur = cur->child[alphaNum];

}
cur->exist = true;

}

bool search(string word) { // true if word in trie
vertex* cur = root;
for (int i = 0; i < (int)word.size(); ++i) { // O(m)

int alphaNum = word[i]-’A’;
if (cur->child[alphaNum] == NULL) // not found

return false;
cur = cur->child[alphaNum];

}
return cur->exist; // check exist flag

}

bool startsWith(string prefix) { // true if match prefix
vertex* cur = root;
for (int i = 0; i < (int)prefix.size(); ++i) {

int alphaNum = prefix[i]-’A’;
if (cur->child[alphaNum] == NULL) // not found

return false;
cur = cur->child[alphaNum];

}
return true; // reach here, return true

}
};

Source code: ch6/Trie.cpp|py

339

6.5. SUFFIX TRIE/TREE/ARRAY c� Steven, Felix, Suhendry

6.5.2 Su�x Tree

Figure 6.3: Su�xes, Su�x Trie, and Su�x Tree of T = “GATAGACA$”

Now, instead of working with several short strings, we work with one long(er) string. Con-
sider a string T = “GATAGACA$”. The last character ‘$’ is a special terminating character
appended to the original string “GATAGACA”. It has an ASCII value smaller11 than the char-
acters in T. This terminating character ensures that all su�xes terminate in leaf vertices.

The Su�x Trie of T is shown in Figure 6.3—middle. This time, the terminating vertex
stores the index of the su�x that terminates in that vertex. Observe that the longer the
string T is, there will be more duplicated vertices in the Su�x Trie. This can be ine�cient.
Su�x Tree of T is a Su�x Trie where we merge vertices with only one child (essentially
a path compression). Compare Figure 6.3—middle and right to see this path compression
process. Notice the edge label and path label in the figure. This time, the edge label can
have more than one character. Su�x Tree is much more compact than Su�x Trie with at
most O(n) vertices only12 (and thus at most O(n) edges). Thus, rather than using Su�x
Trie for a long string T, we will use Su�x Tree in the subsequent sections.

Su�x Tree can be a new data structure for most readers of this book. Therefore we have
built a Su�x Tree visualization in VisuAlgo to show the structure of the Su�x Tree of any
(but relatively short) input string T specified by the readers themselves. Several Su�x Tree
applications shown in the next Section 6.5.3 are also included in the visualization.

Visualization: https://visualgo.net/en/suffixtree

Exercise 6.5.2.1: Given two vertices that represent two di↵erent su�xes, e.g., su�x 1
and su�x 5 in Figure 6.3—right, determine what is their Longest Common Prefix (LCP)!
Consequently, what does this LCP between two su�xes mean?

Exercise 6.5.2.2*: Draw the Su�x Trie and the Su�x Tree of T = “BANANA$”!
Hint: Use the Su�x Tree visualization tool in VisuAlgo.

11Hence, we cannot use ‘ ’ (a space, ASCII value 32) in T as ‘$’ has ASCII value 36.
12There are up to n leaves for n su�xes. All internal vertices are always branching thus there can be up to

n-1 such vertices (e.g., a complete binary tree). Total: n (leaves) + (n-1) (internal vertices) = 2n-1 vertices.

340

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

6.5.3 Applications of Su�x Tree

Assuming that the Su�x Tree of a string T is already built, we can use it for these applications
(this list is not exhaustive):

String Matching in O(m+ occ)

With Su�x Tree, we can find all (exact) occurrences of a pattern string P in T in O(m+occ)
where m is the length of the pattern string P itself and occ is the total number of occurrences
of P in T—no matter how long the string T (of length n) is13. When the Su�x Tree is already
built, this approach is much faster than the string matching algorithms discussed earlier in
Section 6.4.

Given the Su�x Tree of T, our task is to search for the vertex x in the Su�x Tree whose
path label represents the pattern string P. Note that a matching is simply a common prefix
between the pattern string P and some su�xes of string T. This is done by just one root to
(at worst) leaf traversal of the Su�x Tree of T following the edge labels. The vertex closest
to the root with path label that starts with P is the desired vertex x. Then, the su�x indices
stored in the terminating vertices (leaves) of the subtree rooted at x are the occurrences of
P in T.

Example: In the Su�x Tree of T = “GATAGACA$” shown in Figure 6.4 and P = “A”, we
can simply traverse from root, go along the edge with edge label ‘A’ to find vertex x with
the path label ‘A’. There are 4 occurrences14 of ‘A’ in the subtree rooted at x. They are
su�x 7: “A$”, su�x 5: “ACA$”, su�x 3: “AGACA$”, and su�x 1: “ATAGACA$”. If P = “Z”,
then the Su�x Tree traversal will not be able to find a suitable vertex x and reports that
“P is not found”. To deepen your understanding of this application, visit VisuAlgo, Su�x
Tree visualization, to create your own Su�x Tree (on a small string T) and test this String
Matching application using a pattern string P of your choice.

Figure 6.4: String Matching of T = “GATAGACA$” with Pattern String P = “A”

Finding the Longest Repeated Substring in O(n)

Given the Su�x Tree of T, we can also find the Longest Repeated Substring15 (LRS) in T
e�ciently. The LRS problem is the problem of finding the longest substring of a string that
occurs at least twice. The path label of the deepest internal vertex x in the Su�x Tree of
T is the answer. Vertex x can be found with an O(n) tree traversal (DFS/BFS). The fact
that x is an internal vertex implies that it represents more than one su�x of T (there will

13Usually, m is much smaller than n.
14To be precise, occ is the size of subtree rooted at x, which can be larger—but not more than double—than

the actual number (occ) of terminating vertices (leaves) in the subtree rooted at x.
15This problem has several interesting applications: finding the chorus section of a song (that is repeated

several times); finding the (longest) repeated sentences in a (long) political speech, etc. Note that there is
another version of this problem, see Exercise 6.5.3.4*.

341

6.5. SUFFIX TRIE/TREE/ARRAY c� Steven, Felix, Suhendry

be > 1 terminating vertices in the subtree rooted at x) and these su�xes share a common
prefix (which implies a repeated substring). The fact that x is the deepest internal vertex
(from root) implies that its path label is the longest repeated substring.

Example: In the Su�x Tree of T = “GATAGACA$” in Figure 6.5, the LRS is “GA” as it is
the path label of the deepest internal vertex x—“GA” is repeated twice in “GATAGACA$”. The
answer can be found with O(n) pass through the Su�x Tree. To deepen your understanding
of this application, visit VisuAlgo, Su�x Tree visualization, to create your own Su�x Tree
(on small string T with unique longest repeat substring or several equally-longest repeat
substrings) and test this Longest Repeated Substring application.

Figure 6.5: Longest Repeated Substring of T = “GATAGACA$”

Finding the Longest Common Substring in O(n)

Figure 6.6: Generalized ST of T1 = “GATAGACA$” and T2 = “CATA#” and their LCS

The problem of finding the Longest Common Substring (LCS16) of two or more strings
can be solved in linear time17 with Su�x Tree. Without loss of generality, let’s consider
the case with two strings only: T1 and T2. We can build a generalized Su�x Tree that
combines the Su�x Tree of T1 and T2. To di↵erentiate the source of each su�x, we use two
di↵erent terminating vertex symbols, one for each string. Then, we mark internal vertices
which have vertices in their subtrees with di↵erent terminating symbols in O(n). The su�xes
represented by these marked internal vertices share a common prefix and come from both T1

and T2. That is, these marked internal vertices represent the common substrings between
T1 and T2. As we are interested in the longest common substring, we report the path label
of the deepest marked vertex as the answer also in O(n).

16Note that ‘Substring’ is di↵erent from ‘Subsequence’. For example, “BCE” is a subsequence but not a
substring of “ABCDEF” whereas “BCD” (contiguous) is both a subsequence and a substring of “ABCDEF”.

17Only if we use the linear time Su�x Tree construction algorithm (not discussed in this book, see [35]).

342

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

For example, with T1 = “GATAGACA$” and T2 = “CATA#”, The Longest Common Substring
is “ATA” of length 3. In Figure 6.6, we see the vertices with path labels “A”, “ATA”, “CA”,
and “TA” have two di↵erent terminating symbols (notice that vertex with path label “GA”
is not considered as both su�x “GACA$” and “GATAGACA$” come from T1). These are the
common substrings between T1 and T2. The deepest marked vertex is “ATA” and this is
the longest common substring between T1 and T2. To deepen your understanding of this
application, visit VisuAlgo, Su�x Tree visualization, to create your own Su�x Tree (on two
small strings: T1 and T2) and test this Longest Common Substring application.

Exercise 6.5.3.1: Use the Su�x Tree in Figure 6.4; Find P1 = “C” and P2 = “CAT”!

Exercise 6.5.3.2: Find the LRS in T = “CGACATTACATTA$”! Build the Su�x Tree first.

Exercise 6.5.3.3: Find the LCS of T1 = “STEVEN$” and T2 = “SEVEN#”!

Exercise 6.5.3.4*: Instead of finding the LRS, we now want to find the repeated substring
that occurs the most. Among several possible candidates, pick the longest one. For example,
if T = “DEFG1ABC2DEFG3ABC4ABC$”, the answer is “ABC” of length 3 that occurs three times
(not “BC” of length 2 or “C” of length 1 which also occur three times) instead of “DEFG” of
length 4 that occurs only two times. Outline the strategy to find the solution!

Exercise 6.5.3.5*: The Longest Repeated Substring (LRS) problem presented in this sec-
tion allows overlap. For example, the LRS of T = “AAAAAAAA$” is “AAAAAAA” of length 7.
What should we do if we do not allow the LRS to overlap? For example, the LRS without
overlap of T = “AAAAAAAA$” should be “AAAA” of length 4.

Exercise 6.5.3.6*: Think of how to generalize this approach to find the LCS of more than
two strings. For example, given three strings T1 = “STEVEN$”, T2 = “SEVEN#”, and T3 =
“EVE@”, how to determine that their LCS is “EVE”?

Exercise 6.5.3.7*: Customize the solution further so that we find the LCS of k out of n
strings, where k n. For example, given the same three strings T1, T2, and T3 as above,
how to determine that the LCS of 2 out of 3 strings is “EVEN”?

Exercise 6.5.3.8*: The Longest Common Extension (LCE) problem is as follows: Given
a string T and two indices i and j, compute the longest substring of T that starts at both
i and j. Examples assuming T = “CGACATTACATTA$”. If i = 4, and j = 9, the answer is
“ATTA”. If i = 7, and j = 9, the answer is “A”. How to solve this with Su�x Tree?

6.5.4 Su�x Array

In the previous subsection, we have shown several string processing problems that can be
solved if the Su�x Tree is already built. However, the e�cient implementation of linear time
Su�x Tree construction (see [35]) is complex and thus risky under a programming contest
setting. Fortunately, the next data structure that we are going to describe—the Su�x
Array invented by Udi Manber and Gene Myers [25]—has similar functionalities as the
Su�x Tree but is (much) simpler to construct and use, especially in a programming contest
setting. Thus, we will skip the discussion on O(n) Su�x Tree construction (see [35]) and
instead focus on the O(n log n) Su�x Array construction (see [37]) which is easier to use18.
Then, in the next subsection, we will show that we can apply Su�x Array to solve problems
that have been shown to be solvable with Su�x Tree.

18The di↵erence between O(n) and O(n log n) algorithms in programming contest setup is not much.

343

6.5. SUFFIX TRIE/TREE/ARRAY c� Steven, Felix, Suhendry

Figure 6.7: Sorting the Su�xes of T = “GATAGACA$”

Basically, Su�x Array is an integer array that stores a permutation of n indices of sorted
su�xes. For example, consider the same19 T = “GATAGACA$” with n = 9. The Su�x Array
of T is a permutation of integers [0..n-1] = {8, 7, 5, 3, 1, 6, 4, 0, 2} as shown in
Figure 6.7. That is, the su�xes in sorted order are su�x SA[0] = su�x 8 = “$”, su�x
SA[1] = su�x 7 = “A$”, su�x SA[2] = su�x 5 = “ACA$”, . . . , and finally su�x SA[8] =
su�x 2 = “TAGACA$”.

Su�x Tree versus Su�x Array

Figure 6.8: Su�x Tree (Left) and Su�x Array (Right) of T = “GATAGACA$”

Su�x Tree and Su�x Array are closely related20. As we can see in Figure 6.8, the DFS tree
traversal (neighbors are ordered based on sorted edge labels) of the Su�x Tree visits the
terminating vertices (the leaves) in Su�x Array order. An internal vertex in the Su�x
Tree corresponds to a range in the Su�x Array (a collection of sorted su�xes that share a
Longest Common Prefix (LCP)—to be computed below). A terminating vertex (always
at leaf due to the usage of a terminating character) in the Su�x Tree corresponds to an
individual index in the Su�x Array (a single su�x). Keep these similarities in mind.
They will be useful in the next subsection when we discuss applications of Su�x Array.

19Notice that we also use the terminating symbol ‘$’ to simplify Su�x Array discussion.
20Memory usage: Su�x Tree has n|⌃| pointers where |⌃| is the number of di↵erent characters in T thus

it requires O(n|⌃| log n) bits to store its data. On the other hand, Su�x Array is just an array of n indices
thus it only needs O(n log n) bits to store its data, slightly more memory e�cient.

344

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

Näıve Su�x Array Construction

It is very easy to construct a Su�x Array given a string T[0..n-1] if we are not given a
very long string T, as shown below:

// in int main()
scanf("%s", &T); // read T
int n = (int)strlen(T); // count n
T[n++] = ’$’; // add terminating symbol
vi SA(n);
iota(SA.begin(), SA.end(), 0); // the initial SA
// analysis of this sort below: O(n log n) * cmp: O(n) = O(n^2 log n)
sort(SA.begin(), SA.end(), [](int a, int b) { // O(n^2 log n)

return strcmp(T+a, T+b) < 0;
}); // continued below

When applied to string T = “GATAGACA$”, the näıve SA construction code above that sorts
all su�xes with built-in sorting and string comparison library really produces the correct
Su�x Array = {8, 7, 5, 3, 1, 6, 4, 0, 2}. However, this is barely useful except for
contest problems with n 2500. The overall runtime of this algorithm is O(n2 log n) because
the strcmp operation that is used to determine the order of two (possibly long) su�xes is
too costly, up to O(n) per pair of su�x comparison.

Computing Longest Common Prefix Between Consecutive Sorted Su�xes

Given the Su�x Array of T, we can compute the Longest Common Prefix (LCP) between
consecutive sorted su�xes in Su�x Array order. By definition, LCP[0] = 0 as su�x SA[0]
is the first su�x in Su�x Array order without any other su�x preceding it. For i > 0,
LCP[i] = the length of LCP between su�x SA[i] and su�x SA[i-1]. For example, in
Figure 6.8—right, we see that su�x SA[7] = su�x 0 = “GACAGATA$” has an LCP “GA” of
length 2 with its previous sorted su�x SA[6] = su�x 4 = “GACA$”. We can compute LCP
directly by definition by using the code below. However, this approach is slow as it can
increase the value of L up to O(n2) times, e.g., try T = “AAAAAAA$”.

// continuation from above
vi LCP(n);
LCP[0] = 0; // default value
for (int i = 1; i < n; ++i) { // compute by def, O(n^2)

int L = 0; // always reset L to 0
while ((SA[i]+L < n) && (SA[i-1]+L < n) &&

(T[SA[i]+L] == T[SA[i-1]+L])) ++L; // same L-th char, ++L
LCP[i] = L;

}
printf("T = ’%s’\n", T);
printf(" i SA[i] LCP[i] Suffix SA[i]\n");
for (int i = 0; i < n; ++i)

printf("%2d %2d %2d %s\n", i, SA[i], LCP[i], T+SA[i]);

The source code of this slow algorithm is given below using the fastest language (C++), but
it is probably not that useful to be used in a modern programming contest.

Source code: ch6/sa lcp slow.cpp

345

6.5. SUFFIX TRIE/TREE/ARRAY c� Steven, Felix, Suhendry

E�cient Su�x Array Construction

A better way to construct Su�x Array is to sort the ranking pairs (small integers) of suf-
fixes in O(log2 n) iterations from k = 1, 2, 4, . . . , the last power of 2 that is less than n.
At each iteration, this construction algorithm sorts the su�xes based on the ranking pair
(RA[SA[i]], RA[SA[i]+k]) of su�x SA[i]. This algorithm is called the Prefix Doubling
(Karp-Miller-Rosenberg) algorithm [21, 37]. An example execution is shown below for T =
“GATAGACA$” and n = 9.

• First, SA[i] = i and RA[i] = ASCII value of T[i] 8i 2 [0..n-1] (Table 6.1—left).
At iteration k = 1, the ranking pair of su�x SA[i] is (RA[SA[i]], RA[SA[i]+1]).

Table 6.1: L/R: Before/After Sorting; k = 1; the initial sorted order appears

Example 1: The rank of su�x 5 “ACA$” is (‘A’, ‘C’) = (65, 67).

Example 2: The rank of su�x 3 “AGACA$” is (‘A’, ‘G’) = (65, 71).

After we sort these ranking pairs, the order of su�xes is now like Table 6.1—right,
where su�x 5 “ACA$” comes before su�x 3 “AGACA$”, etc.

• At iteration k = 2, the ranking pair of su�x SA[i] is (RA[SA[i]], RA[SA[i]+2]).
This ranking pair is now obtained by looking at the first pair and the second pair of
characters only. To get the new ranking pairs, we do not have to recompute many
things. We set the first one, i.e., Su�x 8 “$” to have new rank r = 0. Then, we iterate
from i = [1..n-1]. If the ranking pair of su�x SA[i] is di↵erent from the ranking
pair of the previous su�x SA[i-1] in sorted order, we increase the rank r = r + 1.
Otherwise, the rank stays at r (see Table 6.2—left).

Table 6.2: L/R: Before/After Sorting; k = 2; “GATAGACA” and “GACA” are swapped

Example 1: In Table 6.1—right, the ranking pair of su�x 7 “A$” is (65, 36) which is
di↵erent with the ranking pair of previous su�x 8 “$-” which is (36, 0). Therefore in
Table 6.2—left, su�x 7 has a new rank 1.

Example 2: In Table 6.1—right, the ranking pair of su�x 4 “GACA$” is (71, 65) which
is similar with the ranking pair of previous su�x 0 “GATAGACA$” which is also (71, 65).

346

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

Therefore in Table 6.2—left, since su�x 0 is given a new rank 6, then su�x 4 is also
given the same new rank 6.

Once we have updated RA[SA[i]] 8i 2 [0..n-1], the value of RA[SA[i]+k] can be
easily determined too. In our explanation, if SA[i]+k � n, we give a default rank 0.
See Exercise 6.5.4.1 for more details on the implementation aspect of this step.

At this stage, the ranking pair of su�x 0 “GATAGACA$” is (6, 7) and su�x 4 “GACA$”
is (6, 5). These two su�xes are still not in sorted order whereas all the other su�xes
are already in their correct order. After another round of sorting, the order of su�xes
is now like Table 6.2—right.

• At iteration k = 4—notice that we double k = 2 to k = 4, skipping k = 3—, the
ranking pair of su�x SA[i] is (RA[SA[i]], RA[SA[i]+4]). This ranking pair is now
obtained by looking at the first quadruple and the second quadruple of characters only.
At this point, notice that the previous ranking pairs of Su�x 4 (6, 5) and Su�x 0 (6, 7)
in Table 6.2—right are now di↵erent. Therefore, after re-ranking, all n su�xes in Table
6.3 now have di↵erent rankings. This can be easily verified by checking if RA[SA[n-1]]
== n-1. When this happens, we have successfully obtained the Su�x Array. Notice
that the major sorting work is done in the first few iterations only and we usually do
not need many iterations when T is a random string (also see Exercise 6.5.4.3).

Table 6.3: Before/After sorting; k = 4; no change

Su�x Array construction algorithm can be new for most readers of this book. Thus, we
have built a Su�x Array visualization tool in VisuAlgo to show the steps of this construction
algorithm for any (but short) input string T specified by the reader themselves. Several Su�x
Array applications shown in the next Section 6.5.5 are also included in the visualization.

Visualization: https://visualgo.net/en/suffixarray

We can implement the sorting of ranking pairs above using (built-in) O(n log n) sorting
library. As we repeat the sorting process up to log n times, the overall time complexity is
O(log n ⇥ n log n) = O(n log2 n). With this time complexity, we can now work with strings
of length up to ⇡ 30K. However, since the sorting process only sorts pair of small integers,
we can use a linear time two-pass Radix Sort (that internally calls Counting Sort—see the
details in Book 1) to reduce the sorting time to O(n). As we repeat the sorting process up
to log n times, the overall time complexity is O(log n⇥ n) = O(n log n). Now, we can work
with strings of length up to ⇡ 450K—typical programming contest range.

E�cient Computation of LCP Between Two Consecutive Sorted Su�xes

A better way to compute Longest Common Prefix (LCP) between two consecutive sorted
su�xes in Su�x Array order is by using the Permuted Longest-Common-Prefix (PLCP)

347

6.5. SUFFIX TRIE/TREE/ARRAY c� Steven, Felix, Suhendry

theorem [20]. The idea is simple: it is easier to compute the LCP in the original position
order of the su�xes instead of the lexicographic order of the su�xes. In Table 6.4—right, we
have the original position order of the su�xes of T = ‘GATAGACA$’. Observe that column
PLCP[i] forms a pattern: decrease-by-1 block (2 ! 1 ! 0); increase to 1; decrease-by-1
block again (1! 0); increase to 1 again; decrease-by-1 block again (1! 0), etc.

Table 6.4: Computing the LCP given the SA of T = “GATAGACA$”

The PLCP theorem says that the total number of increase (and decrease) operations is at
most O(n). This pattern and this O(n) guarantee are exploited in the code below.

First, we compute Phi[SA[i]], i.e., we store the su�x index of the previous su�x of
su�x SA[i] in Su�x Array order. By definition, Phi[SA[0]] = -1, i.e., there is no previous
su�x that precedes su�x SA[0]. Take some time to verify the correctness of column Phi[i]
in Table 6.4—right. For example, Phi[SA[3]] = SA[3-1], so Phi[3] = SA[2] = 5.

Now, with Phi[i], we can compute the permuted LCP. The first few steps of this al-
gorithm is elaborated below. When i = 0, we have Phi[0] = 4. This means su�x 0
“GATAGACA$” has su�x 4 “GACA$” before it in Su�x Array order. The first two characters
(L = 2) of these two su�xes match, so PLCP[0] = 2.

When i = 1, we know that at least L-1 = 1 characters can match as the next su�x in
position order will have one less starting character than the current su�x. We have Phi[1]
= 3. This means su�x 1 “ATAGACA$” has su�x 3 “AGACA$” before it in Su�x Array order.
Observe that these two su�xes indeed have at least 1 character match (that is, we do not
start from L = 0 as in computeLCP slow() function shown earlier and therefore this is more
e�cient). As we cannot extend this further, we have PLCP[1] = 1.

We continue this process until i = n-1, bypassing the case when Phi[i] = -1. As the
PLCP theorem says that L will be increased/decreased at most n times, this part runs in
amortized O(n). Finally, once we have the PLCP array, we can put the permuted LCP back
to the correct position. The code is relatively short, as shown below.

The E�cient Implementation

We provide our e�cient O(n log n) SA construction code combined with e�cient O(n) com-
putation of LCP between consecutive21 sorted su�xes below. Now this SA construction and
LCP computation code is good enough for many challenging string problems involving long
strings in programming contests. Please scrutinize the code to understand how it works.

For ICPC contestants: as you can bring hard copy materials to the contest, it is a good
idea to put this code in your team’s library.

21Also see Exercise 6.5.4.5* that asks for the LCP between a range of sorted su�xes.

348

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

typedef pair<int, int> ii;
typedef vector<int> vi;

class SuffixArray {
private:

vi RA; // rank array

void countingSort(int k) { // O(n)
int maxi = max(300, n); // up to 255 ASCII chars
vi c(maxi, 0); // clear frequency table
for (int i = 0; i < n; ++i) // count the frequency

++c[i+k < n ? RA[i+k] : 0]; // of each integer rank
for (int i = 0, sum = 0; i < maxi; ++i) {

int t = c[i]; c[i] = sum; sum += t;
}
vi tempSA(n);
for (int i = 0; i < n; ++i) // sort SA

tempSA[c[SA[i]+k < n ? RA[SA[i]+k] : 0]++] = SA[i];
swap(SA, tempSA); // update SA

}

void constructSA() { // can go up to 400K chars
SA.resize(n);
iota(SA.begin(), SA.end(), 0); // the initial SA
RA.resize(n);
for (int i = 0; i < n; ++i) RA[i] = T[i]; // initial rankings
for (int k = 1; k < n; k <<= 1) { // repeat log_2 n times

// this is actually radix sort
countingSort(k); // sort by 2nd item
countingSort(0); // stable-sort by 1st item
vi tempRA(n);
int r = 0;
tempRA[SA[0]] = r; // re-ranking process
for (int i = 1; i < n; ++i) // compare adj suffixes

tempRA[SA[i]] = // same pair => same rank r; otherwise, increase r
((RA[SA[i]] == RA[SA[i-1]]) && (RA[SA[i]+k] == RA[SA[i-1]+k])) ?

r : ++r;
swap(RA, tempRA); // update RA
if (RA[SA[n-1]] == n-1) break; // nice optimization

}
}

void computeLCP() {
vi Phi(n);
vi PLCP(n);
PLCP.resize(n);
Phi[SA[0]] = -1; // default value
for (int i = 1; i < n; ++i) // compute Phi in O(n)

Phi[SA[i]] = SA[i-1]; // remember prev suffix

349

6.5. SUFFIX TRIE/TREE/ARRAY c� Steven, Felix, Suhendry

for (int i = 0, L = 0; i < n; ++i) { // compute PLCP in O(n)
if (Phi[i] == -1) { PLCP[i] = 0; continue; } // special case
while ((i+L < n) && (Phi[i]+L < n) && (T[i+L] == T[Phi[i]+L]))

++L; // L incr max n times
PLCP[i] = L;
L = max(L-1, 0); // L dec max n times

}
LCP.resize(n);
for (int i = 0; i < n; ++i) // compute LCP in O(n)

LCP[i] = PLCP[SA[i]]; // restore PLCP
}

public:
const char* T; // the input string
const int n; // the length of T
vi SA; // Suffix Array
vi LCP; // of adj sorted suffixes

SuffixArray(const char* initialT, const int _n) : T(initialT), n(_n) {
constructSA(); // O(n log n)
computeLCP(); // O(n)

}
};

int main() {
scanf("%s", &T); // read T
int n = (int)strlen(T); // count n
T[n++] = ’$’; // add terminating symbol
SuffixArray S(T, n); // construct SA+LCP
printf("T = ’%s’\n", T);
printf(" i SA[i] LCP[i] Suffix SA[i]\n");
for (int i = 0; i < n; ++i)

printf("%2d %2d %2d %s\n", i, S.SA[i], S.LCP[i], T+S.SA[i]);
} // return 0;

Exercise 6.5.4.1: In the SA construction code shown above, will the following line:

((RA[SA[i]] == RA[SA[i-1]]) && (RA[SA[i]+k] == RA[SA[i-1]+k])) ?

causes index out of bound in some cases?
That is, will SA[i]+k or SA[i-1]+k ever be � n and crash the program? Explain!

Exercise 6.5.4.2: Will the SA construction code shown above works if the input string T
contains a space (ASCII value = 32) inside? If it doesn’t work, what is the required solution?
Hint: The default terminating character used—i.e., ‘$’—has ASCII value = 36.

Exercise 6.5.4.3: Give an input string T of length 16 so that the given O(n log n) SA
construction code use up all log2 16 = 4 iterations!

Exercise 6.5.4.4*: Show the steps to compute the Su�x Array of T = “BANANA$” with
n = 7. How many sorting iterations do you need to get the Su�x Array?
Hint: Use the Su�x Array visualization tool in VisuAlgo.

350

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

Exercise 6.5.4.5*: Show how to extend the computation of LCP between two consecutive
sorted su�xes into computation of LCP between a range of sorted su�xes, i.e., answer
LCP(i, j). For example in Figure 6.8, LCP(1, 4) = 1 (“A”), LCP(6, 7) = 2 (“GA”), and
LCP(0, 8) = 0 (nothing in common).

Exercise 6.5.4.6*: Show how to use LCP information to compute the number of distinct
substrings in T in O(n log n) time.

6.5.5 Applications of Su�x Array

We have mentioned earlier that Su�x Array is closely related to Su�x Tree. In this subsec-
tion, we show that with Su�x Array (which is easier to construct), we can solve the string
processing problems shown in Section 6.5.3 that are solvable using Su�x Tree.

String Matching in O(m log n)

After we obtain the Su�x Array of T, we can search for a pattern string P (of length m)
in T (of length n) in O(m log n). This is a factor of log n times slower than the Su�x Tree
version but in practice it is quite acceptable. The O(m log n) complexity comes from the
fact that we can do two O(log n) binary searches on sorted su�xes and do up to O(m) su�x
comparisons22. The first/second binary search is to find the lower/upper bound respectively.
This lower/upper bound is the smallest/largest i such that the prefix of su�x SA[i] matches
the pattern string P, respectively. All the su�xes between the lower and upper bound are
the occurrences of pattern string P in T. Our implementation is shown below:

// extension of class Suffix Array above
ii stringMatching(const char *P) { // in O(m log n)

int m = (int)strlen(P); // usually, m < n
int lo = 0, hi = n-1; // range = [0..n-1]
while (lo < hi) { // find lower bound

int mid = (lo+hi) / 2; // this is round down
int res = strncmp(T+SA[mid], P, m); // P in suffix SA[mid]?
(res >= 0) ? hi = mid : lo = mid+1; // notice the >= sign

}
if (strncmp(T+SA[lo], P, m) != 0) return {-1, -1}; // if not found
ii ans; ans.first = lo;
hi = n-1; // range = [lo..n-1]
while (lo < hi) { // now find upper bound

int mid = (lo+hi) / 2;
int res = strncmp(T+SA[mid], P, m);
(res > 0) ? hi = mid : lo = mid+1; // notice the > sign

}
if (strncmp(T+SA[hi], P, m) != 0) --hi; // special case
ans.second = hi;
return ans; // returns (lb, ub)

} // where P is found

A sample execution of this string matching algorithm on the Su�x Array of T = “GATAGACA$”
with P = “GA” is shown in Table 6.5.

22This is achievable by using the strncmp function to compare only the first m characters of both su�xes.

351

6.5. SUFFIX TRIE/TREE/ARRAY c� Steven, Felix, Suhendry

We start by finding the lower bound. The current range is i = [0..8] and thus the middle
one is i = 4. We compare the first two characters of su�x SA[4], which is “ATAGACA$”, with
P = ‘GA’. As P = ‘GA’ is larger, we continue exploring i = [5..8]. Next, we compare the
first two characters of su�x SA[6], which is “GACA$”, with P = ‘GA’. It is a match. As we
are currently looking for the lower bound, we do not stop here but continue exploring i =
[5..6]. P = ‘GA’ is larger than su�x SA[5], which is “CA$”. We stop after checking that
SA[8] doesn’t start with prefix P = ‘GA’. Index i = 6 is the lower bound, i.e., su�x SA[6],
which is “GACA$”, is the first time pattern P = ‘GA’ appears as a prefix of a su�x in the
list of sorted su�xes.

Table 6.5: String Matching using Su�x Array

Next, we search for the upper bound. The first step is the same as above. But at the second
step, we have a match between su�x SA[6], which is “GACA$”, with P = ‘GA’. Since now
we are looking for the upper bound, we continue exploring i = [7..8]. We find another
match when comparing su�x SA[7], which is “GATAGACA$”, with P = ‘GA’. We stop here.
This i = 7 is the upper bound in this example, i.e., su�x SA[7], which is “GATAGACA$”, is
the last time pattern P = ‘GA’ appears as a prefix of a su�x in the list of sorted su�xes.

Finding the Longest Repeated Substring in O(n)

If we have computed the Su�x Array in O(n log n) and the LCP between consecutive su�xes
in Su�x Array order in O(n), then we can determine the length of the Longest Repeated
Substring (LRS) of T in O(n).

The length of the LRS is just the highest number in the LCP array. In Table 6.4—left
that corresponds to the Su�x Array and the LCP of T = “GATAGACA$”, the highest number
is 2 at index i = 7. The first 2 characters of the corresponding su�x SA[7] (su�x 0) is
“GA”. This is the LRS in T.

Finding the Longest Common Substring in O(n)

Without loss of generality, let’s consider the case with only two strings. We use the same
example as in the Su�x Tree section earlier: T1 = “GATAGACA$” and T2 = “CATA#”. To solve
the Longest Common Substring (LCS) problem using Su�x Array, first we have to concate-
nate both strings (note that the terminating characters of both strings must be di↵erent)
to produce T = “GATAGACA$CATA#”. Then, we compute the Su�x and LCP array of T as
shown in Table 6.6.

352

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

Table 6.6: The Su�x Array, LCP, and owner of T = “GATAGACA$CATA#”

Then, we go through consecutive su�xes in O(n). If two consecutive su�xes belong to
di↵erent owners (can be easily checked23, for example we can test if su�x SA[i] belongs to
T1 by testing if SA[i] < the length of T1), we look at the LCP array and see if the maximum
LCP found so far can be increased. After one O(n) pass, we will be able to determine the
LCS. In Figure 6.6, this happens when i = 7, as su�x SA[7] = su�x 1 = “ATAGACA$CATA#”
(owned by T1) and its previous su�x SA[6] = su�x 10 = “ATA#” (owned by T2) have a
common prefix of length 3 which is “ATA”. This is the LCS.

Finally, we close this section and this chapter by highlighting the availability of our source
code. Please spend some time understanding the source code which may not be trivial for
those who are new with Su�x Array.

Source code: ch6/sa lcp.cpp|java|py|ml

Exercise 6.5.5.1*: Suggest some possible improvements to the stringMatching() function
shown in this section so that the time complexity improves to O(m+ log n)!

Exercise 6.5.5.2*: Compare the KMP algorithm shown in Section 6.4 and Rabin-Karp
algorithm in Section 6.6 with the string matching feature of Su�x Array, then decide a rule
of thumb on when it is better to use Su�x Array to deal with string matching and when it
is better to use KMP, Rabin-Karp, or just standard string libraries.

Exercise 6.5.5.3*: Solve the exercises on Su�x Tree applications using Su�x Array instead:

• Exercise 6.5.3.4* (repeated substrings that occurs the most, and if ties, the longest),

• Exercise 6.5.3.5* (LRS with no overlap),

• Exercise 6.5.3.6* (LCS of n � 2 strings),

• Exercise 6.5.3.7* (LCS of k out of n strings where k n), and

• Exercise 6.5.3.8* (LCE of T given i and j).

23With three or more strings, this check will have more ‘if statements’.

353

6.5. SUFFIX TRIE/TREE/ARRAY c� Steven, Felix, Suhendry

Programming Exercises related to Su�x Array24:

1. Entry Level: Kattis - su�xsorting * (basic Su�x Array construction problem; be
careful with terminating symbol)

2. UVa 01254 - Top 10 * (LA 4657 - Jakarta09; Su�x Array with Segment Tree
or Sparse Table; LCP range)

3. UVa 01584 - Circular Sequence * (LA 3225 - Seoul04; min lexicographic
rotation25; similar with UVa 00719; other solutions exist)

4. UVa 11512 - GATTACA * (Longest Repeated Substring)

5. Kattis - automatictrading * (Su�x Array; LCP of a range; use Sparse Table)

6. Kattis - buzzwords * (Longest Repeated Substring that appears X times (2
X < N); also available at UVa 11855 - Buzzwords)

7. Kattis - su�xarrayreconstruction * (clever creative problem involving Su�x Ar-
ray concept; be careful that ‘*’ can be more than one character)

Extra UVa: 00719, 00760, 01223, 12506.

Extra Kattis: aliens, burrowswheeler, dvaput, lifeforms, repeatedsubstrings, string-
multimatching, substrings.

Others: SPOJ SARRAY - Su�x Array (problem author: Felix Halim), IOI 2008
- Type Printer (DFS traversal of Su�x Trie).

Also see Section 8.7 for some harder problems that uses (Su�x) Trie data struc-
ture as sub-routine.

Profile of Data Structure Inventors

Udi Manber is an Israeli computer scientist. He works in Google as one of their vice
presidents of engineering. Along with Gene Myers, Manber invented Su�x Array data
structure in 1991.

Eugene “Gene” Wimberly Myers, Jr. is an American computer scientist and bioin-
formatician, who is best known for his development of the BLAST (Basic Local Alignment
Search Tool) tool for sequence analysis. His 1990 paper that describes BLAST has received
over 24 000 citations making it among the most highly cited paper ever. He also invented
Su�x Array with Udi Manber.

24You can try solving these problems with Su�x Tree, but you have to learn how to code the Su�x Tree
construction algorithm by yourself. The programming problems listed here are solvable with Su�x Array.

25Min Lexicographic Rotation is a problem of finding the rotation of a string with the lowest lexicographical
order of all possible rotations. For example, the lexicographically minimal rotation of “CGAGTC][AGCT”
(emphasis of ‘][’ added) is “AGCTCGAGTC”.

354

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

6.6 String Matching with Hashing

Given two strings A and B, compare a substring of A with a substring of B, e.g., determine
whether A[i..j] = B[k..l]. The brute force way to solve this problem is by comparing
the characters in both substrings one by one, which leads to an O(m) solution where m
is the (sub)string length. If this comparison is repeated many times (with di↵erent sub-
strings), then such solution might get Time Limit Exceeded (TLE) unless n is small enough
or repeated only a few times. For example, consider the following String Matching problem:
Given two strings: text T of length n and pattern P of length m (m n), count how many
tuples hi, ji are there such that T[i..j] = P. As there are O(n-m) substrings of a fixed
length m from a string T of length n, then the brute force solution has an O(nm) complexity.
In Section 6.4, we have learned about the Knuth-Morris-Pratt’s (KMP) algorithm that can
solve this String Matching problem in O(n+m) complexity. In Section 6.5, we have learned
about Su�x Array data structure that can solve this String Matching problem in O(m log n)
complexity (after the Su�x Array is built in O(n log n) time). In this Section, we will learn
another technique to solve this problem with hashing.

The idea of string hashing is to convert its substrings into integers so that we can do
string comparison in O(1) by comparing their (integers) hash values. We can find the hash
value of each substring in O(1) and one time preparation of O(n) with rolling hash.

6.6.1 Hashing a String

A hash of a string T of length n (0-based indexing) is usually defined as follows:

h(T0,n�1) =
n�1X

i=0

Ti · pi mod M

Where the base p and the modulo M are integers and chosen with these recommendations:

• p is at least the size of alphabets (number of distinct characters, denoted as |⌃|),

• M is large (otherwise, our hash function will su↵er from Birthday Paradox26),

• p and M are relatively prime (otherwise, there will be too many collisions; we also need
this requirement for the multiplicative inverse component later).

For example, consider p = 131 and M = 109 + 7 where p and M are relatively prime. Then,
h(‘ABCBC’) = (‘A’·1310+‘B’·1311+‘C’·1312+‘B’·1313+‘C’·1314) mod 1 000 000 007. If we re-
place (‘A’, ‘B’, ‘C’) with (0, 1, 2), then we will get h(‘ABCBC’) = 591 282 386. Most of the time,
we do not need to map the alphabets into (0, 1, .., |⌃|-1) like what we just did. Using the
ASCII value of each alphabet is already su�cient. In this case, h(‘ABCBC’) = 881 027 078.

6.6.2 Rolling Hash

The beauty of rolling hash lies in its ability to compute the hash value of a substring in
O(1), given we already have the hash value of all its prefix substrings. Let Ti,j where i j
be the substring of T from index i to j, inclusive.

First, observe that the hash value of all prefixes of a string (where i = 0) can be computed
altogether in O(n), or O(1) per prefix. See the derivation and the rolling hash code that
computes the hash values of all prefixes of T in O(n).

26What is the probability that 2 out of 23 random people are having the same birthday? Hint : It is more
than 50% chance, which is far higher than what most untrained people thought, hence the ‘paradox’.

355

6.6. STRING MATCHING WITH HASHING c� Steven, Felix, Suhendry

h(T0,0) = (S0 · p0) mod M

h(T0,1) = (S0 · p0 + S1 · p1) mod M

h(T0,2) = (S0 · p0 + S1 · p1 + S2 · p2) mod M

...

h(T0,R) = (h(S0,R�1) + SR · pR) mod M

typedef vector<int> vi;
typedef long long ll;
const int p = 131; // p and M are
const int M = 1e9+7; // relatively prime

vi P; // to store p^i % M

vi prepareP(int n) { // compute p^i % M
P.assign(n, 0);
P[0] = 1;
for (int i = 1; i < n; ++i) // O(n)

P[i] = ((ll)P[i-1]*p) % M;
return P;

}

vi computeRollingHash(string T) { // Overall: O(n)
vi P = prepareP((int)T.length()); // O(n)
vi h(T.size(), 0);
for (int i = 0; i < (int)T.length(); ++i) { // O(n)

if (i != 0) h[i] = h[i-1]; // rolling hash
h[i] = (h[i] + ((ll)T[i]*P[i]) % M) % M;

}
return h;

}

Now, if we want to compute the hash value of a substring TL,R (notice that L > 0 now), then,
the rolling hash equation becomes (note: we can treat substring TL,R as a new string T’):

h(TL,R) =
RX

i=L

Ti · pi�L mod M

Similar to computing the sum of a subarray in O(1) using its prefix sum (see Book 1), the
value of h(TL,R) can be computed in O(1) with the hash value of its prefix (see Figure 6.9).
Note that we have take out pL from the result (mod M). The derivation is as follows:

Figure 6.9: Rolling Hash

356

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

h(TL,R) =
h(T0,R)� h(T0,L�1)

pL
mod M

=

PR
i=0 Ti · pi �

PL�1
i=0 Ti · pi

pL
mod M

=

PR
i=L Ti · pi

pL
mod M

=
RX

i=L

Ti · pi�L mod M

Now, to compute the division part (1/pL), we need to convert it into its multiplicative inverse
(p�L) such that the equation becomes:

h(TL,R) = (h(T0,R)� h(T0,L�1)) · p�L mod M

That can be implemented27 as shown below:

int hash_fast(int L, int R) { // O(1) hash of any substr
if (L == 0) return h[R]; // h is the prefix hashes
int ans = 0;
ans = ((h[R] - h[L-1]) % M + M) % M; // compute differences
ans = ((ll)ans * modInverse(P[L], M)) % M; // remove P[L]^-1 (mod M)
return ans;

}

6.6.3 Rabin-Karp String Matching Algorithm

Let us consider the String Matching problem described earlier. The well-known KMP algo-
rithm can solve this problem in O(n+m) where n is the length of string T and m is the length
of string P. Alternatively, we can also solve this problem with rolling hash computation.

In the brute force approach, we compare each substring of lengthm in T. However, instead
of comparing the (sub)strings directly in O(m), we can compare their hash values in O(1).
First, do a rolling hash computation on string T and also compute the hash value of string P
(one time). Next, for each substring of T of length m, get its hash value and compare it with
h(P0,m�1). Therefore, the overall algorithm has an O(n +m) complexity. This algorithm is
known as Rabin-Karp algorithm. We have implemented this algorithm as a working code
below (this code is an extension from the code shown in Section 6.4.2).

Source code: ch6/string matching.cpp|java|py|ml

One advantage of learning string hashing is that we can solve various variants of String
Matching problems in which it may not be easy to use or modify the KMP algorithm. For
example, counting the number of palindromic substring or counting the number of tuples
hi, j, k, li such that Ti,j = Pk,l.

27Please review the inclusion-exclusion principle like the one shown in Book 1 and Section 5.3.10 on
extended Euclidean algorithm/modular multiplicative inverse.

357

6.6. STRING MATCHING WITH HASHING c� Steven, Felix, Suhendry

6.6.4 Collisions Probability

You might notice that there may be a case where two di↵erent strings have the same hash
value; in other words, a collision happens. Such a collision is inevitable as the number of
possible string is “infinite” (often much larger28 than M). What we want with hashing are:
h(T) = h(P) if T = P, and h(T) 6= h(P) if T 6= P. The first one is obvious from the hash
function, but the second one is not guaranteed. So, we want h(T) 6= h(P) to be very likely
when T 6= P. Now let us analyze the collisions probability on these scenarios:

• Comparing 2 random strings.
The collision probability is 1

M
and with M = 109 +7 shown in this section, the collisions

probability is quite small.

• Comparing 1 string with k other strings,
i.e., whether there exists a particular string in a set of k strings.
In this case, the collisions probability is k

M
.

• Comparing k strings to each other, e.g., determine whether these k strings are unique.
In this case, it is easier for us to first compute the non-collision probability, which is
M
M
· M�1

M
· · · M�k+1

M
= P (M,k)

Mk
, where P (M, k) is k-permutation of M.

Then, the collisions probability is 1� P (M,k)
Mk

.
Let M = 109 + 7, with k = 104, the collisions probability is ⇡ 5%.
With k = 105, the collisions probability becomes ⇡ 99%.
With k = 106, it is pretty much guaranteed there is a collision29.

The collisions probability on the third scenario is extremely bad with a large number of
strings, so how can we handle this? One option is to use a larger M, e.g., 1018 + 9 (need to
use 64-bit30 integer data type). However, using M larger than 32-bit integer may cause an
overflow when computing the hash value31. Another better alternative is using multiple
hashes. Thus, a string T has multiple hash values (usually 2 su�ces) with di↵erent p and
M, i.e., hh1(T0,n�1), h2(T0,n�1), ...i, and so on. Then, two strings are considered the same only
when all their hash values are the same.

Programming exercises related to String Hashing (most have alternative solutions):

1. Entry Level: Kattis - stringmatching * (try Rabin-Karp or KMP)

2. UVa 11475 - Extend to Palindromes * (similar with UVa 12467)

3. UVa 12467 - Secret word * (hashing/‘border’ of KMP; see UVa 11475)

4. UVa 12604 - Caesar Cipher * (try Rabin-Karp/KMP up to 62 times)

5. Kattis - animal * (Singapore15 preliminary; hash the subtrees and compare them)

6. Kattis - hashing * (the problem description is very clear; good hashing practice;
or use Su�x Array+Sparse Table)

7. Kattis - typo * (rolling hash; update hash value when character s[i] is deleted
from string s; use 2 large prime modulo to be safe)

Also see String Matching programming exercises at Section 6.4.

28Consider the Pigeonhole Principle.
29Try k = 23 and M = 355 to understand the Birthday Paradox mentioned earlier.
30Or 128-bit prime if the contest supports 128-bit integer, which may not always be the case.
31Observe that in prepareP(), computeRollingHash(T), and hash fast(L, R), we cast int to ll when

multiplying to avoid overflow.

358

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

6.7 Anagram and Palindrome

In this section, we will discuss two not-so-rare string processing problems that may require
more advanced (string) data structure(s) and/or algorithm(s) compared to the ones discussed
in Section 6.2. They are anagram and palindrome.

6.7.1 Anagram

An anagram is a word (or phrase/string) whose letters (characters) can be rearranged
to obtain another word, e.g., ‘elevenplustwo’ is an anagram of ‘twelveplusone’. Two
words/strings that have di↵erent lengths are obviously not anagram.

Sorting Solution

The common strategy to check if two equal-length words/strings of n characters are anagram
is to sort the letters of the words/strings and compare the results. For example, take wordA
= ‘cab’, wordB = ‘bca’. After sorting, wordA = ‘abc’ and wordB = ‘abc’ too, so they
are anagram. Review Book 1 for various sorting techniques. This runs in O(n log n).

Direct Addressing Table Solution

Another potential strategy to check if two words are anagram is to check if the character
frequencies of both words are the same. We do not have to use a full fledged Hash Table but
we can use a simpler Direct Addressing Table (DAT) (review Hash Table section in Book
1) to map characters of the first word to their frequencies in O(n). We do the same with
the characters of the second word. Then we compare those frequencies in O(k) where k is
the number of size of alphabets, e.g., 255 for ASCII characters, 26 for lowercase alphabet
characters, 52 for both lowercase and uppercase alphabet characters, etc.

6.7.2 Palindrome

A palindrome is a word (or a sequence/string) that can be read the same way in either
direction. For example, ‘ABCDCBA’ is a palindrome.

Simple O(n) Palindrome Check

Given a string s with length n characters, we can check whether s is a palindrome via
definition, i.e. by reversing32 the string s and then comparing s with its reverse. However,
we can be slightly more clever by just comparing the characters in string s up to its middle
character. It does not matter if the palindrome is of even length or odd length. This one is
O(n/2) = O(n).

// we assume that s is a global variable
bool isPal(int l, int r) { // is s[l..r] a palindrome

int n = (r-l)+1;
for (int i = 0; i < n/2; ++i)

if (s[l+i] != s[r-i])
return false;

return true;
}

32In C++, we can use reverse(s.begin(), s.end()) to reverse a C++ string s.

359

6.7. ANAGRAM AND PALINDROME c� Steven, Felix, Suhendry

O(n2) Palindrome Substrings Checks

A common variant of palindrome problems involves counting the number of substrings (l, r)
of a string s with length n characters that are palindromes. We can obviously do a naive
Complete Search check in O(n3) like this:

int countPal() {
int n = (int)strlen(s), ans = 0;
for (int i = 0; i < n; ++i) // this is O(n^2)

for (int j = i+1; j < n; ++j)
if (isPal(i, j)) // x O(n), so O(n^3) total

++ans;
return ans;

}

But if we realize that many subproblems (substrings) are clearly overlapping, we can define
a memo table to describe that substring so that each substring is only computed once. This
way, we have an O(n2) Dynamic Programming solution.

int isPalDP(int l, int r) { // is s[l..r] a palindrome
if (l == r) return 1; // one character
if (l+1 == r) return s[l] == s[r]; // two characters
int &ans = memo[l][r];
if (ans != -1) return ans; // has been computed
ans = 0;
if (s[l] == s[r]) ans = isPalDP(l+1, r-1); // if true, recurse inside
return ans;

}

int countPalDP() {
int n = (int)strlen(s), ans = 0;
memset(memo, -1, sizeof memo);
for (int i = 0; i < n; ++i) // this is O(n^2)

for (int j = i+1; j < n; ++j)
if (isPalDP(i, j)) // x O(1), so O(n^2) total

++ans;
return ans;

}

Generating Palindrome from a Non-Palindrome String with O(n2) DP

If the original string s is not a palindrome, we can edit it to make it a palindrome, by either
adding a new character to s, deleting existing characters from s, or replacing a character
in s with another character. This is like the edit distance problem, but customized to this
palindrome problem. Typical state is: s(l, r) and the typical transition is: if str[l] == str[r],
then recurse to (l+1, r-1), otherwise find min of (l+1, r) or (l, r-1), as illustrated below.

UVa 11151 - Longest Palindrome

Abridged problem description: Given a string of up to n = 1000 characters, determine
the length of the longest palindrome that you can make from it by deleting zero or more
characters. Examples:

360

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

’ADAM’ ! ’ADA’ (of length 3, delete ‘M’)
’MADAM’ ! ’MADAM’ (of length 5, delete nothing)
’NEVERODDOREVENING’ ! ’NEVERODDOREVEN’ (of length 14, delete ‘ING’)
’RACEF1CARFAST’ ! ’RACECAR’ (of length 7, delete ‘F1’ and ‘FAST’)

The DP solution: let len(l, r) be the length of the longest palindrome from string A[l..r].

Base cases:
If (l = r), then len(l, r) = 1. // odd-length palindrome
If (l + 1 = r), then len(l, r) = 2 if (A[l] = A[r]), or 1 otherwise. // even-length palindrome

Recurrences:
If (A[l] = A[r]), then len(l, r) = 2 + len(l + 1, r � 1). // corner characters are the same
else len(l, r) = max(len(l, r � 1), len(l + 1, r)). // increase/decrease left/right side

This DP solution has time complexity of O(n2).

Anadrome and Palinagram

We can combine the concept of Anagram and Palindrome into Anadrome or Palinagram.
Anadrome is a word that reads that have proper meaning when read forwards or backwards
(like the palindrome), but also a di↵erent word for the di↵erent order of letters (like the
anagram). For example, ‘BATS’ = ‘STAB’. Palinagram is a palindrome that is an anagram
with another word. For example, ‘DAAMM’ (not a proper English word) is an anagram of
‘MADAM’, which is also a palindrome. This version is asked in UVa 12770 - Palinagram.

Exercise 6.7.2.1*: Suppose that we are now interested to find the length of the longest
substring that is also a palindrome in a given string s with length up to n = 200 000
characters. For example, the Longest Palindromic Substring of “BANANA” is “ANANA” (of
length 5) and the Longest Palindromic Substring of “STEVEN” is “EVE” (of length 3). Note
that while the Longest Palindromic Substring(s) of a given string s is not necessarily unique,
the (longest) length is unique. Show how to solve this problem using either:

• O(n log n) Su�x Tree/Array as discussed in Section 6.5.
Hint: use the solution for Exercise 6.5.3.8* (LCE),

• O(n log n) String Hashing as discussed in Section 6.6,

• O(n) using Manacher’s algorithm [24].

361

6.7. ANAGRAM AND PALINDROME c� Steven, Felix, Suhendry

Programming exercises related to Anagram and Palindrome:

• Anagram

1. Entry Level: UVa 00195 - Anagram * (use algorithm::next permutation)

2. UVa 00156 - Ananagram * (easier with algorithm::sort)

3. UVa 00642 - Word Amalgamation * (go through the given small dic-
tionary for the list of possible anagrams)

4. UVa 12641 - Reodrnreig Lteetrs ... * (anagram problem variation)

5. UVa 12770 - Palinagram * (count frequencies; print odd frequency char-
acters with except the last one – put it in the middle of a palindrome)

6. Kattis - multigram * (brute force lengths that is divisor of the original length
of the string; test)

7. Kattis - substringswitcheroo * (anagram; generate all signature frequencies
of all substrings of B; compare with all substrings of A; 9s TL)

Extra UVa: 00148, 00454, 00630, 10098.

• Palindrome (Checking)

1. Entry Level: UVa 00401 - Palindromes * (simple palindrome check)

2. UVa 10848 - Make Palindrome Checker * (related to UVa 10453; palin-
drome check, character frequency check, and a few others)

3. UVa 11584 - Partitioning by ... * (use two O(n2) DP string; one for
palindrome check and the other for partitioning)

4. UVa 11888 - Abnormal 89’s * (let ss = s+s; find reverse(s) in ss, but it
cannot match the first n chars or the last n chars of ss)

5. Kattis - kaleidoscopicpalindromes * (test all; when you try enlarging k, the
answers are actually ‘small’)

6. Kattis - palindromesubstring * (try all pairs of O(n2) substrings with at least
2 characters; keep the ones that are palindrome (use DP) in a sorted set)

7. Kattis - peragrams * (only one odd frequency character can be in the center
of palindrome once; the rest need to have even frequency)

Extra UVa: 00257, 00353, 10945, 11221, 11309, 12960.

• Palindrome (Generating)

1. Entry Level: UVa 10018 - Reverse and Add * (generating palindrome
with specific math simulation; very easy)

2. UVa 01239 - Greatest K-Palindrome ... * (LA 4144 - Jakarta08; as
S 1000, brute-force is enough; consider odd and even length palindromes)

3. UVa 11404 - Palindromic Subsequence * (similar to UVa 10453, 10739,
and 11151; print the solution in lexicographically smallest manner)

4. UVa 12718 - Dromicpalin Substrings * (LA 6659 - Dhaka13; try all
substrings; count character frequencies in them and analyze)

5. Kattis - evilstraw * (greedily match leftmost char s[0]/rightmost char s[n-1]
with rightmost/leftmost matching s[i], respectively)

6. Kattis - makingpalindromes * (s: (l, r, k); t: a bit challenging)

7. Kattis - names * (add a letter or change a letter; complete search)

Extra UVa: 10453, 10617, 10739, 11151.

362

CHAPTER 6. STRING PROCESSING c� Steven, Felix, Suhendry

6.8 Solution to Non-Starred Exercises

Exercise 6.3.1.1: Di↵erent scoring schemes will yield di↵erent (global) alignments. If given
a string alignment problem, read the problem statement and see what is the required cost
for match, mismatch, insert, and delete. Adapt the algorithm accordingly.

Exercise 6.3.1.2: You have to save the predecessor information (the arrows) during the
DP computation. Then follow the arrows using recursive backtracking.

Exercise 6.3.1.3: The DP solution only needs to refer to the previous row so it can utilize
the ‘space saving technique’ by just using two rows, the current row and the previous row.
The new space complexity is just O(min(n,m)), that is, put the shorter string as string 2
so that each row has fewer columns (less memory). The time complexity of this solution is
still O(nm). The only drawback of this approach, as with any other space saving technique
is that we will not be able to reconstruct the optimal solution. So if the actual optimal
solution is needed, we cannot use this space saving technique.

Exercise 6.3.1.4: Simply concentrate along the main diagonal with width d. We can speed
up Needleman-Wunsch algorithm to O(dn) by doing this.

Exercise 6.3.1.5: It involves Kadane’s algorithm again (see maximum sum problem dis-
cussed in Book 1).

Exercise 6.3.2.1: “pple”.

Exercise 6.3.2.2: Set score for match = 0, mismatch = 1, insert and delete = negative
infinity and run the O(nm) Needleman-Wunsch DP algorithm. However, this solution is not
e�cient and not natural, as we can simply use an O(n) algorithm to scan both string 1 and
string 2 and count how many characters are di↵erent.

Exercise 6.3.2.3: Reduced to LIS, O(n log k) solution. The reduction to LIS is not shown.
Draw it and see how to reduce this problem into LIS.

Exercise 6.5.2.1: The LCP of su�x 1 and su�x 5 in Figure 6.3—right is ‘A’. The LCP of
any 2 su�xes (that ends in a leaf vertex due to the usage of terminating symbol ‘$’) is the
Lowest Common Ancestor (LCA) between these 2 su�xes. It means that the path label of
this LCA is shared between these 2 su�xes and the longest. It has several applications in
Section 6.5.3.

Exercise 6.5.3.1: “C” is found (at index 6), “CAT” is not.

Exercise 6.5.3.2: “ACATTA”. PS: The no overlap version (see Exercise 6.5.3.5*) is “ACATT”
or “CATTA”.

Exercise 6.5.3.3: “EVEN”.

Exercise 6.5.4.1: Index out of bound will never happen because when the first equality
check holds, we always guarantee the first k characters of those two su�xes cannot contain
the terminating character ‘$’ thus checking +k more characters would still not exceed the
string length of T. Otherwise, the first equality check doesn’t hold and the second equality
check will be skipped.

Exercise 6.5.4.2: The given SA construction code uses terminating symbol ‘$’ (ASCII
36). Therefore, it will think that a space: ‘ ’ (ASCII 32) is another terminating symbol
and confuses the sorting process. One way to deal with this is to replace all spaces with
something higher than ASCII 36 (but still below ‘A’) or do not use space at all in T.

Exercise 6.5.4.3: “AAAAAAAAAAAAAAA$”.

363

6.9. CHAPTER NOTES c� Steven, Felix, Suhendry

6.9 Chapter Notes

The material about String Alignment (Edit Distance), Longest Common Subsequence, and
Trie/Su�x Trie/Tree/Array are originally from A/P Sung Wing Kin, Ken [34], School of
Computing, National University of Singapore. The material has since evolved from a more
theoretical style into the current competitive programming style.

The section about the harder Ad Hoc string processing problems (Section 6.2) was born
from our experience with string-related problems and techniques. The number of program-
ming exercises mentioned there is about half of all other string processing problems discussed
in this chapter (the easier ones are in Book 1). These are not the typical ICPC problems/IOI
tasks, but they are still good exercises to improve your programming skills.

We have expanded the discussion of non classical DP problems involving string in Section
6.3. We feel that the classical ones will be rarely asked in modern programming contests.

In Section 6.4, we discuss the library solutions and one fast algorithm (Knuth-Morris-
Pratt (KMP) algorithm) for the String Matching problem. The KMP implementation will
be useful if you have to modify basic string matching requirement yet you still need fast
performance. We believe KMP is fast enough for finding pattern string in a long string for
typical contest problems. Through experimentation, we conclude that the KMP implemen-
tation shown in this book is slightly faster than the built-in C strstr, C++ string.find,
Java String.indexOf, Python string.find, and OCaml search forward. If an even faster
string matching algorithm is needed during contest time for one longer string and much more
queries, we suggest using Su�x Array discussed in Section 6.5.4. In Section 6.6, we discuss
string hashing techniques inside Rabin-Karp algorithm for solving some string processing
problems including the String Matching algorithm. There are several other string match-
ing algorithms that are not discussed yet like Boyer-Moore, Z algorithm, Aho-Corasick,
Finite State Automata, etc. Interested readers are welcome to explore them.

The applications of Prefix Doubling algorithm of [21] for Su�x Array construction are
inspired from the article “Su�x arrays - a programming contest approach” by [37]. We have
integrated and synchronized many examples given there in this section. It is a good idea to
solve all the programming exercises listed in Section 6.5 although they are only a few.

Compared to the first three editions of this book, this chapter has grown even more—
similar case as with Chapter 5. However, there are more string topics that we have not
touched yet: the Shortest Common Superstring problem, Burrows-Wheeler trans-
formation algorithm, Su�x Automaton, Radix Tree, Manacher’s algorithm, etc.

Statistics 1st 2nd 3rd 4th
Number of Pages 10 24 35 40 (+14%)
Written Exercises 4 24 33 15+16* = 30 (-9%)
Programming Exercises 54 129 164 245 (+49%)

The breakdown of the number of programming exercises from each section is shown below:

Section Title Appearance % in Chapter % in Book
6.2 Ad Hoc Strings (Harder) 123 ⇡ 50% ⇡ 3.6%
6.3 String Processing with DP 33 ⇡ 13% ⇡ 1.0%
6.4 String Matching 27 ⇡ 11% ⇡ 0.8%
6.5 Su�x Trie/Tree/Array 20 ⇡ 8% ⇡ 0.6%
6.6 String Hashing 7 ⇡ 3% ⇡ 0.2%
6.7 Anagram and Palindrome 35 ⇡ 14% ⇡ 1.0%

Total 245 ⇡ 7.1%

364

Chapter 7

(Computational) Geometry

Let no man ignorant of geometry enter here.
— Plato’s Academy in Athens

7.1 Overview and Motivation

(Computational1) Geometry is yet another topic that frequently appears in programming
contests. Almost all ICPC problem sets have at least one geometry problem. If you are
lucky, it will ask you for some geometry solution that you have learned before. Usually
you draw the geometrical object(s), and then derive the solution from some basic geometric
formulas. However, many geometry problems are the computational ones that require some
complex algorithm(s).

In IOI, the existence of geometry-specific problems depends on the tasks chosen by the
Scientific Committee that year. In recent years (2009-2019), IOI tasks have not feature a
pure geometry-specific problems. However, in the earlier years [36], every IOI contained one
or two geometry-related problems.

We have observed that geometry-related problems are usually not attempted during the
early parts of the contest for strategic reasons2 because the solutions for geometry-related
problems have lower probability of getting Accepted (AC) during contest time compared to
the solutions for other problem types in the problem set, e.g., Complete Search or Dynamic
Programming problems. The typical issues with geometry problems are as follows:

• Many geometry problems have one and usually several tricky ‘corner test cases’, e.g.,
What if the lines are vertical (infinite gradient)?, What if the points are collinear?,
What if the polygon is concave?, What if the polygon has too few points and it degen-
erates to a point or a line? What if the convex hull of a set of points is the set of points
itself?, etc. Therefore, it is usually a very good idea to test your team’s geometry
solution with lots of corner test cases before you submit it for judging.

• There is a possibility of having floating point precision errors that cause even a ‘correct’
algorithm to get a Wrong Answer (WA) response.

• The solutions for geometry problems usually involve tedious coding.

1We di↵erentiate between pure geometry problems and the computational geometry ones. Pure geometry
problems can normally be solved by hand (pen and paper method). Computational geometry problems
typically require running an algorithm using computer to obtain the solution.

2In programming contests that use a penalty-time policy like ICPC, the first hour is crucial for teams
who aim to win as they have to quickly clear as many easier problems as fast as they can using as minimal
contest time as possible. Unfortunately, typical geometry problems tend to be long and tricky.

365

7.1. OVERVIEW AND MOTIVATION c� Steven, Felix, Suhendry

These reasons cause many contestants to view spending precious (early) minutes attempting
other problem types in the problem set to be more worthwhile than attempting a geometry
problem that has a lower probability of acceptance.

However, another not-so-good reason for the noticeably fewer attempts for geometry
problems in programming contests is because the contestants are not well prepared.

• The contestants forget some important basic formulas or are unable to derive the
required (more complex) formulas from the basic ones.

• The contestants do not prepare well-written library functions before contests, and their
attempts to code such functions during the stressful contest environment end up with
not just one, but usually several3, bug(s). In ICPC, the top teams usually fill a sizeable
part of their hard copy material (which they can bring into the contest room) with lots
of geometry formulas and library functions.

The main aim of this chapter is therefore to increase the number of attempts (and also AC4

solutions) for geometry-related problems in programming contests. Study this chapter for
some ideas on tackling (computational) geometry problems in ICPCs and IOIs. There are
only two sections in this chapter.

In Section 7.2, we present many (it is impossible to enumerate all) English geometric
terminologies5 and various basic formulas for 0D, 1D, and 2D geometry objects6 com-
monly found in programming contests. This section can be used as a quick reference when
contestants are given geometry problems and are not sure of certain terminologies or forget
some basic formulas.

In Section 7.3, we discuss several algorithms on 2D polygons. There are several nice
pre-written library routines which can di↵erentiate good from average teams (contestants)
like the algorithms for deciding if a polygon is convex or concave, deciding if a point is inside
or outside a polygon, cutting a polygon with a straight line, finding the convex hull of a set
of points, etc.

In Section 7.4, we close the chapter by discussing a few topics involving the rare 3D
geometry related problems.

The implementations of the formulas and computational geometry algorithms shown in
this chapter use the following techniques to increase the probability of acceptance:

1. We highlight the special cases that can potentially arise and/or choose the implemen-
tation that reduces the number of such special cases.

2. We try to avoid floating point operations (i.e., divisions, square roots, and any other
operations that can produce numerical errors) and work with precise integers whenever
possible (i.e., integer additions, subtractions, multiplications).

3As a reference, the library code on points, lines, circles, triangles, and polygons shown in this chapter
required several iterations of bug fixes since the first edition of this book to ensure that as many (usually
subtle) bugs and special cases are handled properly.

4Attempting any problem, including a (computational) geometry problem, consumes contest time that
can backfire if the solution is eventually not AC.

5IOI and ICPC contestants come from various nationalities and backgrounds. Therefore, we would like
to get many contestants to be familiar with the English geometric terminologies.

63D objects are very rare in programming contests due to their additional complexity. This is called the
‘curse of dimensionality’. We defer the discussion of 3D geometry until Section 7.4.

366

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

3. However, if we really need to work with floating points, we will:

(a) Do floating point equality test this way: fabs(a-b) < EPS where EPS is a small
number7 like 1e-9 (i.e., 10�9 or 0.000000001) instead of testing if a == b.

(b) Check if a floating point number x � 0.0 by using x > -EPS (similarly to check
if x 0.0, we use x < EPS).

(c) Use double-precision data type by default instead of single-precision data type.

(d) Defer the floating point operation(s) as late as possible to reduce the e↵ect of
compounding errors.

(e) Reduce the number of such floating point operation(s) as much as we can, e.g.,
instead of computing a/b/c (two floating point divisions), we compute a/(b ⇤ c)
instead (only one floating point division).

Profile of Algorithm Inventors

Pythagoras of Samos (⇡ 500 BC) was a Greek mathematician and philosopher born on
the island of Samos. He is best known for the Pythagorean theorem involving right triangles.

Euclid of Alexandria (⇡ 300 BC) was a Greek mathematician, the ‘Father of Geometry’.
He was from the city of Alexandria. His most influential work in mathematics (especially
geometry) is the ‘Elements’. In the ‘Elements’, Euclid deduced the principles of what is now
called Euclidean geometry from a small set of axioms.

Heron of Alexandria (⇡ 10-70 AD) was an ancient Greek mathematician from the city
of Alexandria, Roman Egypt—the same city as Euclid. His name is closely associated with
his formula for finding the area of a triangle from its side lengths.

Ronald Lewis Graham (1935-2020) was an American mathematician. In 1972, he invented
the Graham’s scan algorithm for finding the convex hull of a finite set of points in the plane.
There are now many other algorithm variants and improvements for finding the convex hull.

A.M. Andrew is a relatively unknown figure other than the fact that he published yet
another convex hull algorithm in 1979 [1]. We use Andrew’s Monotone Chain algorithm as
the default algorithm for finding the convex hull in this book.

7Unless otherwise stated, this 1e-9 is the default value of EPS(ilon) that we use in this chapter.

367

7.2. BASIC GEOMETRY OBJECTS WITH LIBRARIES c� Steven, Felix, Suhendry

7.2 Basic Geometry Objects with Libraries

7.2.1 0D Objects: Points

1. A point is the basic building block of higher dimensional geometry objects. In 2D
Euclidean8 space, points are usually represented with a struct in C/C++ (or Class in
Java/Python/OCaml) with two9 members: the x and y coordinates w.r.t. origin, i.e.,
coordinate (0, 0).

If the problem description uses integer coordinates, use ints; otherwise, use doubles.
In order to be generic, we use the floating-point version of struct point in this book.
Default and user-defined constructors can be used to simplify coding later.

// struct point_i { int x, y; }; // minimalist form
struct point_i {

int x, y; // default
point_i() { x = y = 0; } // default
point_i(int _x, int _y) : x(_x), y(_y) {} // user-defined

};

struct point {
double x, y; // higher precision
point() { x = y = 0.0; } // default
point(double _x, double _y) : x(_x), y(_y) {} // user-defined

};

2. Sometimes we need to sort the points based on some criteria. One frequently used sort
criteria is to sort the points based on increasing x-coordinates and if tie, by increasing
y-coordinates. This has application in Andrew’s Monotone Chain algorithm in Section
7.3.7. We can easily do that by overloading the less than operator inside struct point
and using a sorting library.

struct point {
double x, y; // higher precision
point() { x = y = 0.0; } // default
point(double _x, double _y) : x(_x), y(_y) {} // user-defined
bool operator < (point other) const { // override <

if (fabs(x-other.x) > EPS) // useful for sorting
return x < other.x; // first, by x

return y < other.y; // if tie, by y
}

};

// in int main(), assuming we already have a populated vector<point> P
sort(P.begin(), P.end()); // P is now sorted

8For simplicity, the 2D and 3D Euclidean spaces are the 2D and 3D world that we encounter in real life.
9Add one more member, z, if you are working in 3D Euclidean space. As 3D-related problems are very

rare, we omit z from the default implementation. See Section 7.4 for some 3D geometry discussions.

368

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

Note that the implementation of sorting a set of n points uses our default EPS = 1e-9.
While this value is small enough, it is still not fully precise. Here is a rare counter
example where the given implementation (that uses EPS = 1e-9) does not work.

// in int main()
vector<point> P;
P.emplace_back(2e-9, 0); // largest
P.push_back({0, 2}); // smallest
P.push_back({1e-9, 1}); // second smallest
sort(P.begin(), P.end());
for (auto &pt : P) // the result is

printf("%.9lf, %.9lf\n", pt.x, pt.y); // unexpected

To counter this issue, we need to make EPS even smaller. Rule of Thumb: when solving
a geometry problem, check the required precision and set EPS appropriately.

3. Sometimes we need to test if two points are equal. We can easily do that by overloading
the equal operator inside struct point. Note that this test is easier in the integer
version (struct point i).

struct point {
double x, y; // higher precision
.. // same as above
bool operator == (const point &other) const { // use EPS

return (fabs(x-other.x) < EPS) && (fabs(y-other.y) < EPS);
}

};

// in int main()
point P1 = {0, 0}, P2(0, 0), P3(0, 1); // two init methods
printf("%d\n", P1 == P2); // true
printf("%d\n", P1 == P3); // false

4. We can measure the Euclidean distance10 between two points by using this function:

double dist(const point &p1, const point &p2) { // Euclidean distance
// hypot(dx, dy) returns sqrt(dx*dx + dy*dy)
return hypot(p1.x-p2.x, p1.y-p2.y); // returns double

}

10The Euclidean distance between two points is simply the distance that can be measured with a ruler.
Algorithmically, it can be found with the Pythagorean formula that we will see again in the subsection about
triangles later. Here, we simply use a library function.

369

7.2. BASIC GEOMETRY OBJECTS WITH LIBRARIES c� Steven, Felix, Suhendry

5. We can rotate a point by an angle11 ✓ counterclockwise around the origin (0, 0) by
using a rotation matrix:

Figure 7.1: Rotating the point (10, 3) by 180� counterclockwise around the origin (0, 0)

// M_PI is in <cmath>, but if your compiler does not have it, use
// const double PI = acos(-1.0) // or 2.0 * acos(0.0)

double DEG_to_RAD(double d) { return d*M_PI / 180.0; }
double RAD_to_DEG(double r) { return r*180.0 / M_PI; }

// rotate p by theta degrees CCW w.r.t. origin (0, 0)
point rotate(const point &p, double theta) { // theta in degrees

double rad = DEG_to_RAD(theta); // convert to radians
return point(p.x*cos(rad) - p.y*sin(rad),

p.x*sin(rad) + p.y*cos(rad));
}

Exercise 7.2.1.1: In this section, you have seen a simple way to sort a set of n points based
on increasing x-coordinates and if tie, by increasing y-coordinates. Show a way to sort n-1
points with respect to a pivot point p that has the lowest y-coordinate and if tie, rightmost
x-coordinate!

Exercise 7.2.1.2: Compute the Euclidean distance between the points (2, 2) and (6, 5)!

Exercise 7.2.1.3: Rotate the point (10, 3) by 90 degrees counterclockwise around the origin.
What is the new coordinate of the rotated point? The answer is easy to compute by hand.
Notice that counterclockwise rotation is di↵erent than clockwise rotation (especially when
the rotation angle is not 0 or 180 degree(s)).

Exercise 7.2.1.4: Rotate the same point (10, 3) by 77 degrees counterclockwise around
the origin. What is the new coordinate of the rotated point? (This time you need to use a
calculator and the rotation matrix).

11Humans usually work with degrees, but many mathematical functions in most programming languages
(e.g., C/C++/Java/Python/OCaml) work with radians. To convert an angle from degrees to radians,
multiply the angle by ⇡

180.0 . To convert an angle from radians to degrees, multiply the angle with 180.0
⇡ .

370

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

7.2.2 1D Objects: Lines

1. A line in 2D Euclidean space is the set of points whose coordinates satisfy a given
linear equation ax + by + c = 0. Subsequent functions in this subsection assume that
this linear equation has b = 1 for non-vertical lines and b = 0 for vertical lines unless
otherwise stated. Lines are usually represented with a struct in C/C++ (or Class in
Java/Python/OCaml) with three members: the three coe�cients a, b, and c of that
line equation.

struct line { double a, b, c; }; // most versatile

2. We can compute the line equation if we are given at least two points on that line via
the following function.

// the answer is stored in the third parameter (pass by reference)
void pointsToLine(const point &p1, const point &p2, line &l) {

if (fabs(p1.x-p2.x) < EPS) // vertical line
l = {1.0, 0.0, -p1.x}; // default values

else
l = {-(double)(p1.y-p2.y) / (p1.x-p2.x),

1.0, // IMPORTANT: b = 1.0
-(double)(l.a*p1.x) - p1.y};

}

3. We can compute the line equation if we are given one point and the gradient of that
non-vertical line (see the other line equation in Exercise 7.2.2.1 and its limitation).

// convert point and gradient/slope to line, not for vertical line
void pointSlopeToLine(point p, double m, line &l) { // m < Inf

l.a = -m; // always -m
l.b = 1.0; // always 1.0
l.c = -((l.a * p.x) + (l.b * p.y)); // compute this

}

4. We can test whether two lines are parallel by checking if their coe�cients a and b are
the same. We can further test whether two lines are the same by checking if they are
parallel and their coe�cients c are the same (i.e., all three coe�cients a, b, c are the
same). Recall that in our implementation, we have fixed the value of coe�cient b to
0.0 for all vertical lines and to 1.0 for all non vertical lines.

bool areParallel(line l1, line l2) { // check a & b
return (fabs(l1.a-l2.a) < EPS) && (fabs(l1.b-l2.b) < EPS);

}

bool areSame(line l1, line l2) { // also check c
return areParallel(l1, l2) && (fabs(l1.c-l2.c) < EPS);

}

371

7.2. BASIC GEOMETRY OBJECTS WITH LIBRARIES c� Steven, Felix, Suhendry

5. If two lines12 are not parallel (and also not the same), they will intersect at a point.
That intersection point (x, y) can be found by solving the system of two linear algebraic
equations13 with two unknowns: a1x+ b1y + c1 = 0 and a2x+ b2y + c2 = 0.

// returns true (+ intersection point p) if two lines are intersect
bool areIntersect(line l1, line l2, point &p) {

if (areParallel(l1, l2)) return false; // no intersection
// solve system of 2 linear algebraic equations with 2 unknowns
p.x = (l2.b*l1.c - l1.b*l2.c) / (l2.a*l1.b - l1.a*l2.b);
// special case: test for vertical line to avoid division by zero
if (fabs(l1.b) > EPS) p.y = -(l1.a*p.x + l1.c);
else p.y = -(l2.a*p.x + l2.c);
return true;

}

6. Line Segment is a line with two end points with finite length.

7. Vector14 is a line segment (thus it has two end points and length/magnitude) with
a direction. Usually15, vectors are represented with a struct in C/C++ (or Class in
Java/Python/OCaml) with two members: the x and y magnitude of the vector. The
magnitude of the vector can be scaled if needed.

8. We can translate (move) a point with respect to a vector as a vector describes the
displacement magnitude in the x- and y-axes.

struct vec { double x, y; // name: ‘vec’ is different from STL vector
vec(double _x, double _y) : x(_x), y(_y) {}

};

vec toVec(const point &a, const point &b) { // convert 2 points
return vec(b.x-a.x, b.y-a.y); // to vector a->b

}

vec scale(const vec &v, double s) { // s = [<1..1..>1]
return vec(v.x*s, v.y*s); // shorter/eq/longer

} // return a new vec

point translate(const point &p, const vec &v) { // translate p
return point(p.x+v.x, p.y+v.y); // according to v

} // return a new point

12To avoid confusion, please di↵erentiate between the line (infinite) and the line segment (finite) that will
be discussed later.

13See Section 9.17 for the general solution of a system of linear equations.
14Do not confuse this with C++ STL vector or Java Vector.
15Another potential design strategy is to merge struct point with struct vec as they are similar.

372

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

9. We can compute the angle aob given three distinct points: a, o, and b, using dot
product of vector oa and ob. Since oa · ob = |oa| ⇥ |ob| ⇥ cos(✓), we have16 ✓ =
arccos(oa · ob/(|oa|⇥ |ob|)).

double angle(const point &a, const point &o, const point &b) {
vec oa = toVec(o, a), ob = toVec(o, b); // a != o != b
return acos(dot(oa, ob) / sqrt(norm_sq(oa) * norm_sq(ob)));

} // angle aob in rad

10. Given three points p, q, and r, we can determine whether point p, q, and then r, in
that order, makes a left (counterclockwise) or a right (clockwise turn); or whether the
three points p, q, and r are collinear. This can be determined with cross product. Let
pq and pr be the two vectors obtained from these three points. The cross product pq
⇥ pr results in another vector that is perpendicular to both pq and pr. The magnitude
of this vector is equal to the area of the parallelogram that the vectors span17. If
the magnitude is positive/zero/negative, then we know that p ! q ! r is a left
turn/collinear/right turn, respectively (see Figure 7.2—right). The left turn test is
more famously known as the CCW (Counter Clockwise) Test.

double cross(vec a, vec b) { return a.x*b.y - a.y*b.x; }
// returns true if point r is on the left side of line pq
bool ccw(point p, point q, point r) {

return cross(toVec(p, q), toVec(p, r)) > EPS;
}
// returns true if point r is on the same line as the line pq
bool collinear(point p, point q, point r) {

return fabs(cross(toVec(p, q), toVec(p, r))) < EPS;
}

11. Given a point p and a line l (described by two points a and b), we can compute the
minimum distance from p to l by first computing the location of point c in l that
is closest to point p (see Figure 7.2—left) and then obtaining the Euclidean distance
between p and c. We can view point c as point a translated by a scaled magnitude u
of vector ab, or c = a + u ⇥ ab. To get u, we do a scalar projection of vector ap onto
vector ab by using dot product (see the dotted vector ac = u⇥ ab in Figure 7.2—left).

Figure 7.2: Distance to Line (left) and to Line Segment (middle); Cross Product (right)

16
acos is the C/C++ function name for mathematical function arccos.

17The area of triangle pqr is therefore half of the area of this parallelogram.

373

7.2. BASIC GEOMETRY OBJECTS WITH LIBRARIES c� Steven, Felix, Suhendry

The short implementation of this solution is shown below.

double dot(vec a, vec b) { return (a.x*b.x + a.y*b.y); }

double norm_sq(vec v) { return v.x*v.x + v.y*v.y; }

// returns the distance from p to the line defined by
// two points a and b (a and b must be different)
// the closest point is stored in the 4th parameter (byref)
double distToLine(point p, point a, point b, point &c) {

vec ap = toVec(a, p), ab = toVec(a, b);
double u = dot(ap, ab) / norm_sq(ab);
// formula: c = a + u*ab
c = translate(a, scale(ab, u)); // translate a to c
return dist(p, c); // Euclidean distance

}

Note that this is not the only way to get the required answer.
Check the written exercise in this section for the alternative way.

12. If we are given a line segment instead (defined by two end points a and b), then the
minimum distance from point p to line segment ab must also consider two special
cases, the end points a and b of that line segment (see Figure 7.2—middle). The
implementation is very similar to distToLine function above.

// returns the distance from p to the line segment ab defined by
// two points a and b (technically, a has to be different than b)
// the closest point is stored in the 4th parameter (byref)
double distToLineSegment(point p, point a, point b, point &c) {

vec ap = toVec(a, p), ab = toVec(a, b);
double u = dot(ap, ab) / norm_sq(ab);
if (u < 0.0) { // closer to a

c = point(a.x, a.y);
return dist(p, a); // dist p to a

}
if (u > 1.0) { // closer to b

c = point(b.x, b.y);
return dist(p, b); // dist p to b

}
return distToLine(p, a, b, c); // use distToLine

}

Source code: ch7/points lines.cpp|java|py|ml

374

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

Exercise 7.2.2.1: A line can also be described with this mathematical equation: y = mx+c
where m is the ‘gradient’/‘slope’ of the line and c is the ‘y-intercept’ constant.
Which form is better (ax+ by + c = 0 or the slope-intercept form y = mx+ c)? Why?

Exercise 7.2.2.2: Find the equation of the line that passes through these two points:

a. (2, 2) and (4, 3).

b. (2, 2) and (2, 4).

Exercise 7.2.2.3: Suppose we insist to use the other line equation: y = mx+ c. Show how
to compute the required line equation given two points the line passes through! Try on two
points (2, 2) and (2, 4) as in Exercise 7.2.2.2 (b). Do you encounter any problem?

Exercise 7.2.2.4: Translate a point c (3, 2) according to a vector ab (defined below).
What is the new coordinate of the point?

a. Vector ab is defined by two points: a (2, 2) and b (4, 3).

b. Same as (a) above, but the magnitude of vector ab is reduced by half.

c. Same as (a) above (without halving the magnitude of vector ab in (b) above), but then
we rotate the resulting point by 90 degrees counterclockwise around the origin.

Exercise 7.2.2.5: Rotate a point c (3, 2) by 90 degrees counterclockwise around the origin,
then translate the resulting point according to a vector ab (same as in Exercise 7.2.2.5 (a)).
What is the new coordinate of the point? Is the result similar with the previous Exercise
7.2.2.5 (a)? What can we learn from this phenomenon?

Exercise 7.2.2.6: Rotate a point c (3, 2) by 90 degrees counterclockwise but around the
point p (2, 1) (note that point p is not the origin). Hint: You need to translate the point.

Exercise 7.2.2.7: Compute the angle aob in degrees:

a. a (2, 2), o (2, 6), and b (6, 6)

b. a (2, 2), o (2, 4), and b (4, 3)

Exercise 7.2.2.8: Determine if point r (35, 30) is on the left side of, collinear with, or is
on the right side of a line that passes through two points p (3, 7) and q (11, 13).

Exercise 7.2.2.9: We can compute the location of point c in line l that is closest to point
p by finding the other line l0 that is perpendicular with line l and passes through point p.
The closest point c is the intersection point between line l and l0. Now, how do we obtain a
line perpendicular to l? Are there special cases that we have to be careful with?

Exercise 7.2.2.10: Given a point p and a line l (described by two points a and b), compute
the location of a reflection point r of point p when mirrored against line l.

Exercise 7.2.2.11*: Given two line segments (each line segment is given by two endpoints),
determine whether they intersect. For example, line segment 1 between (0, 0) to (10, 0) does
not intersect line segment 2 between (7, 1) to (7, 0.1) whereas that line segment 1 intersects
line segment 3 between (7, 1) to (7, -1).

375

7.2. BASIC GEOMETRY OBJECTS WITH LIBRARIES c� Steven, Felix, Suhendry

7.2.3 2D Objects: Circles

1. A circle centered at coordinate (a, b) in a 2D Euclidean space with radius r is the
set of all points (x, y) such that (x� a)2 + (y � b)2 = r2.

2. To check if a point is inside, outside, or exactly on the border of a circle, we can use
the following function. Modify this function a bit for the floating point version.

int insideCircle(const point_i &p, const point_i &c, int r) {
int dx = p.x-c.x, dy = p.y-c.y;
int Euc = dx*dx + dy*dy, rSq = r*r; // all integer
return Euc < rSq ? 1 : (Euc == rSq ? 0 : -1); // in/border/out

}

Figure 7.3: Circles

3. The constant Pi (⇡) is the ratio of any circle’s circumference to its diameter. For
some programming language, this constant is already defined, e.g., M PI in C++
<cmath> library. Otherwise, the safest value to be used in programming contest
is PI = arccos(�1.0) or PI = 2 ⇤ arccos(0.0).

4. A circle with radius r has diameter d = 2 ⇥ r and circumference (or perimeter)
c = 2⇥ ⇡ ⇥ r.

5. A circle with radius r has area A = ⇡ ⇥ r2

6. Arc of a circle is defined as a connected section of the circumference c of the circle.
Given the central angle ↵ (angle with vertex at the circle’s center, see Figure 7.3—
middle) in degrees, we can compute the length of the corresponding arc as ↵

360.0 ⇥ c.

7. Chord of a circle is defined as a line segment whose endpoints lie on the circle18.
A circle with radius r and a central angle ↵ in degrees (see Figure 7.3—right) has
the corresponding chord with length

p
2⇥ r2 ⇥ (1� cos(↵)). This can be derived

from the Law of Cosines—see the explanation of this law in the discussion about
Triangles later. Another way to compute the length of chord given r and ↵ is to use
Trigonometry: 2⇥ r ⇥ sin(↵/2). Trigonometry is also discussed below.

18Diameter is the longest chord in a circle.

376

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

8. Sector of a circle is defined as a region of the circle enclosed by two radii and an arc
lying between the two radii. A circle with area A and a central angle ↵ (in degrees)—see
Figure 7.3, middle—has the corresponding sector area ↵

360.0 ⇥ A.

9. Segment of a circle is defined as a region of the circle enclosed by a chord and an arc
lying between the chord’s endpoints (see Figure 7.3—right). The area of a segment
can be found by subtracting the area of the corresponding sector with the area of an
isosceles triangle with sides: r, r, and chord-length.

10. Given 2 points on the circle (p1 and p2) and radius r of the corresponding circle, we
can determine the location of the centers (c1 and c2) of the two possible circles (see
Figure 7.4). The code is shown below.

bool circle2PtsRad(point p1, point p2, double r, point &c) {
double d2 = (p1.x-p2.x) * (p1.x-p2.x) + (p1.y-p2.y) * (p1.y-p2.y);
double det = r*r/d2 - 0.25;
if (det < EPS) return false;
double h = sqrt(det);
// to get the other center, reverse p1 and p2
c.x = (p1.x+p2.x) * 0.5 + (p1.y-p2.y) * h;
c.y = (p1.y+p2.y) * 0.5 + (p2.x-p1.x) * h;
return true;

}

Figure 7.4: Explanation for Circle Through 2 Points and Radius

Explanation: Let c1 and c2 be the centers of the 2 possible circles that go through 2
given points p1 and p2 and have radius r. The quadrilateral p1 � c2 � p2 � c1 is a
rhombus (see Section 7.2.5), since its four sides (or length r) are equal.

Let m be the intersection of the 2 diagonals of the rhombus p1�c2�p2�c1. According
to the property of a rhombus, m bisects the 2 diagonals, and the 2 diagonals are
perpendicular to each other. We realize that c1 and c2 can be calculated by scaling the
vectors mp1 and mp2 by an appropriate ratio (mc1/mp1) to get the same magnitude
as mc1, then rotating the points p1 and p2 around m by 90 degrees.

In the code above, variable h is half the ratio mc1/mp1 (work out on paper why h can
be calculated as such). In the 2 lines calculating the coordinates of one of the centers,
the first operands of the additions are the coordinates of m, while the second operands
of the additions are the result of scaling and rotating the vector mp2 around m.

Source code: ch7/circles.cpp|java|py|ml

377

7.2. BASIC GEOMETRY OBJECTS WITH LIBRARIES c� Steven, Felix, Suhendry

7.2.4 2D Objects: Triangles

Figure 7.5: Triangles

1. Triangle (three angles) is a polygon with three vertices and three edges.
There are several types of triangles:
a. Equilateral: Three equal-length edges and all inside (interior) angles are 60 degrees,
b. Isosceles: Two edges have the same length and two interior angles are the same,
c. Scalene: All edges have di↵erent lengths,
d. Right: One of its interior angle is 90 degrees (or a right angle).

2. To check if three line segments of length a, b and c can form a triangle, we can simply
check these triangle inequalities : (a+ b > c) && (a+ c > b) && (b+ c > a).
If the result is false, then the three line segments cannot form a triangle.
If the three lengths are sorted, with a being the smallest and c the largest, then we
can simplify the check to just (a+ b > c).

3. A triangle with base b and height h has area A = 0.5⇥ b⇥ h.

4. A triangle with three sides: a, b, c has perimeter p = a+ b+ c and semi-perimeter
s = 0.5⇥ p.

5. A triangle with 3 sides: a, b, c and semi-perimeter s has area
A =

p
(s⇥ (s� a)⇥ (s� b)⇥ (s� c)).

This formula is called the Heron’s Formula.

6. A triangle with area A and semi-perimeter s has an inscribed circle (incircle) with
radius r = A/s.

double rInCircle(double ab, double bc, double ca) {
return area(ab, bc, ca) / (0.5 * perimeter(ab, bc, ca));

}

double rInCircle(point a, point b, point c) {
return rInCircle(dist(a, b), dist(b, c), dist(c, a));

}

378

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

7. The center of incircle is the meeting point between the triangle’s angle bisectors (see
Figure 7.6—left). We can get the center if we have two angle bisectors and find their
intersection point. The implementation is shown below:

// assumption: the required points/lines functions have been written
// returns true if there is an inCircle center, or false otherwise
// if this function returns true, ctr will be the inCircle center
// and r is the same as rInCircle
bool inCircle(point p1, point p2, point p3, point &ctr, double &r) {

r = rInCircle(p1, p2, p3);
if (fabs(r) < EPS) return false; // no inCircle center

line l1, l2; // 2 angle bisectors
double ratio = dist(p1, p2) / dist(p1, p3);
point p = translate(p2, scale(toVec(p2, p3), ratio / (1+ratio)));
pointsToLine(p1, p, l1);

ratio = dist(p2, p1) / dist(p2, p3);
p = translate(p1, scale(toVec(p1, p3), ratio / (1+ratio)));
pointsToLine(p2, p, l2);

areIntersect(l1, l2, ctr); // intersection point
return true;

}

Figure 7.6: Incircle and Circumcircle of a Triangle

8. A triangle with 3 sides: a, b, c and area A has a circumscribed circle (circumcircle)
with radius R = a⇥ b⇥ c/(4⇥ A).

double rCircumCircle(double ab, double bc, double ca) {
return ab * bc * ca / (4.0 * area(ab, bc, ca));

}

double rCircumCircle(point a, point b, point c) {
return rCircumCircle(dist(a, b), dist(b, c), dist(c, a));

}

379

7.2. BASIC GEOMETRY OBJECTS WITH LIBRARIES c� Steven, Felix, Suhendry

9. The center of circumcircle is the meeting point between the triangle’s perpendicular
bisectors (see Figure 7.6—right).

10. When we study triangles, we should not forget Trigonometry—the study of the
relationships between triangle sides and the angles between sides.

In Trigonometry, the Law of Cosines (a.k.a. the Cosine Formula or the Cosine
Rule) is a statement about a general triangle that relates the lengths of its sides to the
cosine of one of its angles. See the scalene triangle in Figure 7.5. With the notations
described there, we have: c2 = a2 + b2 � 2 ⇥ a ⇥ b ⇥ cos(�), or � = arccos(a

2+b2�c2

2⇥a⇥b).
The formulas for the other two angles ↵ and � are similarly defined.

11. In Trigonometry, the Law of Sines (a.k.a. the Sine Formula or the Sine Rule) is
an equation relating the lengths of the sides of an arbitrary triangle to the sines of its
angles. See the scalene (middle) triangle in Figure 7.5. With the notations described
there and R is the radius of its circumcircle, we have: a

sin(↵) =
b

sin(�) =
c

sin(�) = 2R.

12. The Pythagorean Theorem specializes the Law of Cosines. This theorem only
applies to right triangles. If the angle � is a right angle (of measure 90� or ⇡/2 radians),
then cos(�) = 0, and thus the Law of Cosines reduces to: c2 = a2 + b2. Pythagorean
theorem is used in finding the Euclidean distance between two points, as shown earlier.

13. ThePythagorean Triple is a triple with three positive integers a, b, and c—commonly
written as (a, b, c)—such that a2+b2 = c2. A well-known example is (3, 4, 5). If (a, b, c)
is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A Pythagorean
Triple describes the integer lengths of the three sides of a Right Triangle.

Source code: ch7/triangles.cpp|java|py|ml

Exercise 7.2.4.1: Let a, b, and c of a triangle be 218, 218, and 218. Can we compute the
area of this triangle with Heron’s formula as shown in point 4 above without experiencing
overflow (assuming that we use 64-bit integers)? What should we do to avoid this issue?

Exercise 7.2.4.2*: Implement the code to find the center of the circumCircle of three points
a, b, and c. The function structure is similar as function inCircle shown in this section.

Exercise 7.2.4.3*: Implement another code to check if a point d is inside the circumCircle
of three points a, b, and c.

Exercise 7.2.4.4*: Fermat-Torricelli point is a point inside a triangle such that the total
distance from the three triangle vertices to that Fermat-Torricelli point is the minimum
possible. For example, if the triangle vertices are {(0, 0), (0, 1), (1, 0)}, then the Fermat-
Torricelli point is at (0.211, 0.211). Study the geometric solution and the algorithmic solution
for this problem. It is also the solution (Steiner point) for the (Euclidean) Steiner-Tree

problem with 3 (terminal) points (see Section 8.6.10 and try Kattis - europeantrip).

380

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

7.2.5 2D Objects: Quadrilaterals

Figure 7.7: Quadrilaterals

1. Quadrilateral or Quadrangle is a polygon with four edges (and four vertices).
The term ‘polygon’ itself is described in more detail later (Section 7.3).
Figure 7.7 shows a few examples of Quadrilateral objects.

2. Rectangle is a polygon with four edges, four vertices, and four right angles.

3. A rectangle with width w and height h has area A = w ⇥ h and perimeter p =
2⇥ (w + h).

4. Given a rectangle described with its bottom left corner (x, y) plus its width w and
height h, we can use the following checks to determine if another point (a, b) is inside,
at the border, or outside this rectangle:

int insideRectangle(int x, int y, int w, int h, int a, int b) {
if ((x < a) && (a < x+w) && (y < b) && (b < y+h))

return 1; // strictly inside
else if ((x <= a) && (a <= x+w) && (y <= b) && (b <= y+h))

return 0; // at border
else

return -1; // outside
}

5. Square is a special case of a rectangle where w = h.

6. Trapezium is a polygon with four vertices, four edges, and one pair of parallel edges
among these four edges. If the two non-parallel sides have the same length, we have
an Isosceles Trapezium.

7. A trapezium with a pair of parallel edges of lengths w1 and w2; and a height h between
both parallel edges has area A = 0.5⇥ (w1 + w2)⇥ h.

8. Parallelogram is a polygon with four edges and four vertices. Moreover, the opposite
sides must be parallel.

9. Kite is a quadrilateral which has two pairs of sides of the same length which are
adjacent to each other. The area of a kite is diagonal1 ⇥ diagonal2/2.

10. Rhombus is a special parallelogram where every side has equal length. It is also a
special case of kite where every side has equal length.

381

7.2. BASIC GEOMETRY OBJECTS WITH LIBRARIES c� Steven, Felix, Suhendry

Programming Exercises related to Basic Geometry:

a. Points

1. Entry Level: UVa 00587 - There’s treasure ... * (Euclidean dist)

2. UVa 01595 - Symmetry * (use set to record the positions of all sorted
points; check half of the points if the symmetries are in the set too?)

3. UVa 10927 - Bright Lights * (sort points by gradient; Euclidean dist)

4. UVa 11894 - Genius MJ * (about rotating and translating points)

5. Kattis - browniepoints * (points and quadrants; simple; also available at UVa
10865 - Brownie Points)

6. Kattis - cursethedarkness * (Euclidean dist)

7. Kattis - imperfectgps * (Euclidean dist; simulation)

Extra UVa: 00152, 00920, 10357, 10466, 10585, 10832, 11012, 12704.

Extra Kattis: logo, mandelbrot, sibice.

b. Lines

1. Entry Level: Kattis - unlockpattern * (complete search; Euclidean dist)

2. UVa 10263 - Railway * (use distToLineSegment)

3. UVa 11783 - Nails * (O(N2) brute force line segment intersection tests)

4. UVa 13117 - ACIS, A Contagious ... * (dist + distToLineSegment)

5. Kattis - hurricanedanger * (distance from point to line (not vector); be care-
ful of precision error; work with integers)

6. Kattis - logo2 * (n vectors that sum to 0; given n-1 vectors, find the unknown
vector; also available at UVa 11519 - Logo 2)

7. Kattis - platforme * (line segment intersection tests; N 100; so we can use
complete search)

Extra UVa: 00191, 00378, 00833, 00837, 00866, 01249, 10242, 10250, 10902,
11068, 11343.

Extra Kattis: completingthesquare, countingtriangles, goatrope, rafting, seg-
mentdistance, svm, triangleornaments, trojke.

c. Circles (only)

1. Entry Level: Kattis - estimatingtheareaofacircle * (PI estimation experiment)

2. UVa 01388 - Graveyard * (LA 3708 - NortheasternEurope06; divide the
circle into n sectors first and then into (n+m) sectors)

3. UVa 10005 - Packing polygons * (complete search; use circle2PtsRad)

4. UVa 10678 - The Grazing Cows * (area of an ellipse; generalization of
the formula for area of a circle)

5. Kattis - amsterdamdistance * (arcs of circles; no need to model this as an
SSSP problem/Dijkstra’s)

6. Kattis - biggest * (find biggest area of sector using simulation; use array (not
that large) to avoid precision error)

7. Kattis - ornaments * (arc length plus two times tangent lengths)

Extra UVa: 10136, 10180, 10209, 10221, 10283, 10287, 10432, 10451, 10573,
10589, 12578, 12748.

Extra Kattis: anthonyanddiablo, ballbearings, dartscores, fractalarea, halfa-
cookie, herman, pizza2, racingalphabet, sanic, tracksmoothing, watchdog.

382

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

d. Triangles (Trigonometry)

1. Entry Level: Kattis - egypt * (Pythagorean theorem/triple; also available at
UVa 11854 - Egypt)

2. UVa 00427 - FlatLand Piano Movers * (for each 2 consecutive corridors,
try rotating the piano by a angle ↵ 2 [0.1..89.9] degrees; trigonometry)

3. UVa 11326 - Laser Pointer * (trigonometry; tangent; reflection)

4. UVa 11909 - Soya Milk * (Law of Sines (or tangent); two possible cases)

5. Kattis - alldi↵erentdirections * (trigonometry; compute x/y displacement)

6. Kattis - billiard * (enlarge the billiard table; then this is solvable with atan2)

7. Kattis - mountainbiking * (up to 4 line segments; simple trigonometry; simple
Physics/Kinematic equation)

Extra UVa: 00313, 10210, 10286, 10387, 10792, 12901.

Extra Kattis: bazen, humancannonball2, ladder, santaklas, vacuumba.

e. Triangles (plus Circles)

1. Entry Level: UVa 00438 - The Circumference of ... * (compute trian-
gle’s circumcircle)

2. UVa 10577 - Bounding box * (get center+radius of outer circle from 3
points; get all vertices; get the min-x/max-x/min-y/max-y of the polygon)

3. UVa 11281 - Triangular Pegs in ... * (circumcircle for a non obtuse
triangle; largest side of the triangle for an obtuse triangle)

4. UVa 13215 - Polygonal Park * (area of rectangle minus area of squares
and equilateral triangles)

5. Kattis - cropeasy * (try all 3 points/tree; see if the center is integer)

6. Kattis - stickysituation * (see if 3 sides form a triangle; see UVa 11579)

7. Kattis - trilemma * (triangle properties; sort the 3 sides first)

Extra UVa: 00143, 00190, 00375, 10195, 10347, 10522, 10991, 11152, 11164,
11437, 11479, 11579, 11936.

Extra Kattis: greedypolygons, queenspatio.

f. Quadrilaterals

1. Entry Level: Kattis - cetvrta * (sort the x and y points, then you will know
the 4th point)

2. UVa 00209 - Triangular Vertices * (LA 5148 - WorldFinals SanAnto-
nio91; brute force check; answer is either triangle, parallelogram, or hexagon)

3. UVa 11800 - Determine the Shape * (use next permutation to try all
possible 4! = 24 permutations of 4 points; check the requirements)

4. UVa 12256 - Making Quadrilaterals * (LA 5001 - KualaLumpur10; first
3 sides are 1, 1, 1; the 4th side onwards are sum of previous threes)

5. Kattis - o�cespace * (rectangles; small numbers; 2D Boolean arrays)

6. Kattis - rectanglesurrounding * (rectangles; small; 2D Boolean arrays)

7. Kattis - roundedbuttons * (in-rectangle/in-square test; in-4-circles tests)

Extra UVa: 00155, 00460, 00476, 00477, 11207, 11314, 11345, 11455, 11639,
11648, 11834, 12611, 12894.

Extra Kattis: areal, flowlayout, frosting, grassseed, hittingtargets, kornislav,
pieceofcake2, taisformula.

383

7.3. ALGORITHMS ON POLYGON WITH LIBRARIES c� Steven, Felix, Suhendry

7.3 Algorithms on Polygon with Libraries

Polygon is a plane figure that is bounded by a closed path (path that starts and ends at the
same vertex) composed of a finite sequence of straight line segments. These segments are
called edges or sides. The point where two edges meet is the polygon’s vertex or corner. The
polygon is the source of many (computational) geometry problems as it allows the problem
author to present more realistic 2D shapes than the ones discussed in Section 7.2.

7.3.1 Polygon Representation

The standard way to represent a polygon is to simply enumerate the vertices of the polygon
in either clockwise/cw/right turn or counterclockwise/ccw/left turn order, with the first
vertex being equal to the last vertex (some of the functions mentioned later in this section
require this arrangement to simplify the implementation). In this book, our default vertex
ordering is counterclockwise. We also assume that the input polygon is a Simple polygon
with at least 3 edges (not a point or a line) and without edge crossing that may complicate
or render certain functions below meaningless. The resulting polygon after executing the
code below is shown in Figure 7.8—left. See that this example polygon is not Convex, i.e.,
it is Concave (see Section 7.3.4 for details).

// 6(+1) points, entered in counter clockwise order, 0-based indexing
vector<point> P;
P.emplace_back(1, 1); // P0
P.emplace_back(3, 3); // P1
P.emplace_back(9, 1); // P2
P.emplace_back(12, 4); // P3
P.emplace_back(9, 7); // P4
P.emplace_back(1, 7); // P5
P.push_back(P[0]); // loop back, P6 = P0

7.3.2 Perimeter of a Polygon

The perimeter of a (convex or concave) polygon with n vertices given in some order (either
clockwise or counter-clockwise) can be computed via a simple function below.

Figure 7.8—right shows the snapshot of the near completion of this function with only
the final length of the last edge (P[5], P[0]) not computed yet. This last edge is (P[5], P[6])
in our implementation as P[6] = P[0]. Visit VisuAlgo, Polygon visualization, to draw your
own simple polygon and test this perimeter function.

Figure 7.8: Left: (Concave) Polygon Example, Right: (Partial) Execution of perimeter

384

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

// returns the perimeter of polygon P, which is the sum of
// Euclidian distances of consecutive line segments (polygon edges)
double perimeter(const vector<point> &P) { // by ref for efficiency

double ans = 0.0;
for (int i = 0; i < (int)P.size()-1; ++i) // note: P[n-1] = P[0]

ans += dist(P[i], P[i+1]); // as we duplicate P[0]
return ans;

}

7.3.3 Area of a Polygon

The signed19 area A of a (convex or concave) polygon with n vertices given in some order
(either clockwise or counter-clockwise) can be found by computing the cross multiplication
of coordinates in the matrix as shown below. This formula, which is called the Shoelace
formula, can be easily written into the library code.

A = 1
2⇥

2

66664

x0 y0
x1 y1
x2 y2
.
xn�1 yn�1

3

77775
= 1

2⇥(x0⇥y1+x1⇥y2+. . .+xn�1⇥y0�x1⇥y0�x2⇥y1�. . .�x0⇥yn�1)

// returns the area of polygon P
double area(const vector<point> &P) {

double ans = 0.0;
for (int i = 0; i < (int)P.size()-1; ++i) // Shoelace formula

ans += (P[i].x*P[i+1].y - P[i+1].x*P[i].y);
return fabs(ans)/2.0; // only do / 2.0 here

}

Figure 7.9: Left: Partial Execution of area, Right: The End Result

19Area is positive/negative when the vertices of the polygon are given in CCW/CW order, respectively.

385

7.3. ALGORITHMS ON POLYGON WITH LIBRARIES c� Steven, Felix, Suhendry

The Shoelace formula above is derived from successive sums of signed areas of triangles
defined by Origin point (0, 0) and the edges of the polygon. If Origin, P[i], P[i+1] form a
clockwise turn, the signed area of the triangle will be negative, otherwise it will be positive.
When all signed areas of triangles have been computed, we have the final answer = sum of
all absolute triangle areas minus the sum of areas outside the polygon. The similar code20

that produces the same answer but written in vector operations, can be found below.

// returns the area of polygon P, which is half the cross products
// of vectors defined by edge endpoints
double area_alternative(const vector<point> &P) {

double ans = 0.0; point O(0.0, 0.0); // O = the Origin
for (int i = 0; i < (int)P.size()-1; ++i) // sum of signed areas

ans += cross(toVec(O, P[i]), toVec(O, P[i+1]));
return fabs(ans)/2.0;

}

Figure 7.9—left shows the snapshot of the partial execution this area function while Figure
7.9—right shows the final result for this example. Visit VisuAlgo, Polygon visualization, to
draw your own simple polygon and test this area function.

7.3.4 Checking if a Polygon is Convex

A polygon is said to be Convex if any line segment drawn inside the polygon does not
intersect any edge of the polygon. Otherwise, the polygon is called Concave. However, to
test whether a polygon is convex, there is an easier computational approach than “trying to
check if all line segments can be drawn inside the polygon”. We can simply check whether
all three consecutive vertices of the polygon form the same turns (all left turns/ccw if the
vertices are listed in counterclockwise order—the default setting in this book—or all right
turns/cw if the vertices are listed in clockwise order). If we can find at least one triple where
this is false, then the polygon is concave.

Figure 7.10: Left: First turn: Clockwise, Right: Found a Counterclockwise Turn! Concave

Figure 7.10—left shows the first step of this isConvex function (it finds a clockwise turn 0-1-
2) while Figure 7.10—right shows the final result for this example where isConvex function
discovers a counterclockwise turn 1-2-3 which is di↵erent than the first (clockwise) turn.
Therefore it concludes that the given polygon is not convex, i.e., concave. Visit VisuAlgo,
Polygon visualization, to draw your own simple polygon and test this isConvex function.

20However, we do not recommend using this version as it uses a few more lines of code (to define toVec

and cross functions) than the direct Shoelace formula implementation shown earlier.

386

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

// returns true if we always make the same turn
// while examining all the edges of the polygon one by one
bool isConvex(const vector<point> &P) {

int n = (int)P.size();
// a point/sz=2 or a line/sz=3 is not convex
if (n <= 3) return false;
bool firstTurn = ccw(P[0], P[1], P[2]); // remember one result,
for (int i = 1; i < n-1; ++i) // compare with the others

if (ccw(P[i], P[i+1], P[(i+2) == n ? 1 : i+2]) != firstTurn)
return false; // different -> concave

return true; // otherwise -> convex
}

Exercise 7.3.4.1*: Which part of the code above should you modify to accept collinear
points? Example: Polygon {(0,0), (2,0), (4,0), (2,2), (0,0)} should be treated as convex.

7.3.5 Checking if a Point is Inside a Polygon

Another common test performed on a polygon P is to check if a point pt is inside or outside
polygon P . The following function that implements ‘winding number algorithm’ allows
such check for either convex or concave polygons. Similar with the Shoelace formula for
computing area of polygon, this inPolygon function works by computing the signed sum of
angles between three points: {P [i], pt, P [i+1]} where (P [i], P [i+1]) are consecutive edges
of polygon P , taking care of ccw/left turns (add the angle) and cw/right turns (subtract
the angle) respectively. If the final sum is 2⇡ (360 degrees), then pt is inside polygon P .
Otherwise (if the final sum is 0⇡ (0 degree)), pt is outside polygon P .

Figure 7.11: Left: Inside Polygon, Right: Outside Polygon

Figure 7.11—left shows an instance where this inPolygon function returns true. The ‘mis-
take’ of negative angle 0-pt1-1 is canceled by subsequent 1-pt1-2 as if we indirectly compute
angle 0-pt1-2. Computing the next four angles 2-pt1-3, 3-pt1-4, 4-pt1-5, and 5-pt1-0 (or point
6) gives us the sum of 360 degrees and we conclude that the point is inside the polygon. On
the other hand, Figure 7.11—right shows an instance where this inPolygon function returns
false. 0-pt1-1 and 1-pt1-2 both form Clockwise turns and hence we have ⇡ -187 degrees so
far for angle 0-pt1-2. However, this will be canceled by the next four angles 2-pt1-3, 3-pt1-4,

387

7.3. ALGORITHMS ON POLYGON WITH LIBRARIES c� Steven, Felix, Suhendry

4-pt1-5, and 5-pt1-0 (or point 6). As the sum of angles is not 360 degrees (it is 0 degree),
we conclude that the point is outside the polygon. Visit VisuAlgo, Polygon visualization,
to draw your own simple polygon, add your own reference point, and test whether that
reference point is inside or outside the polygon using this inPolygon function.

Note that there is one potential corner case if the query point pt is one of the polygon
vertex or along the polygon edge (collinear with any of the two successive points of the
polygon). We have to declare that the query point pt is on polygon (vertex/edge). We have
integrated that additional check in our library code below that can be tested directly at
Kattis - pointinpolygon.

// returns 1/0/-1 if point p is inside/on (vertex/edge)/outside of
// either convex/concave polygon P
int insidePolygon(point pt, const vector<point> &P) {

int n = (int)P.size();
if (n <= 3) return -1; // avoid point or line
bool on_polygon = false;
for (int i = 0; i < n-1; ++i) // on vertex/edge?

if (fabs(dist(P[i], pt) + dist(pt, P[i+1]) - dist(P[i], P[i+1])) < EPS)
on_polygon = true;

if (on_polygon) return 0; // pt is on polygon
double sum = 0.0; // first = last point
for (int i = 0; i < n-1; ++i) {

if (ccw(pt, P[i], P[i+1]))
sum += angle(P[i], pt, P[i+1]); // left turn/ccw

else
sum -= angle(P[i], pt, P[i+1]); // right turn/cw

}
return fabs(sum) > M_PI ? 1 : -1; // 360d->in, 0d->out

}

Exercise 7.3.5.1: If the first vertex is not repeated as the last vertex, will the functions
perimeter, area, isConvex, and insidePolygon presented above work correctly?

Exercise 7.3.5.2*: Discuss the pros and the cons of the following alternative methods for
testing if a point is inside a polygon:

1. Triangulate/break a convex polygon into triangles and see if the sum of triangle areas
is equal to the area of the convex polygon. Can we use this for concave polygon?

2. Ray casting algorithm: we draw a ray from the point to any fixed direction so that the
ray intersects the edge(s) of the polygon. If there are odd/even number of intersections,
the point is inside/outside, respectively.

7.3.6 Cutting Polygon with a Straight Line

Another interesting thing that we can do with a convex polygon (see Exercise 7.3.6.2*
for concave polygon) is to cut it into two convex sub-polygons with a straight line defined
with two points A and B (the order of A and B matters). There are a few interesting
programming exercises in this section/book that use this function.

388

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

Figure 7.12: Left: Before Cut, Right: After Cut; pt1/pt2 = A/B, respectively

The basic idea of the following cutPolygon function is to iterate through the vertices of
the original polygon Q one by one. If point A, point B, and polygon vertex v form a left
turn (which implies that v is on the left side of the line AB (order matters)), we put v
inside the new polygon P . Once we find a polygon edge that intersects with the line AB,
we use that intersection point as part of the new polygon P (see Figure 7.12—left, the new
vertex between edge (0-1)). We then skip the next few vertices of Q that are located on
the right side of line AB (see Figure 7.12—left, vertices 1, 2, and later 3). Sooner or later,
we will revisit another polygon edge that intersects with line AB again and we also use
that intersection point as part of the new polygon P (see Figure 7.12—right, the new vertex
between edge (3-4)). Then, we continue appending vertices of Q into P again because we
are now on the left side of line AB again. We stop when we have returned to the starting
vertex and return the resulting polygon P (see the shaded area in Figure 7.12—right).

// compute the intersection point between line segment p-q and line A-B
point lineIntersectSeg(point p, point q, point A, point B) {

double a = B.y-A.y, b = A.x-B.x, c = B.x*A.y - A.x*B.y;
double u = fabs(a*p.x + b*p.y + c);
double v = fabs(a*q.x + b*q.y + c);
return point((p.x*v + q.x*u) / (u+v), (p.y*v + q.y*u) / (u+v));

}

// cuts polygon Q along the line formed by point A->point B (order matters)
// (note: the last point must be the same as the first point)
vector<point> cutPolygon(point A, point B, const vector<point> &Q) {

vector<point> P;
for (int i = 0; i < (int)Q.size(); ++i) {

double left1 = cross(toVec(A, B), toVec(A, Q[i])), left2 = 0;
if (i != (int)Q.size()-1) left2 = cross(toVec(A, B), toVec(A, Q[i+1]));
if (left1 > -EPS) P.push_back(Q[i]); // Q[i] is on the left
if (left1*left2 < -EPS) // crosses line AB

P.push_back(lineIntersectSeg(Q[i], Q[i+1], A, B));
}
if (!P.empty() && !(P.back() == P.front()))

P.push_back(P.front()); // wrap around
return P;

}

389

7.3. ALGORITHMS ON POLYGON WITH LIBRARIES c� Steven, Felix, Suhendry

Visit VisuAlgo, Polygon visualization, to draw your own simple polygon (but only convex
simple polygons are allowed). Add a line (defined by two reference points—order matters),
and observe how this cutPolygon function works. The URL for the various computational
geometry algorithms on polygons shown in Section 7.3.1 to Section 7.3.6 is shown below.

Visualization: https://visualgo.net/en/polygon

Exercise 7.3.6.1: This cutPolygon function returns the left side of the polygon Q after
cutting it with line AB (order matters). What should we do to get the right side instead?

Exercise 7.3.6.2*: What happens if we run the cutPolygon function on a concave polygon?

7.3.7 Finding the Convex Hull of a Set of Points

The Convex Hull of a set of points Pts is the smallest convex polygon CH(Pts) for which
each point in Pts is either on the boundary of CH(Pts) or in its interior. Imagine that
the points are nails on a flat 2D plane and we have a long enough rubber band that can
enclose all the nails. If this rubber band is released, it will try to enclose as small an area
as possible. That area is the area of the convex hull of these set of points (see Figure 7.13).
Finding convex hull of a set of points has natural applications in packing problems and can
be used as pre-processing step for more complex computational geometry problems.

Figure 7.13: Rubber Band Analogy for Finding Convex Hull

As every vertex in CH(Pts) is a vertex in the set of points Pts itself, the algorithm for finding
convex hull is essentially an algorithm to decide21 which points in Pts should be chosen as
part of the convex hull. There are several e�cient convex hull finding algorithms available.
In this section, we present two of them: the O(n log n) Ronald Graham’s Scan algorithm
(for historical purpose) followed by the more e�cient O(n log n) Andrew’s Monotone Chain
algorithm (our default).

Graham’s Scan

Graham’s scan algorithm first sorts all the n points of Pts (as Pts is a set of points and not
a set of vertices of a polygon, the first point does not have to be replicated as the last point,
see Figure 7.14—left) based on their angles around a point called pivot P0 and stores the

21Fortunately, this classic CS optimization problem is not NP-hard.

390

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

Figure 7.14: Sorting Set of 12 Points by Their Angles around a Pivot (Point 0)

sorted results in a ‘temporary’ set of points P . This algorithm uses the bottommost (and
rightmost if tie) point in Pts as pivot P0. We sort the points based on angles around this
pivot using CCW tests22. Consider 3 points: pivot, a, and b. Point a comes before b after
sorting if and only if pivot, a, b makes a counter clockwise/left turn. Then, we can see that
edge 0-1, 0-2, 0-3, ..., 0-6, and 0-7 are in counterclockwise order around pivot P0 in Figure
7.14—right. Note that this Figure 7.14—right snapshot shows partial execution of this angle
sorting up to edge 0-7 and the order of the last 4 points are not determined yet.

Then, this algorithm maintains a stack S of candidate points. Each point of P is pushed
once onto S and points that are not going to be part of convex hull will be eventually popped
from S. Graham’s Scan maintains this invariant: the top three items in stack S must always
make a ccw/left turn (which is the basic property of a convex polygon).

Figure 7.15: Left: Initial State of S, Right: After the Next 2 Steps

Initially we insert these three points, point N -1, 0, and 1. In our example, the stack initially
contains (bottom) 11-0-1 (top). This always forms a left turn (see Figure 7.15—left). Next,
0-1-2 and 1-2-3 both make ccw/left turns, thus we currently accept both vertex 2 and vertex
3 and the stack now contains (bottom) 11-0-1-2-3 (top) (see Figure 7.15—right).

Next, when we examine 2-3-4, we encounter a cw/right turn, thus we know that vertex
3 should not be in the convex hull and pop it from S. However, 1-2-4 is also a cw/right

22Another way is to use atan2 (arctangent) function with 2 arguments that can return the quadrant of
the computed angle, but this is constant time slower

391

7.3. ALGORITHMS ON POLYGON WITH LIBRARIES c� Steven, Felix, Suhendry

turn, so we also know that vertex 2 should also not be in the convex hull and pop it from S.
Then, 0-1-4 is a ccw/left turn and we accept vertex 4 and the stack now contains (bottom)
11-0-1-4 (top) (see Figure 7.16—left).

We repeat this process until all vertices have been processed. When Graham’s Scan
terminates, whatever that is left in S are the points of P = CH(Pts) (see Figure 7.16—
right). Graham Scan’s eliminates all the cw/right turns! As three consecutive vertices in S
always make ccw/left turns, we have a convex polygon (as discussed in Section 7.3.4).

Figure 7.16: Left: Reject Vertex 2 & 3; Accept Vertex 4, Right: The Final Convex Hull

Our implementation of Graham’s Scan is shown below. It uses a vector<point> S that
behaves like a stack instead of using a real stack<point> S as we need access to not just
the top of the stack but also the vertex below the top vertex of the stack. The first part of
Graham’s Scan (finding the pivot) is just O(n). The third part (the ccw tests) is also O(n)
as each of the n vertices can only be pushed onto the stack once and popped from the stack
once. The second part (sorts points by angle around a pivot P[0]) is the bulkiest part that
requires O(n log n). Overall, Graham’s scan runs in O(n log n).

vector<point> CH_Graham(vector<point> &Pts) { // overall O(n log n)
vector<point> P(Pts); // copy all points
int n = (int)P.size();
if (n <= 3) { // point/line/triangle

if (!(P[0] == P[n-1])) P.push_back(P[0]); // corner case
return P; // the CH is P itself

}

// first, find P0 = point with lowest Y and if tie: rightmost X
int P0 = min_element(P.begin(), P.end())-P.begin();
swap(P[0], P[P0]); // swap P[P0] with P[0]

// second, sort points by angle around P0, O(n log n) for this sort
sort(++P.begin(), P.end(), [&](point a, point b) {

return ccw(P[0], a, b); // use P[0] as the pivot
});

392

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

// third, the ccw tests, although complex, it is just O(n)
vector<point> S({P[n-1], P[0], P[1]}); // initial S
int i = 2; // then, we check the rest
while (i < n) { // n > 3, O(n)

int j = (int)S.size()-1;
if (ccw(S[j-1], S[j], P[i])) // CCW turn

S.push_back(P[i++]); // accept this point
else // CW turn

S.pop_back(); // pop until a CCW turn
}
return S; // return the result

}

Andrew’s Monotone Chain

Our Graham’s Scan implementation above can be further simplified23, especially the angle
sorting part.

Actually, the same basic idea of the third part of Graham’s Scan (ccw tests) also works
if the input is sorted based on x-coordinate (and in case of a tie, by y-coordinate) instead
of angle. But now the convex hull must now computed in two separate steps producing the
lower and upper parts of the hull. This is because the third part of Graham’s Scan (ccw
tests) only going to get the lower hull when performed on a set of points that are sorted
from left to right (see Figure 7.17—left). To complete the convex hull, we have to ‘rotate’
the entire set of points by 180 degrees and re-do the process, or simply perform the third
part of Graham’s Scan (ccw tests) but from right to left to get the upper hull (see Figure
7.17—right).

This modification was devised by A. M. Andrew and known as Andrew’s Monotone
Chain Algorithm. It has the same basic properties as Graham’s Scan but avoids that costly
comparisons between angles [10].

Figure 7.17: Left: Lower Hull (Left to Right), Right: Lower+Upper Hull (Right to Left)

Our much simpler implementation of the Monotone Chain algorithm is shown below. Due
to its e�ciency (still O(n log n) due to sorting based on coordinates, but a constant time
factor faster than Graham’s scan) and shorter code length, this is now our default.

23We already avoid using the expensive atan2 operation in our Graham’s Scan code.

393

7.3. ALGORITHMS ON POLYGON WITH LIBRARIES c� Steven, Felix, Suhendry

vector<point> CH_Andrew(vector<point> &Pts) { // overall O(n log n)
int n = Pts.size(), k = 0;
vector<point> H(2*n);
sort(Pts.begin(), Pts.end()); // sort the points by x/y
for (int i = 0; i < n; ++i) { // build lower hull

while ((k >= 2) && !ccw(H[k-2], H[k-1], Pts[i])) --k;
H[k++] = Pts[i];

}
for (int i = n-2, t = k+1; i >= 0; --i) { // build upper hull

while ((k >= t) && !ccw(H[k-2], H[k-1], Pts[i])) --k;
H[k++] = Pts[i];

}
H.resize(k);
return H;

}

We end this section and this chapter by again pointing readers to visit VisuAlgo tool that
we have built to enhance this book, as the static written explanations in this book cannot
beat animated explanations of the visualizations. This time, enter a set of points Pts and
execute your chosen convex hull algorithm. We also encourage readers to explore our source
code and use it to solve various programming exercises listed in this section. The URL for
the various convex hull algorithms on a set of points and the entire code used in this Section
7.3 are shown below.

Visualization: https://visualgo.net/en/convexhull

Source code: ch7/polygon.cpp|java|py|ml

Exercise 7.3.7.1: Suppose we have 5 points, P = {(0, 0), (1, 0), (2, 0), (2, 2), (0, 2))}. The
convex hull of these 5 points are these 5 points themselves (plus one, as we loop back to
vertex (0, 0)). However, our Graham Scan’s and Andrew’s Monotone Chain implementations
remove point (1, 0) as (0, 0)-(1, 0)-(2, 0) are collinear. Which part of the implementations
do we have to modify to accept collinear points? (note that we usually prefer to remove
collinear points though)

Exercise 7.3.7.2: What is the time complexity of Andrew’s Monotone Chain algorithm if
the input points are already sorted by increasing x-values and if ties, by increasing y-values?

Exercise 7.3.7.3*: Test the Graham’s Scan and Andrew’s Monotone Chain code above on
these corner cases. What is the convex hull of:

1. A single point, e.g., P1 = {(0, 0)}?

2. Two points (a line), e.g., P2 = {(0, 0), (1, 0)}?

3. Three points (a triangle), e.g., P3 = {(0, 0), (1, 0), (1, 1)}?

4. Three points (a collinear line), e.g., P4 = {(0, 0), (1, 0), (2, 0)}?

5. Four points (a collinear line), e.g., P5 = {(0, 0), (1, 0), (2, 0), (3, 0)}?

394

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

Below, we provide a list of programming exercises related to polygon. Without pre-written
library code discussed in this section, many of these problems look ‘hard’. With the library
code, many of these problems become manageable as they can now be decomposed into a
few library routines. Spend some time to attempt them, especially the must try * ones.

Programming Exercises related to Polygon:

a. Polygon, Easier:

1. Entry Level: Kattis - convexpolygonarea * (even more basic problem about
area of polygon than Kattis - polygonarea)

2. UVa 00634 - Polygon * (basic inPolygon routine; notice that the input
polygon can be convex or concave)

3. UVa 11447 - Reservoir Logs * (area of polygon)

4. UVa 11473 - Campus Roads * (modified perimeter of polygon)

5. Kattis - convexhull * (basic convex hull problem; be careful with duplicate
points and collinear points)

6. Kattis - cuttingcorners * (simulation of angle checks)

7. Kattis - robotprotection * (simply find the area of convex hull)

Extra UVa: 00478, 00681, 01206, 10060, 10112, 11072, 11096, 11626.

Extra Kattis: convexhull2, cookiecutter, dartscoring, jabuke, polygonarea,
simplepolygon.

b. Polygon, Harder:

1. Entry Level: UVa 11265 - The Sultan’s Problem * (seems to be a
complex problem, but essentially just cutPolygon; inPolygon; area)

2. UVa 00361 - Cops and Robbers * (check if a point is inside CH of
Cop/Robber; if pt is inside CH, pt satisfies the requirement)

3. UVa 01111 - Trash Removal * (LA 5138 - WorldFinals Orlando11; CH;
output minimax distance of each CH side to the other vertices)

4. UVa 10256 - The Great Divide * (given 2 CHs, output ‘No’ if there is a
point in 1st CH inside the 2nd one; ‘Yes’ otherwise)

5. Kattis - convex * (must understand the concept of convex polygon; a bit of
mathematical insights: GCD; sort)

6. Kattis - pointinpolygon * (in/out and on polygon)

7. Kattis - roberthood * (the classic furthest pair problem; use convex hull and
then rotating caliper)

Extra UVa: 00109, 00132, 00137, 00218, 00596, 00858, 10002, 10065, 10406,
10445.

Extra Kattis: abstractart, largesttriangle, playingtheslots, skyline, wrapping.

395

7.4. 3D GEOMETRY c� Steven, Felix, Suhendry

7.4 3D Geometry

Programming contest problems involving 3D objects are extremely rare. When such a prob-
lem does appear in a problem set, it can surprise some contestants who are not aware of its
required 3D formulas/techniques. In this section, we discuss three 3D Geometry topics.

More Popular 3D Geometry Formulas

These formulas are rarely used compared to their 2D counterparts in Section 7.2.
But nevertheless, the ones listed at Table 7.1 are the slightly more popular ones.

Object Volume Surface Area Remarks Example
Cube s3 6s2 s = side UVa 00737
Cuboid lwh 2(lw+ lh+wh) l/w/h = length/width/height Kattis - movingday
Sphere 4

3⇡r
3 4⇡r2 r = radius Kattis - pop

Table 7.1: Refresher on Some 3D Formulas

Volume of a Solid of Revolution

Abridged problem description of Kattis - flowers: function f(x) = a · e�x2
+ b ·

p
x describes

an outline of a 3D flower pot with height h. If we rotate f(x) along x-axis from x = 0 to
x = h, we will get a solid of revolution (a 3D object). There are k flower pots as tuples
(a, b, h) and our job is to identify which one has volume closest to the target volume V .

The di�cult part of this problem is the computation of the volume of this solid. Let’s
look at an example flower pot below. In Figure 7.18—left, we are given a sample f(x) =
e�x2

+ 2 ·
p
x. If we integrate this function from x = 0 to 2, we will compute the shaded 2D

area under the curve. This idea can be extended to 3D to compute the volume. For each
x, imagine that there is a circle around the x axis with radius f(x), see Figure 7.18—right.
The area of this circle is ⇡ ⇥ f(x)2. Now, if we integrate this area from x = 0 to 2, i.e.,
⇡ ⇥

R 2

0 (e
�x2

+ 2 ·
p
x)2 (we can take out ⇡ from the integral), we will get the volume of this

solid (flower pot), which is 34.72 in this example.
We can use numerical techniques to compute this definite integral, e.g. Simpson’s rule:R b

a f(x)dx ⇡
�x
3 (f(x0)+4f(x1)+2f(x2)+. . .+4f(xn�1)+f(xn)), �x = b�a

n , and xi = a+i�x.
For more precision, we can set n to be high enough that does not TLE, e.g., n = 1e6.

Figure 7.18: L: f(x) and its Area; R: Solid of Revolution of f(x) and its Volume

This rare 3D topic appears as a subproblem in recent ICPC World Finals (Kattis - bottles
and Kattis - cheese).

396

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

Great-Circle Distance

The Great-Circle Distance between any two points A and B on sphere is the shortest
distance along a path on the surface of the sphere. This path is an arc of the Great-
Circle that passes through the two points A and B. We can imagine Great-Circle as the
resulting circle that appears if we cut the sphere with a plane so that we have two equal
hemispheres (see Figure 7.19—left and middle).

Figure 7.19: L: Sphere, M: Hemisphere and Great-Circle, R: gcDistance (Arc A-B)

To find the Great-Circle Distance, we have to find the central angle AOB (see Figure 7.19—
right) of the Great-Circle where O is the center of the Great-Circle (which is also the center
of the sphere). Given the radius of the sphere/Great-Circle, we can then determine the
length of arc A-B, which is the required Great-Circle distance.

Although quite rare nowadays, some contest problems involving ‘Earth’, ‘Airlines’, etc.
use this distance measurement. Usually, the two points on the surface of a sphere are given
as the Earth coordinates, i.e., the (latitude, longitude) pair. The following library code will
help us to obtain the Great-Circle distance given two points on the sphere and the radius of
the sphere. We omit the derivation as it is not important for competitive programming.

double gcDist(double pLa, double pLo, double qLa, double qLo, double r) {
pLa *= M_PI/180; pLo *= M_PI/180; // degree to radian
qLa *= M_PI/180; qLo *= M_PI/180;
return r * acos(cos(pLa)*cos(pLo)*cos(qLa)*cos(qLo) +

cos(pLa)*sin(pLo)*cos(qLa)*sin(qLo) + sin(pLa)*sin(qLa));
} // this formula has a name: Haversine formula

Source code: ch7/UVa11817.cpp|java|py

Programming exercises related to 3D geometry:

1. Entry Level: Kattis - beavergnaw * (volumes of cylinders and cones; inclusion-
exclusion; also available at UVa 10297 - Beavergnaw)

2. UVa 00737 - Gleaming the Cubes * (cube and cube intersection)

3. UVa 00815 - Flooded * (LA 5215 - WorldFinals Eindhoven99; volume; greedy)

4. UVa 11817 - Tunnelling The Earth * (gcDistance; 3D Euclidean distance)

5. Kattis - bottles * (LA 6027 - WorldFinals Warsaw12; BSTA+geometric formula;
also available at UVa 01280 - Curvy Little Bottles)

6. Kattis - flowers * (the key part of this problem is integration)

7. Kattis - airlinehub * (gcDistance; also available at UVa 10316 - Airline Hub)

Extra UVa: 00535, 10897.

Extra Kattis: cheese, infiniteslides, movingday, pop, waronweather.

397

7.5. SOLUTION TO NON-STARRED EXERCISES c� Steven, Felix, Suhendry

7.5 Solution to Non-Starred Exercises

Exercise 7.2.1.1: See the first part of Graham’s Scan algorithm in Section 7.3.7.

Exercise 7.2.1.2: 5.0.

Exercise 7.2.1.3: (-3.0, 10.0).

Exercise 7.2.1.4: (-0.674, 10.419).

Exercise 7.2.2.1: The line equation y = mx+ c cannot handle all cases: vertical lines has
‘infinite’ gradient/slope in this equation and ‘near vertical’ lines are also problematic. If we
use this line equation, we have to treat vertical lines separately in our code which decreases
the probability of acceptance. So, use the better line equation ax+ by + c = 0.

Exercise 7.2.2.2: a). -0.5 * x + 1.0 * y - 1.0 = 0.0; b). 1.0 * x + 0.0 * y - 2.0 = 0.0.
Notice that b (underlined) is 1.0/0.0 for a non-vertical/vertical line, respectively.

Exercise 7.2.2.3: Given 2 points (x1, y1) and (x2, y2), the slope can be calculated with
m = (y2�y1)/(x2�x1). Subsequently the y-intercept c can be computed from the equation
by substitution of the values of a point (either one) and the line gradient m. The code will
looks like this. See that we have to deal with vertical line separately and awkwardly. When
tried on Exercise 7.2.2.2 (b), we will have x = 2.0 instead as we cannot represent a vertical
line using this form y =?.

struct line2 { double m, c; }; // alternative way

int pointsToLine2(point p1, point p2, line2 &l) {
if (p1.x == p2.x) { // vertical line

l.m = INF; // this is to denote a
l.c = p1.x; // line x = x_value
return 0; // differentiate result

}
else {

l.m = (double)(p1.y-p2.y) / (p1.x-p2.x);
l.c = p1.y - l.m*p1.x;
return 1; // standard y = mx + c

}
}

Exercise 7.2.2.4: a. (5.0, 3.0); b. (4.0, 2.5); c. (-3.0, 5.0).

Exercise 7.2.2.5: (0.0, 4.0). The result is di↵erent from Exercise 7.2.2.4 (a). ‘Translate
then Rotate’ is di↵erent from ‘Rotate then Translate’. Be careful in sequencing them.

Exercise 7.2.2.6: (1.0, 2.0). If the rotation center is not the origin, we need to translate
the input point c (3, 2) by a vector described by �p, i.e., (-2, -1) to point c0 (1, 1). Then, we
perform the 90 degrees counter clockwise rotation around origin to get c00 (-1, 1). Finally,
we translate c00 to the final answer by a vector described by p to point (1, 2).

Exercise 7.2.2.7: a. 90.00 degrees; b. 63.43 degrees.

Exercise 7.2.2.8: Point p (3,7) ! point q (11,13) ! point r (35,30) form a right turn.
Therefore, point r is on the right side of a line that passes through point p and point q. Note
that if point r is at (35, 31), then p, q, r are collinear.

Exercise 7.2.2.9: The solution is shown below:

398

CHAPTER 7. (COMPUTATIONAL) GEOMETRY c� Steven, Felix, Suhendry

void closestPoint(line l, point p, point &ans) {
// this line is perpendicular to l and pass through p
line perpendicular;
if (fabs(l.b) < EPS) { // vertical line

ans.x = -(l.c);
ans.y = p.y;
return;

}
if (fabs(l.a) < EPS) { // horizontal line

ans.x = p.x;
ans.y = -(l.c);
return;

}
pointSlopeToLine(p, 1/l.a, perpendicular); // normal line
// intersect line l with this perpendicular line
// the intersection point is the closest point
areIntersect(l, perpendicular, ans);

}

Exercise 7.2.2.10: The solution is shown below. Other solution exists:

// returns the reflection of point on a line
void reflectionPoint(line l, point p, point &ans) {

point b;
closestPoint(l, p, b); // similar to distToLine
vec v = toVec(p, b); // create a vector
ans = translate(translate(p, v), v); // translate p twice

}

Exercise 7.2.4.1: We can use double data type that has larger range. However, to further
reduce the chance of overflow, we can rewrite the Heron’s formula into a safer A =

p
s ⇥p

s� a⇥
p
s� b⇥

p
s� c. However, the result will be slightly less precise as we call sqrt 4

times instead of once.

Exercise 7.3.5.1: If the first vertex is not repeated as the last vertex, then:

• Functions perimeter and area will surely be wrong (they miss the last step) as we do
this (duplicating first vertex as additional last vertex) to avoid using modular arith-
metic to check ‘wrap around’ case throughout the loop,

• Function isConvex will only be incorrect if every other turns (except the last turn)
are CCW turns but the last turn is actually a CW turn,

• Function insidePolygon will only be incorrect at extreme test case as
return fabs(sum) > M_PI ? 1 : -1; is quite robust.

Exercise 7.3.6.1: Swap point a and b when calling cutPolygon(a, b, Q).

Exercise 7.3.7.1: Edit the ccw function to accept collinear points.

Exercise 7.3.7.2: We can make Andrew’s Monotone Chain algorithm to run in O(n) if we
are guaranteed that the input points are already sorted by increasing x-values and if ties, by
increasing y-values by commenting the sort routine.

399

7.6. CHAPTER NOTES c� Steven, Felix, Suhendry

7.6 Chapter Notes

Some material in this chapter are derived from the material courtesy of Dr Cheng Holun,
Alan from School of Computing, National University of Singapore. Some library functions
were started from Igor Naverniouk’s library: https://shygypsy.com/tools/ and has
been expanded to include many other useful geometric library functions.

Compared to the earlier editions of this book, this chapter has, just like Chapter 5 and 6,
gradually grown. However, the material mentioned here is still far from complete, especially
for ICPC contestants. If you are preparing for ICPC, it is a good idea to dedicate one person
in your team to study this topic in depth. This person should master basic geometry formulas
and advanced computational geometry techniques, perhaps by reading relevant chapters in
the following books: [30, 10, 7]. But not just the theory, this person must also train to code
robust geometry solutions that are able to handle degenerate (special) cases and minimize
precision errors.

We still have a few geometry related topics in this book. In Section 8.7, we will discuss
(computational) geometry problems that are mixed with other data structure(s)/algorithm(s).
In Chapter 9, we will discuss the Art Gallery problem, The Closest Pair Problem, and
line sweep technique.

However, there are still more computational geometry techniques that have not been
discussed yet, e.g., the intersection of other geometric objects, The Furthest Pair
Problem, Rotating Caliper algorithm, etc.

Statistics 1st 2nd 3rd 4th
Number of Pages 13 22 29 36 (+24%)
Written Exercises - 20 31 21+8*=29 (-6%)
Programming Exercises 96 103 96 199 (+107%)

The breakdown of the number of programming exercises from each section is shown below:

Section Title Appearance % in Chapter % in Book
7.2 Basic Geometry Objects ... 142 ⇡ 71% 4.1%
7.3 Algorithm on Polygon ... 43 ⇡ 22% 1.2%
7.4 3D Geometry 14 ⇡ 7% 0.2%

Total 199 ⇡ 5.8%

400

Chapter 8

More Advanced Topics

Genius is one percent inspiration, ninety-nine percent perspiration.
— Thomas Alva Edison

8.1 Overview and Motivation

The main purpose of having this chapter is organizational. The next four sections of this
chapter contain the harder material from Chapter 3 and 4: In Section 8.2 and Section
8.3, we discuss the more challenging variants and techniques involving the two most popular
problem solving paradigms: Complete Search and Dynamic Programming. In Section 8.4 and
Section 8.5, we discuss the more challenging Graph problems and their associated algorithms:
Network Flow and Graph Matching. Putting these materials in the earlier chapters (the first
half of this book) will probably scare o↵ some new readers of this book.

In Section 8.6, we discuss a special class of computational problems that are classified
as NP-hard (the optimization version with the key signature: maximize this or minimize
that) or NP-complete (the decision version with the key signature: just output yes or no).
In complexity theory, unless P = NP , nobody on earth currently (as of year 2020) knows
how to solve them e�ciently in polynomial time. Thus, the typical1 solutions are either
Complete Search on smaller instances, Dynamic Programming on instances with reasonably
small parameters (if there are repeated computations), or we have to find and use the usually
subtle but special constraints in the problem description that will turn the problems into
polynomial problems again – a few involves Network Flow and/or Graph Matching. The
theory of NP-completeness is usually only taught in final year undergraduate or in graduate
level of typical CS curricula. Most (younger) competitive programmers are not aware of this
topic. Thus, it is better to defer the discussion of NP-complete until this chapter.

In Section 8.7, we discuss complex problems that require more than one algorithm(s)
and/or data structure(s). These discussions can be confusing for new programmers if they
are listed in the earlier chapters, e.g., we repeat the discussion of Binary Search the Answer
from Book 1 but this time we will also combine it with other algorithms in this book. It
is more appropriate to discuss problem decomposition in this chapter, after various (easier)
data structures and algorithms have been discussed. Thus, it is a very good idea to read the
entire preceding chapters/sections first before starting to read this Section 8.7.

We also encourage readers to avoid rote memorization of the solutions but more impor-
tantly, please try to understand the key ideas that may be applicable to other problems.

1We avoid discussing approximation algorithms in Competitive Programming as the output of almost all
programming contest problems must be exact.

401

8.2. MORE ADVANCED SEARCH TECHNIQUES c� Steven, Felix, Suhendry

8.2 More Advanced Search Techniques

In Book 1, we have discussed various (simpler) iterative and recursive (backtracking) Com-
plete Search techniques. However, some harder problems require more clever Complete
Search solutions to avoid the Time Limit Exceeded (TLE) verdict. In this section, we dis-
cuss some of these techniques with several examples.

8.2.1 Backtracking with Bitmask

In Book 1, we have seen that bitmasks can be used to model a small set of Booleans.
Bitmask operations are very lightweight and therefore every time we need to use a small set
of Booleans, we can consider using bitmask technique to speed up our (Complete Search)
solution as illustrated in this subsection.

The N-Queens Problem, Revisited

In Book 1, we have discussed UVa 11195 - Another N-Queens Problem. But even after we
have improved the left and right diagonal checks by storing the availability of each of the n
rows and the 2 ⇥ n � 1 left/right diagonals in three bitsets, we still get TLE. Converting
these three bitsets into three bitmasks helps a bit, but this is still TLE.

Fortunately, there is a better way to use these rows, left diagonals (from top left to bottom
right), and right diagonals (from bottom left to top right) checks, as described below. This
formulation2 allows for e�cient backtracking with bitmask. We will straightforwardly use
three bitmasks for rw, ld, and rd to represent the state of the search. The on bits in
bitmasks rw, ld, and rd describe which rows are attacked in the next column, due to row,
left diagonal, or right diagonal attacks from previously placed queens, respectively. Since we
consider one column at a time, there will only be n possible left/right diagonals, hence we
can have three bitmasks of the same length of n bits (compared with 2⇥ n� 1 bits for the
left/right diagonals in the earlier formulation in Book 1).

Notice that although both solutions (the one in Book 1 and the one above) use the
same data structure: three bitmasks, the one described above is much more e�cient. This
highlights the need for problem solvers to think from various angles.

We first show the short code of this recursive backtracking with bitmask for the (general)
N-Queens problem with n = 5 and then explain how it works.

#include <bits/stdc++.h>
using namespace std;

int ans = 0, OK = (1<<5) - 1; // test for n = 5-Queens

void backtrack(int rw, int ld, int rd) {
if (rw == OK) { ans++; return; } // all bits in rw are on
int pos = OK & (~(rw | ld | rd)); // 1s in pos can be used
while (pos) { // faster than O(n)

int p = pos & -pos; // LSOne---this is fast
pos -= p; // turn off that on bit
backtrack(rw|p, (ld|p)<<1, (rd|p)>>1); // clever

}
}

2Although this solution is customized for this N-Queens problem, some techniques are still generic enough.

402

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

int main() {
backtrack(0, 0, 0); // the starting point
printf("%d\n", ans); // should be 10 for n = 5

} // return 0;

Figure 8.1: 5-Queens problem: The initial state

For n = 5, we start with the state (rw, ld, rd) = (0, 0, 0) = (00000, 00000, 00000)2.
This state is shown in Figure 8.1. The variable OK = (1<<5)-1 = (11111)2 is used both as
terminating condition check and to help decide which rows are available for a certain column.
The operation pos = OK & (⇠(rw|ld|rd)) combines the information of which rows in the
next column are attacked by the previously placed queens (via row, left diagonal, or right
diagonal attacks), negates the result, and combines it with variable OK to yield the rows that
are available for the next column. Initially, all rows in column 0 are available.

Complete Search (the recursive backtracking) will try all possible rows (that is, all the
on bits in variable pos) of a certain column one by one. Back in Book 1, we have discussed
two ways to explore all the on bits of a bitmask. This O(n) method below is slower.

for (int p = 0; p < n; ++p) // O(n)
if (pos & (1<<p)) // bit p is on in pos

// process p

The other one below is faster. As the recursive backtracking goes deeper, fewer and fewer
rows are available for selection. Instead of trying all n rows, we can speed up the loop above
by just trying all the on bits in variable pos. The loop below runs in O(k) where k is the
number of bits that are on in variable pos:

while (pos) { // O(k)
int p = LSOne(pos); // LSOne(S) = (S) & (-S)
int j = __builtin_ctz(p); // 2^j = p, get j
// process p (or index j)
pos -= p; // turn off that on bit

}

Figure 8.2: 5-Queens problem; After placing the first Queen

Back to our discussion, for pos = (11111)2, we first start with p = pos & -pos = 1, or row
0. After placing the first Queen (Queen Q0) at row 0 of column 0, row 0 is no longer available
for the next column 1 and this is quickly captured by bit operation rw|p (and also ld|p and

403

8.2. MORE ADVANCED SEARCH TECHNIQUES c� Steven, Felix, Suhendry

rd|p). Now here is the beauty of this solution. A left/right diagonal increases/decreases the
row number that it attacks by one as it changes to the next column, respectively. A shift
left/right operation: (ld|p) << 1 and (rd|p) >> 1 can nicely capture these behaviours
e↵ectively. In Figure 8.2, we see that for the next column 1, row 1 is not available due to
left diagonal attack by Queen Q0. Now only row 2, 3, and 4 are available for column 1. We
will start with row 2.

Figure 8.3: 5-Queens problem; After placing the second Queen

After placing the second Queen (Queen Q1) at row 2 of column 1, row 0 (due to Queen Q0)
and now row 2 are no longer available for the next column 2. The shift left operation for the
left diagonal constraint causes row 2 (due to Queen Q0) and now row 3 to be unavailable
for the next column 2. The shift right operation for the right diagonal constraint causes row
1 to be unavailable for the next column 2. Therefore, only row 4 is available for the next
column 2 and we have to choose it next (see Figure 8.3).

Figure 8.4: 5-Queens problem; After placing the third Queen

After placing the third Queen (Queen Q2) at row 4 of column 2, row 0 (due to Queen Q0),
row 2 (due to Queen Q1), and now row 4 are no longer available for the next column 3. The
shift left operation for the left diagonal constraint causes row 3 (due to Queen Q0) and row
4 (due to Queen Q1) to be unavailable for the next column 3 (there is no row 5—the MSB
in bitmask ld is unused). The shift right operation for the right diagonal constraint causes
row 0 (due to Queen Q1) and now row 3 to be unavailable for the next column 3. Combining
all these, only row 1 is available for the next column 3 and we have to choose it next (see
Figure 8.4).

Figure 8.5: 5-Queens problem; After placing the fourth and the fifth Queens

404

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

The same explanation is applicable for the fourth and the fifth Queen (Queen Q3 and Q4)
to get the first solution {0, 2, 4, 1, 3} as shown in Figure 8.5. We can continue this process
to get the other 9 solutions for n = 5.

With this technique, we can solve UVa 11195. We just need to modify the given code3

above to take the bad cells—which can also be modeled as bitmasks—into consideration.
Let’s roughly analyze the worst case for n ⇥ n board with no bad cell. Assuming that this
recursive backtracking with bitmask has approximately two fewer rows available at each step,
we have a time complexity of O(n!!) where n!! is a notation of multifactorial. For n = 14
with no bad cell, the recursive backtracking solution in Book 1 requires up to 14! ⇡ 87 178M
operations which is clearly TLE whereas the recursive backtracking with bitmask above only
requires around 14!! = 14⇥ 12⇥ 10⇥ . . .⇥ 2 = 645 120 operations. In fact, O(n!!) algorithm
is probably good enough for up to n 17 per test case.

Source code: ch8/UVa11195.cpp|ml

Exercise 8.2.1.1*: What to do if you just need to find and display just one solution of this
N-Queens problem or state that there is no solution, but 1 N 200 000?

Exercise 8.2.1.2*: Another hard backtracking problem with bitmask is the cryptarithm
puzzle where we are given an arithmetic equations, e.g., SEND+MORE = MONEY and we are
supposed to replace each letter with a digit so that the equation is correct, e.g., 9567+1085
= 10652. There can be 0-no solution, 1-unique (like the SEND+MORE = MONEY example), or
multiple solutions for a given cryptarithm puzzle. Notice that there can only be 10 di↵erent
characters used in the puzzle and this part can be converted into a bitmask. Challenge your
backtracking skills by solving Kattis - greatswercporto and/or Kattis - sendmoremoney.

8.2.2 State-Space Search with BFS or Dijkstra’s

In Chapter 4, we have discussed two standard graph algorithms for solving the Single-
Source Shortest Paths (SSSP) problem. BFS can be used if the graph is unweighted while
(appropriate version of) Dijkstra’s algorithm should be used if the graph is weighted. The
SSSP problems listed in Book 1 are easier in the sense that most of the time we can easily
see ‘the graph’ in the problem description (sometimes they are given verbatim). This is
no longer true for some harder graph searching problems listed in this section where the
(implicit) graphs are no longer trivial to see and the state/vertex can be a complex object.
In such case, we usually name the search as ‘State-Space Search’ instead of SSSP.

When the state is a complex object—e.g., a pair in UVa 00321 - The New Villa/Kattis -
ecoins, a triple in UVa 01600 - Patrol Robot/Kattis - keyboard, a quad in UVa 10047 - The
Monocycle/Kattis - robotmaze, etc—, we normally do not use the standard vector<int>
dist to store the distance information as in the standard BFS/Dijkstra’s implementation.
This is because such state may not be easily converted into integer indices. In C++, we
can use comparable C++ pair<int, int> (short form: ii) to store a pair of (integer)
information. For anything more than pair, e.g., triple/quad, we can use comparable C++
tuple<int, int, int>/tuple<int, int, int, int>. Now, we can use C++ pair (or
tuple) in conjunction with C++ map<VERTEX-TYPE, int> dist as our data structure to
keep track of distance values of this complex VERTEX-TYPE. This technique adds a (small)

3For this runtime critical section, we prefer to use fast C++ code in order to pass the time limit.

405

8.2. MORE ADVANCED SEARCH TECHNIQUES c� Steven, Felix, Suhendry

log V factor to the time complexity of BFS/Dijkstra’s. But for complex State-Space Search,
this extra overhead is acceptable in order to bring down the overall coding complexity.

But what if VERTEX-TYPE4 is a small array/vector (e.g., UVa 11212 - Editing a Book and
Kattis - safe)? We will discuss an example of such complex State-Space Search below.

UVa 11212 - Editing a Book

Abridged problem description: Given n paragraphs numbered from 1 to n, arrange them
in the order of {1, 2, ..., n}. With the help of a clipboard, you can press Ctrl-X (cut) and
Ctrl-V (paste) several times. You cannot cut twice before pasting, but you can cut several
contiguous paragraphs at the same time and these paragraphs will later be pasted in order.
What is the minimum number of steps required?

Example 1: In order to make {2, 4, (1), 5, 3, 6} sorted, we cut paragraph (1) and paste
it before paragraph 2 to have {1, 2, 4, 5, (3), 6}. Then, we cut paragraph (3) and paste it
before paragraph 4 to have {1, 2, 3, 4, 5, 6}. The answer is 2 steps.

Example 2: In order to make {(3, 4, 5), 1, 2} sorted, we cut three paragraphs at the same
time: (3, 4, 5) and paste them after paragraph 2 to have {1, 2, 3, 4, 5}. This is just 1 step.
This solution is not unique as we can have the following answer: We cut two paragraphs at
the same time: (1, 2) and paste them before paragraph 3 to get {1, 2, 3, 4, 5}.

The state of this problem is a permutation of paragraphs that is usually stored as an
array/a vector. If we use C++ comparable vector<int> to represent the state, then we
can use map<vector<int>, int> dist directly. However, we can use the slightly faster,
more memory e�cient, but slightly more complex route if we can create an encode and a
decode functions that map a VERTEX-TYPE into a small integer and vice versa. For example,
in this problem, the encode function can be as simple as turning a vector of n individual
1-digit integers into a single n-digits integer and the decode function is used to break a single
n-digits integer back into a vector of n 1-digit integers, e.g., {1, 2, 3, 4, 5} is encoded as an
integer 12345 and an integer 12345 is decoded back to {1, 2, 3, 4, 5}.

Next, we need to analyze the size of the state-space. There are n! permutations of
paragraphs. With maximum n = 9 in the problem statement, this is 9! or 362 880. So,
the size of the state-space is not that big actually. If we use the simple encode/decode
functions shown above, we need vector<int> dist(1e9, -1) which is probably MLE.
Fortunately, now we are dealing with integers so we can use unordered map<int, int>
dist(2*363000). For a slightly faster and more memory e�cient way, seeExercise 8.2.2.2*
where we can use the much smaller vector<int> dist(363000, -1). For the rest of this
subsection, we will use the proposed simple encode/decode functions for clarity.

The loose upper bound of the number of steps required to rearrange these n paragraphs
is O(k), where k is the number of paragraphs that are initially in the wrong positions. This
is because we can use the following ‘trivial’ algorithm (which is incorrect): cut a single
paragraph that is in the wrong position and paste that paragraph in the correct position.
After k such cut-paste operations, we will definitely have sorted paragraphs. But this may
not be the shortest way.

For example, the ‘trivial’ algorithm above will process 54321 as follows:
54321 ! 43215 ! 32145 ! 21345 ! 12345 of total 4 cut-paste steps.
This is not optimal, as we can solve this instance in only 3 steps:
54321 ! 32541 ! 34125 ! 12345.

4In Java, we do not have built-in pair (or tuple) like in C++ and thus we have to create a class that
implements comparable. Now, we can use Java TreeMap<VERTEX-TYPE, Integer> dist to keep track of
distances. In Python, tuples is common and can be used for this purpose. We can use Python set (curly
braces dist = {}) to keep track of distances. In OCaml, we can use tuples too.

406

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

This problem has a huge search space that even for an instance with ‘small’ n = 9, it is
nearly impossible for us to get the answer manually, e.g., We likely will not start drawing
the recursion tree just to verify that we need at least 4 steps5 to sort 549873216 and at least
5 steps6 to sort 987654321.

The di�culty of this problem lies in the number of edges of the State-Space graph. Given
a permutation of length n (a vertex), there are nC2 possible cutting points (index i, j 2 [1..n])
and there are n possible pasting points (index k 2 [1..(n� (j � i+1))]). Therefore, for each
of the n! vertex, there are about O(n3) edges connected to it.

The problem actually asks for the shortest path from the source vertex/state (the input
permutation) to the destination vertex (a sorted permutation) on this unweighted but huge
State-Space graph. The worst case behavior if we run a single O(V +E) BFS on this State-
Space graph is O(n!+(n!⇤n3)) = O(n!⇤n3). For n = 9, this is 9!⇤93 = 264 539 520 ⇡ 265M
operations. This solution most likely will receive a TLE verdict.

We need a better solution, which we will see in the next Section 8.2.3.

Exercise 8.2.2.1: Is it possible that State-Space Search is cast as a maximization problem?

Exercise 8.2.2.2*: We have shown a simple way to encode a vector of n 1-digit integers
into a single n-digits integer. When n = 9 (skipping integer 0 as in UVa 11212), we will
use up to 109 = 1G memory space. However many of the cells will be empty. Note that
these n integers form a permutation of n integers. Show a more e�cient encoding and its
corresponding decoding functions to map a vector of n integers to its permutation index,
e.g., {1, 2, . . . , n� 1, n} is index 0, {1, 2, . . . , n, n� 1} is index 1, . . . , and {n, n� 1, . . . , 2, 1}
is index n!� 1. This way, we only need 9! = 362K memory space.

8.2.3 Meet in the Middle

For certain SSSP (usually State-Space Search) problem on a huge graph and we know two
vertices: the source vertex/state s and the destination vertex/state t, we may be able to
significantly reduce the time complexity of the search by searching from both directions and
hoping that the search will meet in the middle. We illustrate this technique by continuing
our discussion of the hard UVa 11212 problem.

Note that the meet in the middle technique does not always refer to bidirectional search
(BFS), e.g., see Exercise 8.6.2.3*. It is a problem solving strategy of ‘searching from two
directions/parts’ that may appear in another form in other di�cult searching problems.

Bidirectional Search (BFS): UVa 11212 - Editing a Book (Revisited)

Although the worst case time complexity of the State-Space Search of this problem is bad,
the largest possible answer for this problem is small. When we run BFS on the largest test
case with n = 9 from the destination state t (the sorted permutation 123456789) to reach
all other states, we find out that for this problem, the maximum depth of the BFS for n = 9
is just 5 (after running it for a few minutes—which is TLE in contest environment).

This important upperbound information allows us to perform bidirectional BFS by choos-
ing only to go to depth 2 from each direction. While this information is not a necessary
condition for us to run a bidirectional BFS, it can help to reduce the search space.

5In compressed form: 549873216! 549816732! 567349812! 567812349! 123456789.
6In compressed form: 987654321! 985432761! 943278561! 327894561! 345612789! 123456789.

407

8.2. MORE ADVANCED SEARCH TECHNIQUES c� Steven, Felix, Suhendry

There are three possible cases which we discuss below.

Figure 8.6: Case 1: Example when s is two steps away from t

Case 1: Vertex s is within two steps away from vertex t (see Figure 8.6).
We first run BFS (max depth of BFS = 2) from the target vertex t to populate distance
information from t: dist t. If the source vertex s is already found, i.e., dist t[s] is not
INF, then we return this value. The possible answers are: 0 (if s = t), 1, or 2 steps.

Case 2: Vertex s is within three to four steps away from vertex t (see Figure 8.7).

Figure 8.7: Case 2: Example when s is four steps away from t

If we do not manage to find the source vertex s after Case 1 above, i.e., dist t[s] = INF,
we know that s is located further away from vertex t. We now run BFS from the source
vertex s (also with max depth of BFS = 2) to populate distance information from s: dist s.
If we encounter a common vertex v ‘in the middle’ during the execution of this second BFS,
we know that vertex v is within two layers away from vertex t and s. The answer is therefore
dist s[v]+dist t[v] steps. The possible answers are: 3 or 4 steps.

Case 3: Vertex s is exactly five steps away from vertex t (see Figure 8.8).

Figure 8.8: Case 3: Example when s is five steps away from t

If we do not manage to find any common vertex v after running the second BFS in Case
2 above, then the answer is clearly 5 steps that we know earlier as s and t must always be
reachable. Stopping at depth 2 allows us to skip computing depth 3, which is much more
time consuming than computing depth 2.

We have seen that given a permutation of length n (a vertex), there are about O(n3)
branches in this huge State-Space graph. However, if we just run each BFS with at most
depth 2, we only execute at most O((n3)2) = O(n6) operations per BFS. With n = 9, this
is 96 = 531 441 operations (this value is greater than 9! as there are some overlaps). As the

408

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

destination vertex t is unchanged throughout the State-Space search, we can compute the
first BFS from destination vertex t just once. Then we compute the second BFS from source
vertex s per query. Our BFS implementation will have an additional log factor due to the
usage of table data structure (e.g., map) to store dist t and dist s. This is Accepted.

Source code: ch8/UVa11212.cpp|ml

In the event it is not possible to know the upperbound in advance, we can write a more
general version of meet in the middle/bidirectional search (BFS) as follows: enqueue two
sources: (s, from s) and (t, from t) initially and perform BFS as usual. We ‘meet in the
middle’ if a vertex that has from s flag meets a vertex that has from t flag.

Programming Exercises solvable with More Advanced Search Techniques:

a. More Challenging Backtracking Problems

1. Entry Level: UVa 00711 - Dividing up * (backtracking with pruning)

2. UVa 01052 - Bit Compression * (LA 3565 - WorldFinals SanAntonio06;
backtracking with some form of bitmask)

3. UVa 11451 - Water Restrictions * (the input constraints are small;
backtracking with bitmask without memoization; or use DP)

4. UVa 11699 - Rooks * (try all the possible row combinations on which we
put rooks and keep the best)

5. Kattis - committeeassignment * (backtracking; pruning; add a member to
existing committee or create a new committee; TLE with DP bitmask)

6. Kattis - holeynqueensbatman * (similar with UVa 11195)

7. Kattis - greatswercporto * (use backtracking with pruning; testing up to 10!
possible permutations possibly TLE)

Extra UVa: 00131, 00211, 00387, 00710, 10202, 10309, 10318, 10890, 11090,
11127, 11195, 11464, 11471.

Extra Kattis: bells, capsules, correspondence, knightsfen, minibattleship, peb-
blesolitaire, sendmoremoney.

b. State-Space Search, BFS, Easier

1. Entry Level: UVa 10047 - The Monocycle * (s: (row, col, dir, color))

2. UVa 01600 - Patrol Robot * (LA 3670 - Hanoi06; s: (row, col, k left);
reset k left to the original k as soon as the robot enters a non obstacle cell)

3. UVa 11513 - 9 Puzzle * (s: (vector of 9 integers); SDSP; BFS)

4. UVa 12135 - Switch Bulbs * (LA 4201 - Dhaka08; s: (bitmask); BFS;
similar with UVa 11974)

5. Kattis - ecoins * (s: (conventional-value, infotechnological-value); BFS; also
available at UVa 10306 - e-Coins)

6. Kattis - flipfive * (s: (bitmask); only 29 = 512 grid configurations; BFS)

7. Kattis - safe * (s: (convert 3x3 grid into a base 4 integer); BFS)

Extra UVa: 00298, 00928, 10097, 10682, 11974.

Extra Kattis: hydrasheads, illiteracy.

409

8.2. MORE ADVANCED SEARCH TECHNIQUES c� Steven, Felix, Suhendry

c. State-Space Search, BFS, Harder

1. Entry Level: UVa 11212 - Editing a Book * (meet in the middle)

2. UVa 11198 - Dancing Digits * (s: (permutation); tricky to code)

3. UVa 11329 - Curious Fleas * (s: (bitmask); 4 bits for die position; 16
bits for cells with fleas; 6 bits for side with a flea; use map; tedious)

4. UVa 12445 - Happy 12 * (meet in the middle; similar with UVa 11212)

5. Kattis - keyboard * (LA 7155 - WorldFinals Marrakech15; s: (row, col,
char typed); also available at UVa 01714 - Keyboarding)

6. Kattis - robotmaze * (s: (r, c, dir, steps); be careful of corner cases)

7. Kattis - robotturtles * (s: (r, c, dir, bitmask ice castles); print solution)

Extra UVa: 00321, 00704, 00816, 00985, 01251, 01253, 10021, 10085, 11160,
12569.

Extra Kattis: buggyrobot, distinctivecharacter, enteringthetime, jabuke2, jump-

ingmonkey, jumpingyoshi, ricochetrobots.

d. State-Space Search, Dijkstra’s

1. Entry Level: UVa 00658 - It’s not a Bug ... * (s: (bitmask—whether a
bug is present or not); the state-space graph is weighted)

2. UVa 01048 - Low Cost Air Travel * (LA 3561 - WorldFinals SanAnto-
nio06; tedious state-space search problem, use Dijkstra’s)

3. UVa 01057 - Routing * (LA 3570 - WorldFinals SanAntonio06; Floyd-
Warshall; APSP; reduce to weighted SSSP problem; Dijkstra’s)

4. UVa 10269 - Adventure of Super Mario * (use Floyd-Warshall to pre-
compute APSP using only Villages; use Dijkstra’s on s: (u, super run left))

5. Kattis - bumped * (s: (city, has use free ticket); use Dijkstra’s)

6. Kattis - destinationunknown * (use Dijkstra’s twice; one normally; one with
s: (point, has edge g h used); compare the results)

7. Kattis - justpassingthrough * (s: (r, c, n left); Dijkstra’s/SSSP on DAG)

Extra UVa: 10923, 11374.

Extra Kattis: bigtruck, kitchen, rainbowroadrace, treasure, xentopia.

e. Also see additional (hard) search-related problems in Section 8.6, 8.7, and 9.20.

410

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.3 More Advanced DP Techniques

In various sections in Chapter 3+4+5+6, we have seen the introduction of Dynamic Pro-
gramming (DP) technique, several classical DP problems and their solutions, plus a gentle
introduction to the easier non classical DP problems. There are several more advanced DP
techniques that we have not covered in those sections. Here, we present some of them.

In IOI, ICPC, and many other (online) programming contests, many of these more ad-
vanced techniques are actually used. Therefore if you want to do well in the real programming
competitions, you need to also master this section.

8.3.1 DP with Bitmask

Some of the modern DP problems require a (small) set of Booleans as one of the parameters
of the DP state. This is another situation where bitmask technique can be useful (also see
Section 8.2.1). This technique is suitable for DP as the integer (that represents the bitmask)
can be used as the index of the DP table. We have seen this technique once when we
discussed DP TSP (see Book 1). Here, we give one more example.

UVa 10911 - Forming Quiz Teams

For the abridged problem statement and the solution code of this problem, please refer to the
very first problem mentioned in the first page of Book 1. The grandiose name of this problem
is “minimum weight perfect matching on a small complete (general) weighted graph” that
will be formally discussed in Section 8.5. In the general case, this problem is hard. However,
if the input size is small, up to M 20, then DP with bitmask solution can be used.

The DP with bitmask solution for this problem is simple. The matching state is rep-
resented by a bitmask. We illustrate this with a small example when M = 6. We start
with a state where nothing is matched yet, i.e., bitmask=111111. If item 0 and item 2 are
matched, we can turn o↵ two bits (bit 0 and bit 2) at the same time via this simple bit
operation, i.e., bitmask^(1<<0)^(1<<2), thus the state becomes bitmask=111010. Notice
that index starts from 0 and is counted from the right. If from this state, item 1 and item 5
are matched next, the state will become bitmask=011000. The perfect matching is obtained
when the state is all ‘0’s, in this case: bitmask=000000.

Although there are many ways to arrive at a certain state, there are only O(2M) distinct
states. For each state, we record the minimum weight of previous matchings that must be
done in order to reach this state. We want a perfect matching. First, we find one ‘on’ bit
i using O(1) LSOne technique. Then, we find the best other ‘on’ bit j from [i+1..M-1]
using another O(k) loop of LSOne checks where k is the number of remaining ‘on’ bits in
bitmask and recursively match i and j. This algorithm runs in O(M ⇥ 2M). In problem
UVa 10911, M = 2N and 2 N 8, so this DP with bitmask solution is feasible. For more
details, please study the code.

Source code: ch8/UVa10911.cpp|java|py|ml

In this subsection, we have shown that DP with bitmask technique can be used to solve small
instances (M 20) of matching on general graph. In general, bitmask technique allows us
to represent a small set of up to ⇡ 20 items. The programming exercises in this section
contain more examples when bitmask is used as one of the parameters of the DP state.

411

8.3. MORE ADVANCED DP TECHNIQUES c� Steven, Felix, Suhendry

Exercise 8.3.1.1: Show the required DP with bitmask solution if we have to deal with
“Maximum Cardinality Matching on a small general graph (1 V 20)”. Note that the
main di↵erence compared to UVa 10911 is that this time the required matching does not
need to be a perfect matching, but it has to be the one with maximum cardinality.

8.3.2 Compilation of Common (DP) Parameters

After solving lots of DP problems (including recursive backtracking without memoization),
contestants will develop a sense of which parameters are commonly used to represent the
states of the DP (or recursive backtracking) problems. Therefore, experienced contestants
will try to get the correct set of required parameters from this list first when presented with
a ‘new’ DP problem. Some of them are as follows (note that this list is not exhaustive and
your own personal list will grow as you solve more DP problems):

1. Parameter: Index i in an array, e.g., [x0, x1, ..., xi, ...].
Transition: Extend subarray [0..i] (or [i..n-1]), process i, take item i or not, etc.
Example: 1D Max Sum, LIS, part of 0-1 Knapsack, TSP, etc (Book 1).

2. Parameter: Indices (i, j) in two arrays, e.g., [x0, x1, ..., xi] + [y0, y1, ..., yj].
Transition: Extend i, j, or both, etc.
Example: String Alignment/Edit Distance, LCS, etc (Section 6.3).

3. Parameter: Subarray (i, j) of an array. [..., xi, xi+1, ..., xj, ...].
Transition: Split (i, j) into (i, k) + (k + 1, j) or into (i, i+ k) + (i+ k + 1, j), etc.
Example: Matrix Chain Multiplication (Section 9.7), etc.

4. Parameter: A vertex (position) in a (usually implicit) DAG.
Transition: Process the neighbors of this vertex, etc.
Example: Shortest/Longest/Counting Paths in/on DAG, etc (Book 1).

5. Parameter: Knapsack-Style Parameter.
Transition: Decrease (or increase) current value until zero (or until threshold), etc.
Example: 0-1 Knapsack, Subset Sum, Coin Change variants, etc (Book 1).
Note: This parameter is not DP friendly if its range is high (see the term ‘pseudo-
polynomial’ in Section 8.6).
Also see tips in Section 8.3.3 if the value of this parameter can go negative.

6. Parameter: Small set (usually using bitmask technique).
Transition: Flag one (or more) item(s) in the set to on (or o↵), etc.
Example: DP-TSP (Book 1), DP with bitmask (Section 8.3.1), etc.

Note that the harder DP problems usually combine two or more parameters to represent
distinct states. Try to solve more DP problems listed in this section to build your DP skills.

8.3.3 Handling Negative Parameter Values with O↵set

In rare cases, the possible range of a parameter used in a DP state can go negative. This
causes issues for DP solutions as we map parameter values into indices of a DP table. The
indices of a DP table must therefore be non negative. Fortunately, this issue can be dealt
easily by using o↵set technique to make all the indices become non negative again. We
illustrate this technique with another non trivial DP problem: Free Parentheses.

412

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

UVa 01238 - Free Parentheses (ICPC Jakarta08, LA 4143)

Abridged problem statement: You are given a simple arithmetic expression which consists of
only addition and subtraction operators, i.e., 1 - 2 + 3 - 4 - 5. You are free to put any
parentheses to the expression anywhere and as many as you want as long as the expression is
still valid. How many di↵erent numbers can you make? The answer for the simple expression
above is 6:

1 - 2 + 3 - 4 - 5 = -7 1 - (2 + 3 - 4 - 5) = 5
1 - (2 + 3) - 4 - 5 = -13 1 - 2 + 3 - (4 - 5) = 3
1 - (2 + 3 - 4) - 5 = -5 1 - (2 + 3) - (4 - 5) = -3

The problem specifies the following constraints: the expression consists of only 2 N 30
non-negative numbers less than 100, separated by addition or subtraction operators. There
is no operator before the first and after the last number.

To solve this problem, we need to make three observations:

1. We only need to put an open bracket after a ‘-’ (negative) sign as doing so will reverse
the meaning of subsequent ‘+’ and ‘-’ operators;

2. We can only put X close brackets if we already use X open brackets—we need to store
this information to process the subproblems correctly;

3. The maximum value is 100 + 100 + ... + 100 (100 repeated 30 times) = 3000 and the
minimum value is 0 - 100 - ... - 100 (one 0 followed by 29 times of negative 100) =
-2900—this information also need to be stored, as we will see below.

To solve this problem using DP, we need to determine which set of parameters of this problem
represent distinct states. The DP parameters that are easier to identify are these two:

1. ‘idx’—the current position being processed, we need to know where we are now.

2. ‘open’—the number of open brackets so that we can produce a valid expression7.

But these two parameters are not enough to uniquely identify the state yet. For example,
this partial expression: ‘1-1+1-1...’ has idx = 3 (indices: 0, 1, 2, 3 have been processed),
open = 0 (cannot put close bracket anymore), which sums to 0. Then, ‘1-(1+1-1)...’ also
has the same idx = 3, open = 0 and sums to 0. But ‘1-(1+1)-1...’ has the same idx = 3,
open = 0, but sums to -2. These two DP parameters do not identify a unique state yet. We
need one more parameter to distinguish them, i.e., the value ‘val’. This skill of identifying
the correct set of parameters to represent distinct states is something that one has to develop
in order to do well with DP problems. The code and its explanation are shown below.

As we can see from the code, we can represent all possible states of this problem with a
3D array: bool visited[idx][open][val]. The purpose of this memo table visited is to
flag if certain state has been visited or not. As ‘val’ ranges from -2900 to 3000 (5901 distinct
values), we have to o↵set this range to make the range non-negative. In this example, we use
a safe constant +3000. The number of states (with extra bu↵er) is 35⇥ 35⇥ 6010 ⇡ 7.5M
with O(1) processing per state. This is fast enough.

7At idx = N (we have processed the last number), it is fine if we still have open > 0 as we can dump all
the necessary closing brackets at the end of the expression, e.g.,: 1 - (2 + 3 - (4 - (5))).

413

8.3. MORE ADVANCED DP TECHNIQUES c� Steven, Felix, Suhendry

void dp(int idx, int open, int val) { // OFFSET = 3000
if (visited[idx][open][val+OFFSET]) // has been reached before

return; // +3000 offset to make
// indices in [100..6000]

visited[idx][open][val+OFFSET] = true; // set this to true
if (idx == N) { // last number

S.insert(val); // val is one
return; // of expression result

}
int nval = val + num[idx] * sign[idx] * ((open%2 == 0) ? 1 : -1);
if (sign[idx] == -1) // 1: put open bracket

dp(idx+1, open+1, nval); // only if sign is -
if (open > 0) // 2: put close bracket

dp(idx+1, open-1, nval); // if we have >1 opens
dp(idx+1, open, nval); // 3: do nothing

}

// Preprocessing: Set a Boolean array ‘used’ which is initially set to all
// false, then run this top-down DP by calling rec(0, 0, 0)
// The solution is the # of values in (or size of) unordered_set ‘used’

Source code: ch8/UVa01238.cpp|java|py|ml

8.3.4 MLE/TLE? Use Better State Representation

Our ‘correct’ DP solution (which produces the correct answer but using more computing
resources) may be given a Memory Limit Exceeded (MLE) or Time Limit Exceeded (TLE)
verdict if the problem author used a better state representation and set larger input con-
straints that break our ‘correct’ DP solution. If that happens, we have no choice but to
find a better DP state representation in order to reduce the DP table size (and subsequently
speed up the overall time complexity). We illustrate this technique using an example:

UVa 01231 - ACORN (ICPC Singapore07, LA 4106)

Figure 8.9: The Descent Path

Abridged problem statement: Given t oak trees, the height h of all trees, the height f
that Jayjay the squirrel loses when it flies from one tree to another, 1 t, h 2000,

414

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

1 f 500, and the positions of acorns on each of the oak trees: acorn[tree][height],
determine the max number of acorns that Jayjay can collect in one single descent. Example:
if t = 3, h = 10, f = 2 and acorn[tree][height] as shown in Figure 8.9, the best descent
path has a total of 8 acorns (see the dotted line).

Näıve DP Solution: use a table total[tree][height] that stores the best possible
acorns collected when Jayjay is on a certain tree at certain height. Then Jayjay recursively
tries to either go down (-1) unit on the same oak tree or flies (-f) unit(s) to t-1 other oak
trees from this position. On the largest test case, this requires 2000⇥ 2000 = 4M states and
4M ⇥ 2000 = 8B operations. This approach is clearly TLE.

Better DP Solution: we can actually ignore the information: “On which tree Jayjay is
currently at” as just memoizing the best among them is su�cient. This is because flying
to any other t-1 other oak trees decreases Jayjay’s height in the same manner. Set a table:
dp[height] that stores the best possible acorns collected when Jayjay is at this height.
The bottom-up DP code that requires only 2000 = 2K states and time complexity of 2000⇥
2000 = 4M is shown below:

for (int tree = 0; tree < t; ++tree) // initialization
dp[h] = max(dp[h], acorn[tree][h]);

for (int height = h-1; height >= 0; --height)
for (int tree = 0; tree < t; ++tree) {

acorn[tree][height] +=
max(acorn[tree][height+1], // from this tree +1 above
((height+f <= h) ? dp[height+f] : 0)); // from tree at height+f

dp[height] = max(dp[height], acorn[tree][height]); // update this too
}

printf("%d\n", dp[0]); // the solution is here

Source code: ch8/UVa01231.cpp|java|py|ml

When the size of näıve DP states is too large that causes the overall DP time complexity
to be infeasible, think of another more e�cient (but usually not obvious) way to represent
the possible states. Using a good state representation is a potential major speed up for a
DP solution. Remember that no programming contest problem is unsolvable, the problem
author must have known a technique.

8.3.5 MLE/TLE? Drop One Parameter, Recover It from Others

Another known technique to reduce the memory usage of a DP solution (and thereby speed
up the solution) is to drop one important parameter which can actually be recovered by
using the other parameter(s) or in another word, that parameter can be dropped to have a
smaller DP state. We use one ICPC World Finals problem to illustrate this technique.

UVa 01099 - Sharing Chocolate (ICPC World Finals Harbin10)

Abridged problem description: Given a big chocolate bar of size 1 w, h 100, 1 n 15
friends, and the size request of each friend. Can we break the chocolate by using horizontal
and vertical cuts that break the current chocolate into two parts so that each friend gets one
piece of chocolate bar of his chosen size?

415

8.3. MORE ADVANCED DP TECHNIQUES c� Steven, Felix, Suhendry

For example, see Figure 8.10—left. The size of the original chocolate bar is w = 4 and
h = 3. If there are 4 friends, each requesting a chocolate piece of size {6, 3, 2, 1}, respectively,
then we can break the chocolate into 4 parts using 3 cuts as shown in Figure 8.10—right.

Figure 8.10: Illustration for ICPC WF2010 - J - Sharing Chocolate

For contestants who are already familiar with DP technique, then the following ideas should
easily come to mind: first, if sum of all requests is not the same as w ⇥ h, then there
is no solution. Otherwise, we can represent a distinct state of this problem using three
parameters: (w, h, bitmask) where w and h are the dimensions of the chocolate that we are
currently considering; and bitmask is the subset of friends that already have chocolate piece
of their chosen size. However, a quick analysis shows that this requires a DP table of size
100⇥ 100⇥ 215 = 327M . This is too much for a programming contest.

A better state representation is to use only two parameters, either: (w, bitmask) or
(h, bitmask). Without loss of generality, we adopt (w, bitmask) formulation. With this for-
mulation, we can ‘recover’ the required value h via sum(bitmask) / w, where sum(bitmask)
is the sum of the piece sizes requested by satisfied friends in bitmask (i.e., all the ‘on’ bits of
bitmask). This way, we have all the required parameters: w, h, and bitmask, but we only
use a DP table of size 100⇥ 215 = 3M . This one is doable.

Implementation wise, we can have a top-down DP with two parameters (w, bitmask) and
recover h at the start of DP recursion, or we can actually still use top-down DP with three
parameters: (w, h, bitmask), but since we know parameter h is always correlated with w and
bitmask, we can just use 2D memo table for w and bitmask.

Base cases: if bitmask only contains 1 ‘on’ bit and the requested chocolate size of that
person equals to w ⇥ h, we have a solution. Otherwise we do not have a solution.

For general cases: if we have a chocolate piece of size w⇥ h and a current set of satisfied
friends bitmask = bitmask1

S
bitmask2, we can either do a horizontal or a vertical cut so

one piece is to serve friends in bitmask1 and the other is to serve friends in bitmask2.
The worst case time complexity for this problem is still huge, but with proper pruning,

this solution runs within the time limit.

Source code: ch8/UVa01099.cpp|ml

8.3.6 Multiple Test Cases? No Memo Table Re-initializations

In certain DP problems with multiple (non-related) test cases (so that the total run time
is typically the number of test cases multiplied by the run time of the worst possible test
case), we may need to re-initialize our memo table (usually to -1). This step alone may
consume a lot of CPU time, e.g., an O(n2) DP problem with 200 cases and n 2000 needs
200 ⇤ 2000 ⇤ 2000 = 8 ⇤ 106 initialization operations.

If we use top-down DP where we may avoid visiting all possible states of the problem for
most test cases, we can use an array (or map) lastvisit where lastvisit[s] = 0 (when
state s is not visited yet) or lastvisit[s] = c (when the last time state s was visited is
on test c). If we are on the t-th test case and we encounter a state s, we can tell if it has
been visited before (for this t-th test case) simply by checking whether lastvisit[s] = t.
Thus, we never need to re-initialize the memo table at the start of each test case. For some
rare time-critical problems, this small change may di↵erentiate TLE or AC verdicts.

416

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.3.7 MLE? Use bBST or Hash Table as Memo Table

In Book 1, we have seen a DP problem: 0-1 Knapsack where the state is (id, remW).
Parameter id has range [0..n-1] and parameter remW has range [0..S]. If the problem
author sets n⇥S to be quite large, it will cause the 2D array (for the DP table) of size n⇥S
to be too large (Memory Limit Exceeded in programming contests).

Fortunately for a problem like this, if we run the Top-Down DP on it, we will realize that
not all of the states are visited (whereas the Bottom-Up DP version will have to explore all
states). Therefore, we can trade runtime for smaller space by using a balanced BST (C++
STL map or Java TreeMap) as the memo table. This balanced BST will only record the
states that are actually visited by the Top-Down DP. Thus, if there are only k visited states,
we will only use O(k) space instead of n ⇥ S. The runtime of the Top-Down DP increases
by O(c ⇥ log k) factor. However, note that this technique is rarely useful due to the high
constant factor c involved.

Alternatively, we can also use Hash Table (C++ STL unordered map or Java HashMap)
as the memo table. Albeit faster, we may (usually) have to write our own custom hash
function especially if the DP state uses more than one parameter which may not be trivial
to implement in the first place.

Therefore, this technique is something that one may consider as last resort only if all
other techniques that we currently know have been tried (and still fail). For example, Kattis
- woodensigns can be seen as a standard counting paths on DAG problem with state: (idx,
base1, base2) and the transition: go left, go right, or both. The issue is that the state is big
as idx, base1, base2 can range from [1..2000]. Fortunately, we can map (idx, base1, base2)
into a rather large integer key = idx*2000*2000 + base1*2000 + base2 and then use Hash
Table to map this key into value to avoid recomputations.

8.3.8 TLE? Use Binary Search Transition Speedup

In rare cases, a näıve DP solution will be TLE, but you notice that the DP transition can
be speed-up using binary search due to the sorted ordering of the data.

Kattis - busticket

Abridged problem description: We are given a price s of a single bus trip, a price p for a
period bus ticket that is valid for m consecutive days starting from the day of purchase, n
bus trips that you will make in the future, and array t containing n non-negative integers in
non-decreasing order where t[i] describe the number of days since today (day 0) until you
make the i-th bus trip. Our task is to compute the smallest possible cost of making all n
trips. The problem is 1 n 106 and an O(n2) algorithm will get TLE.

A näıve DP solution is simply dp(i) that computes the minimum cost of making the bus
trips from day [i..n-1]. If i == n, we are done and return 0. Otherwise, we take the minimum
of two choices. The first choice is to buy a single bus trip ticket for the i-th trip (with cost s)
and advance to dp(i+ 1). The second choice is to buy a period bus ticket starting from the
i-th trip that is valid for the i-th trip until just before the j-th trip where j > i is the first
time t[j] � t[i] + m, i.e., the period bus ticket can’t cover the j-th trip too. Then we add
cost p and advance to dp(j). There are O(n) state and the second choice entails an O(n)
loop if done iteratively, thus we have an O(n2) solution that gets a TLE verdict.

However, if we read the problem statement carefully, we should notice a peculiar keyword:
non-decreasing ordering of ti. This means, we can search for the first j where t[j] � t[i] +m
using binary search instead. This speeds up the transition phase from O(n) to O(log n), thus
the overall runtime becomes O(n log n). This is AC.

417

8.3. MORE ADVANCED DP TECHNIQUES c� Steven, Felix, Suhendry

8.3.9 Other DP Techniques

There are a few more DP problems in Section 8.6, Section 8.7, and in Chapter 9. They are:

1. Section 8.6.3: Bitonic Traveling-Salesman-Problem (special case of TSP),

2. Section 8.6.6: Max-Weight-Independent-Set (on tree) can be solved with DP,

3. Section 8.6.12: small instances of Min-Clique-Cover can be solved with O(3n) DP,

4. Section 9.3: Sparse Table Data Structure uses DP,

5. Section 9.7: Matrix Chain Multiplication (a classic DP problem),

6. Section 9.22: Egg Dropping Puzzle that can be solved with DP (various solutions),

7. Section 9.23: Rare techniques to further optimize DP.

8. Section 9.29: Chinese Postman Problem (another usage of DP with bitmask),

Programming Exercises related to More Advanced DP:

a. DP level 3 (harder than those listed in Chapter 3, 4, 5, and 6)

1. Entry Level: UVa 01172 - The Bridges of ... * (LA 3986 - SouthWest-
ernEurope07; weighted bipartite matching with additional constraints)

2. UVa 00672 - Gangsters * (s: (gangster id, openness level); do not use
cur time as part of the state)

3. UVa 01211 - Atomic Car Race * (LA 3404 - Tokyo05; precompute T[L],
the time to run a path of length L; s: (i) - checkpoint i is we change tire)

4. UVa 10645 - Menu * (s: (days left, budget left, prev dish, prev dish cnt);
the first 2 params are knapsack-style; the last 2 params to determine price)

5. Kattis - aspenavenue * (sort; compute tree positions; s: (l left, r left), t: put
next tree on the left/right; also available at UVa 11555 - Aspen Avenue)

6. Kattis - busticket * (s: (day i); t: either buy daily ticket or jump to end of
period ticket (use binary search to avoid TLE))

7. Kattis - protectingthecollection * (DP; s: (r, c, dir, has installed a mirror);
t: just proceed or install ‘/’ or ‘\’ mirror at a ‘.’)

Extra UVa: 10163, 10604, 10898, 11002, 11523, 12208, 12563.

Extra Kattis: bridgeautomation, crackerbarrel, eatingeverything, exchanger-
ates, homework, ingestion, mailbox, posterize, welcomehard, whatsinit.

b. DP level 4

1. Entry Level: Kattis - coke * (drop parameter n1; recover it from b (number
of coke bought), n5, and n10; also available at UVa 10626 - Buying Coke)

2. UVa 01238 - Free Parentheses * (LA 4143 - Jakarta08; o↵set technique)

3. UVa 10304 - Optimal Binary ... * (see Section 9.23)

4. UVa 12870 - Fishing * (LA 6848 - Bangkok14; split DP for fishing and
nourishing; try all combination of K fishing + 2K nourishing events)

5. Kattis - companypicnic * (s: (name, has been matched); DP weighted match-
ing (both cardinality and weight) on Tree)

6. Kattis - recursionrandfun * (DP; the possible random values are small due
to modulo b and c; try all; memoize)

7. Kattis - rollercoasterfun * (s: (T); split DPs when b = 0 and when b 6= 0)

Extra UVa: 00473, 00812, 01222, 01231, 10029, 10118, 10482, 10559.

Extra Kattis: bundles, city, johnsstack, mububa, volumeamplification.

418

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

c. DP, Counting Paths in DAG, Harder

1. Entry Level: UVa 11432 - Busy Programmer * (counting paths in DAG;
the implicit DAG is not trivial; 6 parameters)

2. UVa 00702 - The Vindictive Coach * (s: (n above, n below, go up))

3. UVa 11125 - Arrange Some Marbles * (counting paths in implicit DAG;
the implicit DAG is not trivial; 8 parameters)

4. UVa 11375 - Matches * (counting paths in DAG; 2 parameters; be careful
that we can create a ‘0’ with 6 sticks; need to use Big Integer)

5. Kattis - countcircuits * (s: (id, cur x, cur y); t: skip or use this vector; use
o↵set technique to avoid negative indices)

6. Kattis - favourable * (s: (cur page); t: jump to one of the 3 sections)

7. Kattis - pachinkoprobability * (s: (pos); DAG modeling; long long)

Extra UVa: 10722, 11133, 12063.

Extra Kattis: constrainedfreedomofchoice, frustratedqueue, ratings, tractor,
woodensigns.

d. DP with Bitmask

1. Entry Level: UVa 10911 - Forming Quiz ... * (the intro problem of this
book; DP with bitmask; weighted MCM; small complete weighted graph)

2. UVa 01099 - Sharing Chocolate * (LA 4794 - WorldFinals Harbin10; s:
(w, bitmask); recover parameter value h)

3. UVa 01252 - Twenty Questions * (LA 4643 - Tokyo09; DP, s: (mask1,
mask2) where mask1/mask2 describes the features/answers, respectively)

4. UVa 11825 - Hacker’s Crackdown * (first, use iterative brute force: try
which subset of vertices can cover all vertices; then use DP)

5. Kattis - hidingchickens * (weighted MCM; small complete weighted graph;
make fox goes back to the killing spot first after hiding one or two chickens)

6. Kattis - narrowartgallery * (s: (row, mask state of prev row, k left))

7. Kattis - pebblesolitaire2 * (s: (bitmask); backtracking su�ces for Kattis -
pebblesolitaire; but this version needs extra memoization)

Extra UVa: 01076, 01240, 10123, 10149, 10364, 10817, 11218, 11391, 11472,
11806, 12030.

Extra Kattis: goingdutch, uxuhulvoting, wherehaveyoubin.

419

8.4. NETWORK FLOW c� Steven, Felix, Suhendry

8.4 Network Flow

8.4.1 Overview and Motivation

Problem: Imagine a connected, (integer) weighted, and directed graph8 as a pipe network
where the edges are the pipes and the vertices are the splitting points. Each edge has a
weight equal to the capacity of the pipe. There are also two special vertices: source s and
sink t. What is the maximum flow (rate) from source s to sink t in this graph (imagine
water flowing in the pipe network, we want to know the maximum volume of water over
time that can pass through this pipe network)? This problem is called the Maximum Flow
problem (often abbreviated as just Max Flow), one of the problems in the family of problems
involving flow in networks. See the illustration of a Flow Graph (Figure 8.11—left) and the
Max Flow/Min Cut of this Flow Graph (Figure 8.11—right). The details will be elaborated
in the next few sections.

Figure 8.11: Max Flow/Min Cut Illustration

8.4.2 Ford-Fulkerson Method

One solution for Max Flow is the Ford-Fulkerson method—invented by the same Lester
Randolph Ford, Jr who invented the Bellman-Ford algorithm and Delbert Ray Fulkerson.
The pseudo-code (as we will use faster versions later) of this method is as follows:

setup directed residual graph with edge capacity = original edge weights
mf = 0 // an iterative algorithm
while (there exists an augmenting path p from s to t)

// p is a path from s->t that passes through +ve edges in residual graph
augment/send flow f along the path p (s -> ... -> i -> j -> ... t)

// let f = the edge weight i-j that is the minimum along the path p
1. decrease capacity of forward edges (e.g., i, j) along path p by f
2. increase capacity of backward edges (e.g., j, i) along path p by f
3. mf += f // increase mf

output mf // the max flow value

Ford-Fulkerson method is an iterative algorithm that repeatedly finds augmenting paths p:
A path from source s to sink t that passes through positive weighted edges in the residual9

8A weighted undirected edge in an undirected graph can be transformed to two directed edges with the
same weight but with opposite directions.

9We use the name ‘residual graph’ because initially the weight of each edge res[i][j] is the same as the
original capacity of edge (i, j) in the original graph. If this edge (i, j) is used by an augmenting path and
a flow passes through this edge with weight f res[i][j] (a flow cannot exceed this capacity), then the
remaining (or residual) capacity of edge (i, j) will be res[i][j]-f while the residual capacity of the reverse
edge (j, i) will be increased to res[j][i]+f.

420

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

graph. After finding an augmenting path p = s! . . . i! j . . . t that has f as the minimum
edge weight (i, j) along the path p (the bottleneck edge in this path), Ford-Fulkerson method
will do three important steps: decreasing/increasing the capacity of forward (i, j)/backward
(j, i) edges along path p by f , respectively, and add f to the overall max flow mf value.
Ford-Fulkerson method will repeat this process until there are no more possible augmenting
paths from source s to sink t which implies that the total flow found is the maximum flow
(to prove the correctness, one needs to understand the Max-Flow Min-Cut theorem, see the
details in [7]).

The reason for decreasing the capacity of forward edges is obvious. By sending a flow
through augmenting path p, we will decrease the remaining (residual) capacities of the
(forward) edges used in p. The reason for increasing the capacity of backward edges may not
be that obvious, but this step is important for the correctness of Ford-Fulkerson method.
By increasing the capacity of a backward edge (j, i), Ford-Fulkerson method allows future
iterations (flows) to cancel (part of) the capacity used by a forward edge (i, j) that was
incorrectly used by some earlier flow(s).

There are several ways to find an augmenting s-t path in the pseudo code above, each
with di↵erent behavior. In this section, we highlight two ways: via DFS or via BFS (two
di↵erent implementations with slightly di↵erent results).

The Ford-Fulkerson method that uses DFS to compute the max flow value of Figure
8.11—left may proceed as follows:

1. In Figure 8.12—1, we see the initial residual graph. Compare it with the initial flow
graph in Figure 8.11—left. Notice the presence of back flow edges with capacity 0.

Figure 8.12: Illustration of Ford-Fulkerson Method (DFS)—Part 1

2. In Figure 8.12—2, we see that DFS finds the first augmenting path 0 ! 1 ! 2 ! 3.
The bottleneck edge is edge 1 ! 2 with capacity 1. We update the residual graph
by reducing the capacity of all forward edges used by 1 and increasing the capacity of
all backward edges used by 1 too (notice especially that back flow 2 ! 1 capacity is
raised from 0 to 1 to allow future cancelation of some flow along forward edge 1! 2)
and send the first 1 unit of flow from source s = 0 to sink t = 3.

3. In Figure 8.13—3, suppose that DFS10 finds the second augmenting path 0 ! 2 !
1 ! 3 also with bottleneck capacity 1. Notice that if we don’t update the back flow
2! 1 in the previous iteration, we will not be able to get the correct max flow value
at the end. We update the residual graph (notice, we flip edge 2! 1 to 1! 2 again)
and send another 1 unit of flow from s to t.

10Depending on the implementation, the second call of DFS may find another augmenting path. For
example, if the neighbors of a vertex are listed in increasing vertex number, then the second DFS should
find augmenting path 0! 1! 3. But for the sake of illustration, let’s assume that the second call of DFS
gives us this 0! 2! 1! 3 that will setup the flip-flop situation between edge 0! 1 and 1! 0.

421

8.4. NETWORK FLOW c� Steven, Felix, Suhendry

Figure 8.13: Illustration of Ford-Fulkerson Method (DFS)—Part 2

4. In Figure 8.13—4, suppose that DFS finds the third augmenting path 0! 1! 2! 3
again with the same bottleneck capacity 1. We update the residual graph and send
another 1 unit of flow from s to t. We keep repeating this flip-flopping of edge 1! 2
and 2! 1 for 13 more iterations until we send 16 units of flow (see Figure 8.11—right).

Ford-Fulkerson method implemented using DFS may run in O(mf⇥E) wheremf is the Max
Flow value. We may encounter a situation where two augmenting paths: 0 ! 2 ! 1 ! 3
and 0 ! 1 ! 2 ! 3 only decrease the (forward) edge capacities along the path by 1. In
the worst case, this is repeated mf times (it is 3 + 13 more times after Figure 8.13—4, for a
total of 16 times; but imagine if the weights of the original edges are multiplied by 1B except
edge 1 ! 2 remains at weight 1). As DFS runs in O(E) in a flow graph11, the overall time
complexity is O(mf ⇥ E). We do not want this unpredictability in programming contests
as the problem author can/will choose to give a (very) large mf value.

8.4.3 Edmonds-Karp Algorithm

A better implementation of the Ford-Fulkerson method is to use BFS for finding the shortest
path in terms of number of layers/hops between s and t. This algorithm was discovered by
Jack Edmonds and Richard Manning Karp, thus named as Edmonds-Karp algorithm [13].
It runs in O(V E2) as it can be proven that after O(V E) BFS iterations, all augmenting
paths will already be exhausted (see references like [13, 7] to study more about this proof).
As BFS runs in O(E) in a flow graph, the overall time complexity is O(V E2).

Figure 8.14: Illustration of Edmonds-Karp Algorithm (BFS)

On the same flow graph as shown in Figure 8.11, Edmonds-Karp only needs two s-t paths.
See Figure 8.14—1: 0! 2! 3 (2 hops, send 8 units of flow) and Figure 8.14—2: 0! 1! 3
(2 hops, send another 8 units of flow and done with a total 8+8 = 16 units of flow). It does
not get trapped to send flow via the longer paths (3 hops): 0 ! 1 ! 2 ! 3 like in Figure
8.12—2. But the O(V E2) Edmonds-Karp algorithm can still be improved a bit more.

11In a typical flow graph, E � V -1. Thus, we usually assume that both DFS and BFS—using Adjacency
List—run in O(E) instead of O(V + E) to simplify the time complexity analysis of Max Flow algorithms.

422

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.4.4 Dinic’s Algorithm

So far, we have seen the potentially unpredictable O(mf ⇥ E) implementation of Ford-
Fulkerson method if we try to find the augmenting paths with DFS and the better O(V E2)
Edmonds-Karp algorithm (finding augmenting paths with BFS) for solving the Max Flow
problem. Some harder Max Flow problems may need a slightly faster algorithm than
Edmonds-Karp. One such faster algorithm12 is Dinic’s algorithm which runs in O(V 2E).
Since a typical flow graph usually has V < E and E << V 2, Dinic’s worst case time com-
plexity is theoretically better than Edmonds-Karp. As of year 2020, we have encountered a
few rare cases where Edmonds-Karp algorithm receives a TLE verdict but Dinic’s algorithm
receives an AC verdict on the same flow graph. Therefore, for CP4, we use Dinic’s algorithm
as the default max flow algorithm in programming contests just to be on the safer side.

Dinic’s algorithm uses a similar idea as Edmonds-Karp as it also finds shortest (in terms
of number of layers/hops between s and t) augmenting paths iteratively. However, Dinic’s
algorithm uses the better concept of ‘blocking flows’ to find the augmenting paths. Under-
standing this concept is the key to modify the slightly-easier-to-understand Edmonds-Karp
algorithm into Dinic’s algorithm.

Let’s define dist[v] to be the length of the (unweighted) shortest path from the source
vertex s to v in the residual graph. Then the level graph L of the residual graph are the
subgraph of the residual graph after running BFS that terminates after L-levels. Formally,
edges in level graph L are those with dist[v] = dist[u]+1. Then, a ‘blocking flow’ of this
level graph L is an s-t flow f (which can contain multiple s-t paths) such that after sending
through flow f from s to t, the level graph L contains no s-t augmenting paths anymore.

Figure 8.15: Illustration of Dinic’s Algorithm (BFS)—Part 1

Let’s see Figure 8.15. At step 1 and 2, Dinic’s algorithm behaves exactly the same as
Edmonds-Karp algorithm, i.e., it finds the first level graph L = 1 (highlighted at Figure
8.15—1) send 7 units of blocking flow via the (only) shortest augmenting path 0 ! 9
(highlighted at Figure 8.15—2) to disconnect s and t from this level graph L = 1.

Figure 8.16: Illustration of Dinic’s Algorithm (BFS)—Part 2

12The other is Push-Relabel algorithm in Section 9.24.

423

8.4. NETWORK FLOW c� Steven, Felix, Suhendry

However, at Figure 8.16, Dinic’s algorithm is more e�cient than Edmonds-Karp algo-
rithm. Dinic’s algorithm will find level graph L = 2 (highlighted at Figure Figure 8.16—3)
and there are two paths of length 2 that connects s = 0 and t = 9 in that level graph
L = 2. They are paths 0 ! 1 ! 9 and 0 ! 2 ! 9. Edmonds-Karp will spend 2 individual
calls of BFS to send 2 individual flows (totalling 4+12 = 12 more units of flow) through
them, whereas Dinic’s will send just 1 blocking flow (consisting of the same 2 paths, but in
a more e�cient manner) to remove s-t augmenting paths from this level graph L = 2 and
disconnects s and t again (highlighted at Figure 8.16—4).

Similarly Dinic’s algorithm will find the last level graph L = 3 (not shown) and send 1
blocking flow (of 3 paths, totalling 1+3+5 = 9 more units of flow) in a more e�cient manner
than Edmonds-Karp algorithm with 3 individual calls of BFS.

It has been proven (see [11]) that the number of edges in each blocking flow increases by at
least one per iteration. There are at most V -1 blocking flows in the algorithm because there
can only be at most V -1 edges along the ‘longest’ simple path from s to t. The level graph
can be constructed by a BFS in O(E) time and a blocking flow in each level graph can be
found by a DFS in O(V E) time (see the sample implementation for important speedup where
we remember the last edge processed in previous DFS iteration inside last[u]). Hence, the
worst case time complexity of Dinic’s algorithm is O(V ⇥ (E + V E)) = O(V 2E), which is
faster than the O(V E2) Edmonds-Karp algorithm despite their similarities because E > V
in most flow graphs.

Implementation of Edmonds-Karp and Dinic’s Algorithms

Dinic’s implementation is quite similar to Edmonds-Karp implementation. In Edmonds-
Karp, we run a BFS—which already generates for us the level graph L—but we just use
it to find one single augmenting path by calling the augment(t, INF) function. In Dinic’s
algorithm, we need to use the information produced by BFS in a slightly di↵erent manner.
We find a blocking flow by running DFS on the level graph L found by BFS to augment all
possible s-t paths in this level graph L e�ciently via the help of last[u]. We provide both
of them in the same code below (you can remove the Edmonds-Karp part to simplify this
code; it is left behind so that you can do Exercise 8.4.4.3*).

typedef long long ll;
typedef tuple<int, ll, ll> edge;
typedef vector<int> vi;
typedef pair<int, int> ii;

const ll INF = 1e18; // large enough

class max_flow {
private:

int V;
vector<edge> EL;
vector<vi> AL;
vi d, last;
vector<ii> p;

424

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

bool BFS(int s, int t) { // find augmenting path
d.assign(V, -1); d[s] = 0;
queue<int> q({s});
p.assign(V, {-1, -1}); // record BFS sp tree
while (!q.empty()) {

int u = q.front(); q.pop();
if (u == t) break; // stop as sink t reached
for (auto &idx : AL[u]) { // explore neighbors of u

auto &[v, cap, flow] = EL[idx]; // stored in EL[idx]
if ((cap-flow > 0) && (d[v] == -1)) // positive residual edge

d[v] = d[u]+1, q.push(v), p[v] = {u, idx}; // 3 lines in one!
}

}
return d[t] != -1; // has an augmenting path

}

ll send_one_flow(int s, int t, ll f = INF) { // send one flow from s->t
if (s == t) return f; // bottleneck edge f found
auto &[u, idx] = p[t];
auto &cap = get<1>(EL[idx]), &flow = get<2>(EL[idx]);
ll pushed = send_one_flow(s, u, min(f, cap-flow));
flow += pushed;
auto &rflow = get<2>(EL[idx^1]); // back edge
rflow -= pushed; // back flow
return pushed;

}

ll DFS(int u, int t, ll f = INF) { // traverse from s->t
if ((u == t) || (f == 0)) return f;
for (int &i = last[u]; i < (int)AL[u].size(); ++i) { // from last edge

auto &[v, cap, flow] = EL[AL[u][i]];
if (d[v] != d[u]+1) continue; // not part of layer graph
if (ll pushed = DFS(v, t, min(f, cap-flow))) {

flow += pushed;
auto &rflow = get<2>(EL[AL[u][i]^1]); // back edge
rflow -= pushed;
return pushed;

}
}
return 0;

}

public:
max_flow(int initialV) : V(initialV) {

EL.clear();
AL.assign(V, vi());

}

425

8.4. NETWORK FLOW c� Steven, Felix, Suhendry

// if you are adding a bidirectional edge u<->v with weight w into your
// flow graph, set directed = false (default value is directed = true)
void add_edge(int u, int v, ll w, bool directed = true) {

if (u == v) return; // safeguard: no self loop
EL.emplace_back(v, w, 0); // u->v, cap w, flow 0
AL[u].push_back(EL.size()-1); // remember this index
EL.emplace_back(u, directed ? 0 : w, 0); // back edge
AL[v].push_back(EL.size()-1); // remember this index

}

ll edmonds_karp(int s, int t) {
ll mf = 0; // mf stands for max_flow
while (BFS(s, t)) { // an O(V*E^2) algorithm

ll f = send_one_flow(s, t); // find and send 1 flow f
if (f == 0) break; // if f == 0, stop
mf += f; // if f > 0, add to mf

}
return mf;

}

ll dinic(int s, int t) {
ll mf = 0; // mf stands for max_flow
while (BFS(s, t)) { // an O(V^2*E) algorithm

last.assign(V, 0); // important speedup
while (ll f = DFS(s, t)) // exhaust blocking flow

mf += f;
}
return mf;

}
};

VisuAlgo

We have provided the animation of various Max Flow algorithms that are discussed in this
section13 in VisuAlgo. Use it to further strengthen your understanding of these algorithms
by providing your own input (flow) graph (we recommend the source/sink vertex to be set
as vertex 0/V -1 so that we can layout vertex 0/V -1 as the leftmost/rightmost vertex in the
visualization, respectively) and see the Max Flow algorithm being animated live on that
particular input graph. The URL for the various Max Flow algorithms and our Max Flow
source code are shown below.

Visualization: https://visualgo.net/en/maxflow

Source code: ch8/maxflow.cpp|java|py|ml

13We still have one more Max Flow algorithm in this book: Push-Relabel that is discussed in Section 9.24.
It works di↵erently than the three Ford-Fulkerson based Max Flow algorithms discussed in this section.

426

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

Exercise 8.4.4.1: Before continuing, answer the following question in Figure 8.17!

Figure 8.17: What Are the Max Flow Value of These Three Flow Graphs?

Exercise 8.4.4.2*: Suppose we have a large flow graph, e.g., V = 1M , E = 10M and we
have run our best max flow code for several hours to get the max flow value. To your horror,
exactly one of the edge u ! v has wrong initial capacity. Instead of c, it is supposed to be
c+1. Can you find a quick O(V) patching solution that does not entail re-running max flow
algorithm on the fixed large flow graph? What if instead of c, it is supposed to be c-1?

Exercise 8.4.4.3*: Use the code above that has both Edmonds-Karp and Dinic’s algorithm.
Compare them on various programming exercises listed in this section. Do you notice any
runtime di↵erences?

Exercise 8.4.4.4*: Construct a flow graph so that either Edmonds-Karp or Dinic’s algo-
rithm finds as many s-t Augmenting Paths as possible.

Profile of Algorithm Inventors

Jack R. Edmonds (born 1934) is a mathematician. He and Richard Karp invented the
Edmonds-Karp algorithm for computing the Max Flow in a flow network in O(V E2) [13].
He also invented an algorithm for MST on directed graphs (Arborescence problem). This
algorithm was proposed independently first by Chu and Liu (1965) and then by Edmonds
(1967)—thus called the Chu-Liu/Edmonds’ algorithm [6]. However, his most important
contribution is probably the Edmonds’ matching/blossom shrinking algorithm—one of
the most cited Computer Science papers [12].

Richard Manning Karp (born 1935) is a computer scientist. He has made many important
discoveries in computer science in the area of combinatorial algorithms. In 1971, he and
Edmonds published the Edmonds-Karp algorithm for solving the Max Flow problem
[13]. In 1973, he and John Hopcroft published the Hopcroft-Karp algorithm, still the
fastest known method for finding Maximum Cardinality Bipartite Matching [19].

Delbert Ray Fulkerson (1924-1976) was a mathematician who co-developed the Ford-
Fulkerson method, an algorithm to solve the Max Flow problem in networks. In 1956, he
published his paper on the Ford-Fulkerson method together with Lester Randolph Ford.

Yefim Dinitz is a computer scientist who invented Dinic’s algorithm.

427

8.4. NETWORK FLOW c� Steven, Felix, Suhendry

8.4.5 Flow Graph Modeling - Classic

With the given Dinic’s algorithm code in Section 8.4.4, solving a Network Flow problem—
especially Max Flow—and its variants, is now simpler. It is now a matter of:

1. Recognizing that the problem is indeed a Network Flow problem
(this will get better after you solve more Network Flow problems).

2. Constructing the appropriate flow graph (i.e., if using our code shown earlier: set the
correct number of vertices V of the flow graph, add the correct edges of the flow graph,
and set the appropriate values for ‘s’ and ‘t’).

3. Running Dinic’s algorithm code on this flow graph.

There are several interesting applications/variants of the problems involving flow in a net-
work. We discuss the classic ones here while some others are deferred until Section 8.5
(MCBM), Section 8.6, and Section 9.25. Note that some techniques shown here may also be
applicable to other graph problems.

Max Cardinality Bipartite Maching (MCBM)

One of the common application of Max Flow algorithm is to solve a specific Graph Matching
problem called the Max Cardinality Bipartite Matching (MCBM) problem. However, we
have a more specific algorithm for this: the Augmenting Path algorithm (details in Section
8.5). Instead, we discuss another Graph Matching variant: the assignment problem where
Max Flow solution is preferred (also see Exercise 8.4.5.2*).

Assignment Problem

We show an example of modeling the flow (residual) graph of UVa 00259 - Software Alloca-
tion14. The abridged version of this problem is as follows: You are given up to 26 applica-
tions/apps (labeled ‘A’ to ‘Z’), up to 10 computers (numbered from 0 to 9), the number of
users who brought in each application that day (one digit positive integer, or [1..9]), the
list of computers on which a particular application can run, and the fact that each computer
can only run one instance of one application that day. Your task is to determine whether
an allocation (that is, a matching) of applications to valid computers can be done, and if so,
generate a possible allocation. If not, simply print an exclamation mark ‘!’.

Figure 8.18: Residual Graph of UVa 00259 [28]

One (bipartite) flow graph
formulation is shown in Fig-
ure 8.18. We index the ver-
tices from [0..37] as there
are 26+10+2 special vertices
= 38 vertices. The source s
is given index 0, the 26 pos-
sible apps are given indices
from [1..26], the 10 possi-
ble computers are given in-
dices from [27..36], and fi-
nally the sink t is given the
last index 37.

14Actually this problem has small input size (we only have 26+10 = 36 vertices plus 2 more: source
and sink) which make this problem still solvable with recursive backtracking (see Book 1). If the given
graph involves around [100..200] vertices, max flow is the intended solution. The name of this problem is
‘assignment problem’ or (special) bipartite matching with capacity.

428

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

Then, we link apps to valid computers as mentioned in the problem description. We
link source s to all apps and link all computers to sink t. All edges in this flow graph are
directed edges. The problem says that there can be more than one (say, X) users bringing
in a particular app A on a given day. Thus, we set the directed edge weight (capacity) from
source s to a particular app A to X. The problem also says that each computer can only be
used once. Thus, we set the directed edge weight from each computer B to sink t to 1. The
edge weight between apps to valid computers is set to 1. With this arrangement, if there
is a flow from an app A to a computer B and finally to sink t, that flow corresponds to one
allocation (one matching) between that particular app A and computer B.

Once we have this flow graph, we can pass it to our Edmonds-Karp implementation
shown earlier to obtain the Max Flow mf. If mf is equal to the number of applications
brought in that day, then we have a solution, i.e., if we have X users bringing in app A, then
X di↵erent paths (i.e., matchings) from A to sink t must be found by the Edmonds-Karp
algorithm (and similarly for the other apps).

The actual app ! computer assignments can be found by simply checking the backward
edges from computers (vertices 27-36) to apps (vertices 1-26). A backward edge (computer
! app) in the residual matrix res will contain a value +1 if the corresponding forward edge
(app ! computer) is selected in the paths that contribute to the Max Flow mf. This is also
the reason why we start the flow graph with directed edges from apps to computers only.

Minimum Cut

Let’s define an s-t cut C = (S-component, T -component) as a partition of V 2 G such that
source s 2 S-component and sink t 2 T -component. Let’s also define a cut-set of C to be
the set {(u, v) 2 E | u 2 S-component, v 2 T -component} such that if all edges in the
cut-set of C are removed, the Max Flow from s to t is 0 (i.e., s and t are disconnected). The
cost of an s-t cut C is defined by the sum of the capacities of the edges in the cut-set of C.
The Minimum Cut problem, often abbreviated as just Min Cut, is to minimize the amount
of capacity of an s-t cut. This problem is more general than finding bridges (see Book 1),
i.e., in this case we can cut more than just one edge and we want to do so in the least cost
way. As with bridges, Min Cut has applications in ‘sabotaging’ networks, e.g., one pure Min
Cut problem is UVa 10480 - Sabotage.

The solution is simple: The by-product of computing Max Flow is Min Cut! After Max
Flow algorithm stops, we run graph traversal (DFS/BFS) from source s again. All reachable
vertices from source s using positive weighted edges in the residual graph belong to the S-
component. All other unreachable vertices belong to the T -component. All edges connecting
the S-component to the T -component belong to the cut-set of C. The Min Cut value is equal
to the Max Flow value mf. This is the minimum over all possible s-t cuts values.

Multi-source/Multi-sink

Sometimes, we can have more than one source and/or more than one sink. However, this
variant is no harder than the original Network Flow problem with a single source and a
single sink. Create a super source ss and a super sink st. Connect ss with all s with infinite
capacity and also connect all t with st with infinite capacity, then run a Max Flow algorithm
as per normal.

Vertex Capacities

We can also have a Network Flow variant where the capacities are not just defined along the
edges but also on the vertices. To solve this variant, we can use vertex splitting technique
which (unfortunately) doubles the number of vertices in the flow graph. A weighted graph

429

8.4. NETWORK FLOW c� Steven, Felix, Suhendry

with a vertex weight can be converted into a more familiar one without vertex weight. We
can split each weighted vertex v into vin and vout, reassigning its incoming/outgoing edges
to vin/vout, respectively and finally putting the original vertex v’s weight as the weight of
edge vin ! vout. See Figure 8.19 for an illustration. Now with all weights defined on edges,
we can run a Max Flow algorithm as per normal.

Figure 8.19: Vertex Splitting Technique

Coding max flow code with vertex splitting can be simplified with the following technique
(other ways exist). If the original V vertices are labeled with the standard indices [0..V -1],
then after vertex split, we have 2 ⇤V vertices and the range [0..V -1]/[V ..2 ⇤V -1] become the
indices for vin/vout, respectively. Then, we can define these two helper functions:

int in (int v) { return v; }
int out(int v) { return V+v; } // offset v by V indices

Independent and Edge-Disjoint Paths

Two paths that start from a source vertex s to a sink vertex t are said to be independent
(vertex-disjoint) if they do not share any vertex apart from s and t. Two paths that start
from s to t are said to be edge-disjoint if they do not share any edge (but they can share
vertices other than s and t).

The problem of finding the (maximum number of) independent paths from source s to
sink t can be reduced to the Network (Max) Flow problem. We construct a flow network
N = (V,E) from G with vertex capacities, where N is the carbon copy of G except that the
capacity of each v 2 V is 1 (i.e., each vertex can only be used once—see how to deal with
vertex capacity above) and the capacity of each e 2 E is also 1 (i.e., each edge can only be
used once too). Then run a Max Flow algorithm as per normal.

Figure 8.20: Comparison Between Max Independent Paths vs Max Edge-Disjoint Paths

Finding the (maximum number of) edge-disjoint paths from s to t is similar to finding
(maximum) independent paths. The only di↵erence is that this time we do not have any
vertex capacity which implies that two edge-disjoint paths can still share the same vertex.
See Figure 8.20 for a comparison between maximum independent paths and edge-disjoint
paths from s = 0 to t = 1.

430

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

Baseball Elimination Problem

Abridged problem description of Kattis - unfairplay: Imagine a fictional (sporting) league.
We are given N (1 N 100) teams and the current points of N teams. Then, we are
given M (0 M 1000) and a list of M remaining matches between two teams a and b
(a 6= b). Teams are are numbered from 1 to N and your team is team N . A win/draw/lose
worth 2/1/0 point(s), respectively. The question is whether you can still (theoretically) win
the league (accumulate total points that is strictly greater than any other team)?

The first necessary condition is obvious. Team N needs to win all their matches if they
play in any of the M remaining matches. If team N ’s theoretical best points is still not
enough to beat the team with current highest point at this stage of the league, then it is
obvious that team N theoretically can no longer win the league even though the league still
has M matches left.

After satisfying the first necessary condition, we need to deal with the second condition.
It may not be obvious, but it is a classic max flow problem called the Baseball Elimination
Problem (and has several possible variations). For each remaining M 0 (M 0 M) matches
that does not involve team N , we construct the following bipartite flow graph (source s,
remaining matches excluding team N , list of teams excluding team N , and sink t):

• Connect source s with to all remaining match vertex i that does not involve team N
with capacity 2 to indicate this remaining match carries 2 points,

• Connect a match vertex i to both teams (a and b, a 6= N , b 6= N) that play in this
match i with capacity 2 (or more, we can simply set this as 1), and

• Connect a team j to sink t with the following specific capacity: points of team N
(us) - current points of team j - 1 (this is the maximum points that this team j can
accumulate so that team N (us) can still win the league).

Now it is easy to see if the max flow of this specially constructed (bipartite) flow graph is
not 2 ⇤M 0, then team N theoretically can no longer win the league.

Exercise 8.4.5.1: Why do we use 1 for the edge weights (capacities) of directed edges
from apps to computers? Can we use capacity 1 instead of 1?

Exercise 8.4.5.2*: Can the general kind of assignment problem (bipartite matching with
capacity, not limited to this sample problem UVa 00259) be solved with standard Max
Cardinality Bipartite Matching (MCBM) algorithm shown in Book 1 (repeated later in
Section 8.5)? If it is possible, determine which one is the better solution. If it is not
possible, explain why.

Exercise 8.4.5.3*: A common max flow operation in modern programming contest prob-
lems is to get (or even update) flow (and/or capacity) of a specific edge u! v (after the max
flow has been found). An potential application is for identifying/printing the edges that are
part of the optimal assignment (bipartite matching with capacity). Show how to modify the
given max flow library code to support this operation. Hint: we need a fast O(1) way to
quickly locate edge u! v inside the EL that contains up to E edges.

431

8.4. NETWORK FLOW c� Steven, Felix, Suhendry

8.4.6 Flow Graph Modeling - Non Classic

We repeat that the hardest part of dealing with Network Flow problem is the modeling of the
flow graph (assuming that we already have a good pre-written Max Flow code). In Section
8.4.5, we have seen several flow graph modeling examples. Here, we present another (harder)
flow graph modeling for UVa 11380 - Down Went The Titanic that is not considered ‘classic’
flow graph modeling. Our advice before you continue reading: please do not just memorize
the solution but also try to understand the key steps to derive the required flow graph.

Figure 8.21: Some Test Cases of UVa 11380

In Figure 8.21, we have four small test cases of UVa 11380. You are given a small 2D grid
containing these five characters as shown in Table 8.1. You want to move as many ‘*’ (people,
at most 50% of the grid size) as possible to the (various) safe place(s): the ‘#’ (large wood,
with capacity P (1 P 10)). The solid and dotted arrows in Figure 8.21 denote the
answer.

Symbol Meaning # Usage (Vertex Capacity)
* People staying on floating ice 1
⇠ Extremely cold water (cannot be used) 0
. Floating ice 1
@ Large iceberg 1
Large wood 1

Table 8.1: Characters Used in UVa 11380

To model the flow graph, we use the following thinking steps. In Figure 8.22—A, we first
connect all the non ‘⇠’ cells that are adjacent to each other with large capacity (1000 is
enough for this problem). This describes the possible movements in the grid.

In Figure 8.22—B, we set vertex capacities of ‘*’ and ‘.’ cells to 1 to indicate that they
can only be used once. Then, we set vertex capacities of ‘@’ and ‘#’ to a large value (we
use 1000 as it is enough for this problem) to indicate that they can be used several times.
This is summarized in # Usage (Vertex Capacity) column in Table 8.1.

In Figure 8.22—C, we create a (super) source vertex s and (super) sink vertex t. Source
s is linked to all ‘*’ cells in the grid with capacity 1 to indicate that there is one person to
be saved. All ‘#’ cells in the grid are connected to sink t with capacity P to indicate that
the large wood can be used by P people.

Now, the required answer—the number of survivor(s)—equals to the max flow value
between source s and sink t of this flow graph. As the flow graph uses vertex capacities (as
in Table 8.1), we need to use the vertex splitting technique discussed earlier.

432

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

Figure 8.22: Flow Graph Modeling

Exercise 8.4.6.1: Is O(V E2) Edmonds-Karp or O(V 2E) Dinic’s algorithm fast enough to
compute the max flow value on the largest possible flow graph of UVa 11380: 30 ⇥ 30 grid
and P = 10? Why or why not?

8.4.7 Network Flow in Programming Contests

As of year 2020, when a Network (usually Max) Flow problem appears in a programming
contest, it is usually one of the ‘decider’ problems. In ICPC, many interesting graph problems
are written in such a way that they do not look like a Network Flow in a glance. The hardest
part for the contestants is to realize that the underlying problem is indeed a Network Flow
problem and be able to model the flow graph correctly. Again, graph modeling is the key
skill that has to be mastered via practice.

To avoid wasting precious contest time coding (and debugging) the relatively long Max
Flow library code, we suggest that in an ICPC team, one team member devotes significant
e↵ort to prepare a good Max Flow code (master the Dinic’s algorithm implementation given
in Section 8.4.4 or try the Push-Relabel algorithm in Section 9.24) and attempts various
Network Flow problems available in many online judges to increase familiarity towards Net-
work Flow problems and its variants. In the list of programming exercises in this section,
we have some simple Max Flow, bipartite matching with capacity (the assignment problem),
Min Cut, and network flow problems involving vertex capacities. Try to solve as many pro-
gramming exercises as possible and prepare additional helper subroutines if needed (e.g.,
for the vertex splitting part, listing the actual edges used in the max flow — see Exercise
8.4.5.3*, etc).

In Section 8.5, we will see the classic Max Cardinality Bipartite Matching (MCBM)
problem that is also solvable with Max Flow though a simpler, more specialized algorithm
exists. Later, we will see some harder problems related to Network Flow, e.g., the Max
Weighted Independent Set on Bipartite Graph problem (Section 8.6.6), the Push-Relabel
algorithm (Section 9.24), and the Min Cost (Max) Flow problem (Section 9.25).

In IOI, Network Flow (and its various variants) is currently outside the syllabus [15]. So,
IOI contestants can choose to skip this section. However, we believe that it is a good idea
for IOI contestants to learn these more advanced material ‘ahead of time’ to improve your
skills with graph problems.

433

8.4. NETWORK FLOW c� Steven, Felix, Suhendry

Programming Exercises related to Network Flow:

a. Standard

1. Entry Level: UVa 00820 - Internet Bandwidth * (LA 5220 - WorldFinals
Orlando00; very basic max flow problem)

2. UVa 11167 - Monkeys in the Emei ... * (many edges in the flow graph;
compress the capacity-1 edges when possible; use Dinic’s)

3. UVa 11418 - Clever Naming Patterns * (two layers of graph matching
(not really bipartite matching); use max flow solution)

4. UVa 12873 - The Programmers * (LA 6851 - Bangkok14; assignment
problem; similar to UVa 00259, 11045, and 10092; use Dinic’s)

5. Kattis - dutyscheduler * (try all possible (small range of answers); assignment
problem; matching with capacity; max flow)

6. Kattis - jupiter * (good modeling problem; a good exercise for those who
wants to master max flow modeling)

7. Kattis - mazemovement * (use gcd for all pairs of vertices to construct the
flow graph; then it is just a standard max flow problem)

Extra UVa: 00259, 10092, 10779, 11045, 11082.

Extra Kattis: councilling, maxflow, mincut, piano, tomography, waif, water.

b. Variants

1. Entry Level: UVa 00563 - Crimewave * (check whether the maximum
number of independent paths on the flow graph equals to b banks)

2. UVa 11380 - Down Went The ... * (max flow modeling with vertex
capacities; similar to UVa 12125)

3. UVa 11757 - Winger Trial * (build the flow graph with a bit of simple
geometry involving circle; min cut from s/left side to t/right side)

4. UVa 11765 - Component Placement * (interesting min cut variant)

5. Kattis - avoidingtheapocalypse * (interesting max flow modeling; blow the
vertices based on time)

6. Kattis - thekingofthenorth * (interesting min cut problem)

7. Kattis - transportation * (max flow with vertex capacities)

Extra UVa: 01242, 10330, 10480, 11506.

Extra Kattis: budget, chesscompetition, congest, conveyorbelts, copsandrob-
bers, darkness, fakescoreboard, floodingfields, landscaping, marchofpenguins,
neutralground, openpitmining, unfairplay.

434

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.5 Graph Matching

8.5.1 Overview and Motivation

Graph Matching is the problem of selecting a subset of edges M of a graph G(V,E) so
that no two edges share the same vertex. Most of the time, we are interested to find the
Maximum Cardinality matching, i.e., we want to know the maximum number of edges that
we can select in a graph G. Another common request is to find a Perfect matching where
we have both the Maximum Cardinality matching and no vertex is left unmatched15. If the
edges are unweighted, the cost of two distinct matchings with the same cardinality is always
equal. However if the edges are weighted, this is no longer true.

Unlike the other graph problems discussed earlier in Chapter 4 and up to Section 8.4
where there are relatively easy-to-explain polynomial algorithms to solve them, we have
hard(er)-to-explain (but still polynomial) algorithms for the general cases of graph matching
problems. This often make Graph Matching problem(s) as the decider problem(s) in many
programming contests.

8.5.2 Graph Matching Variants

Figure 8.23: The Four Common Variants of Graph Matching in Programming Contests

The most important attribute of Graph Matching problems in programming contests that
can (significantly) alter the level of di�culty is whether the input graph is bipartite. Graph
Matching is easier on Bipartite Graphs and much harder on general graphs. A subset of
Bipartite Matching problems are actually amenable to the greedy algorithm that we have
discussed earlier in Book 1 and not the focus of this section.

15Note that if V is odd, it is impossible to have a Perfect matching. Perfect matching can be solved by
simply finding the standard Maximum Cardinality matching and then checking if all vertices are matched
so we treat this variant as the same as the standard Maximum Cardinality matching.

435

8.5. GRAPH MATCHING c� Steven, Felix, Suhendry

However, even if the input graph is not bipartite, Graph Matching problems can still be
solved with Dynamic Programming with bitmask as long as the number of vertices involved
is small. This variant has been used as the introduction problem in the very first page of
Book 1, is discussed in depth in Section 8.3.1, and also not the focus of this section.

The second most important attribute after asking whether the input graph is bipartite
is to ask whether the input graph is unweighted. Graph Matching is easier on unweighted
graphs and harder on weighted graphs.

These two characteristics create four variants as outlined below (also see the bottom part
of Figure 8.23). Note that we are aware of the existence of other very rare (Graph) Matching
variants outside these four variants, e.g., the Stable Marriage problem16 or Hall’s Marriage
Theorem17. However, we only concentrate on these four variants in this section.

1. Unweighted Maximum Cardinality Bipartite Matching (Unweighted MCBM)
This is the easiest and the most common variant.
In Figure 8.23—bottom (Bipartite1), the MCBM value is 2 and there are two possible
solutions: {A-D, B-C} as shown or {A-C, B-D}.
In this book, we describe algorithms that can deal with graphs up to V 1500.

2. Weighted Maximum Cardinality Bipartite Matching (Weighted MCBM)
This is a similar problem to the above, but now the edges in G have weights.
We usually want the MCBM with either the minimum or the maximum total weight.
In Figure 8.23—bottom (Bipartite2), the MCBM value is 2. The weight of matching
{A-D, B-C} is 2+4 = 6 and the weight of matching {A-C, B-D} is 1+3 = 4. If our
objective is to get the minimum total weight, we have to report {A-C, B-D} as shown.
In this book, we describe algorithms that can deal with graphs up to V 450.

3. Unweighted Maximum Cardinality Matching (Unweighted MCM)
The graph is not guaranteed to be bipartite, but we still want maximum cardinality.
In Figure 8.23—bottom (General1), the MCM value is 2 and there are two possible
solutions: {A-D, B-C} as shown or {A-B, C-D}.
In this book, we describe an algorithm that can deal with graphs up to V 450.

4. Weighted Maximum Cardinality Matching (Weighted MCM)
In Figure 8.23—bottom (General2), the MCM value is 2. The weight of matching
{A-D, B-C} is 4+2 = 6 and the weight of matching {A-B, C-D} is 3+1 = 4. If our
objective is to get the minimum total weight, we have to report {A-B, C-D} as shown.
This is the hardest variant. In this book, we only describe DP bitmask algorithm that
can only deal with graphs up to V 20.

8.5.3 Unweighted MCBM

This variant is the easiest and several solutions have been mentioned in Bipartite Graph
section in Book 1, Section 8.4 (Network Flow-based solution), and later and Section 9.26
(Hopcroft-Karp algorithm, also for Bipartite Graph only). Note that the Unweighted MCBM
problems can also appear inside the special cases of certain NP-hard problems like Min Vertex
Cover (MVC), Max Independent Set (MIS), Min Path Cover on DAG (see Section 8.6 after
this section). The list below summarizes four possible solutions for this variant:

16Given n men and n women and each each person has ranked all members of the opposite sex in order
of preference, marry the men and women together such that there are no two people of opposite sex who
would both rather have each other than their current partners

17Suppose a bipartite graph with bipartite sets L and R. Hall’s Marriage theorem says that there is a
matching that covers L if and only if for every subset W of L, |W | |N(W)| where N(W) is the set of all
vertices in R adjacent to some element of W .

436

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

1. O(V E) Augmenting Path Algorithm for Unweighted MCBM.
See the recap below.

2. Reducing the Unweighted MCBM problem into a Max Flow Problem.
Review Section 8.4 for the discussion of Max Flow algorithm.

MCBM problem can be reduced to the Max Flow problem by assigning a super source
vertex s connected to all vertices in set1 and all vertices in set2 are connected to a
super sink vertex t. The edges are directed (s! u, u! v, v ! t where u 2 set1 and
v 2 set2). By setting the capacities of all the edges in this flow graph to 1, we force
each vertex in set1 to be matched with at most one vertex in set2. The Max Flow
will be equal to the maximum number of matchings on the original graph (see Figure
8.24—right for an example). The time complexity depends on the chosen Max Flow
algorithm, i.e., it will be fast, in O(

p
V E) if one uses Dinic’s Max Flow algorithm on

such unit flow graph.

Figure 8.24: Bipartite Matching problem can be reduced to a Max Flow problem

3. O(
p
V E) Hopcroft-Karp Algorithm for Unweighted MCBM.

See Section 9.26 for details – although we probably do not need this algorithm in
programming contests as it is identical to Dinic’s Max Flow algorithm.

4. O(kE) Augmenting Path Algorithm for Unweighted MCBM++.
See the discussion below.

Augmenting Path Algorithm++ for MCBM

The O(V E) Augmenting Path Algorithm implementation of Berge’s lemma discussed in
Book 1 (reproduced below) is usually su�cient to solve easier MCBM problems.

vi match, vis; // global variables
vector<vi> AL;

int Aug(int L) {
if (vis[L]) return 0; // L visited, return 0
vis[L] = 1;
for (auto &R : AL[L])

if ((match[R] == -1) || Aug(match[R])) {
match[R] = L; // flip status
return 1; // found 1 matching

}
return 0; // no matching

}

437

8.5. GRAPH MATCHING c� Steven, Felix, Suhendry

This is not the best algorithm for finding MCBM. Dinic’s algorithm [11] (see Section 8.4.4) or
Hopcroft-Karp algorithm [19] (essentially also a variant of Dinic’s algorithm, see Section 9.26)
can solve the MCBM problem in the best known theoretical time complexity of O(

p
V E),

thereby allowing us to solve the MCBM problem on bigger Bipartite Graphs or when the
MCBM problem is a sub-problem of a bigger problem.

However, we do not have to always use these fancier algorithms to solve the MCBM
e�ciently. In fact, a simple improvement of the basic Augmenting Path Algorithm above
can be used to avoid its worst case O(V E) time complexity on (near) complete Bipartite
Graphs. The key observation is that many trivial matchings involving a free (unmatched)
vertex, a free (unmatched) edge, and another free vertex can be easily found using a greedy
pre-processing routine that can be implemented in O(V 2). To avoid adversary test cases, we
can even randomize this greedy pre-processing routine. By doing this, we reduce the number
of free vertices (on the left set) from V down to a variable k, where k < V . Empirically,
we found that this k is usually a low number on various big random Bipartite Graphs and
possibly not more than

p
V too. Therefore, the time complexity of this Augmenting Path

Algorithm++ implementation is estimated to be O(V 2 + kE).
The implementation code of the Greedy pre-processing step is shown below. You can

compare the performance of Augmenting Path Algorithm with or without this pre-processing
step on various MCBM problems.

// inside int main()
// build unweighted Bipartite Graph with directed edge left->right set
// that has V vertices and Vleft vertices on the left set
unordered_set<int> freeV;
for (int L = 0; L < Vleft; ++L)

freeV.insert(L); // initial assumption
match.assign(V, -1);
int MCBM = 0;
// Greedy pre-processing for trivial Augmenting Paths
// try commenting versus un-commenting this for-loop
for (int L = 0; L < Vleft; ++L) { // O(V+E)

vi candidates;
for (auto &R : AL[L])

if (match[R] == -1)
candidates.push_back(R);

if ((int)candidates.size() > 0) {
++MCBM;
freeV.erase(L); // L is matched
int a = rand()%(int)candidates.size(); // randomize this
match[candidates[a]] = L;

}
} // for each free vertex
for (auto &f : freeV) { // (in random order)

vis.assign(Vleft, 0); // reset first
MCBM += Aug(f); // try to match f

}

Please review the same source code as in Book 1.

Source code: ch4/mcbm.cpp|java|py|ml

438

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

Exercise 8.5.3.1*: In Figure 8.24—right, we have seen a way to reduce an MCBM problem
(all edge weights are one) into a Max Flow problem. Do the edges in the flow graph have to
be directed? Is it OK if we use undirected edges in the flow graph?

Exercise 8.5.3.2*: Construct a small unweighted bipartite graph so that it is very unlikely
(probability < 5%) that the randomized greedy pre-processing step will be very lucky and
no (zero) actual Augmenting Path Algorithm step being used at all.

8.5.4 Weighted MCBM and Unweighted/Weighted MCM

While Unweighted MCBM is the easiest Graph Matching variant with multiple possible solu-
tions, the next three Graph Matching variants are considered rare in programming contests.
They are much harder and require specialized algorithms that are only going to be mentioned
briefly in Chapter 9.

Weighted MCBM

When the edges in the Bipartite Graph are weighted, not all possible MCBMs are optimal.
We need to pick one (not necessarily unique) MCBM that has the minimum18 overall total
weight. One possible solution is to reduce the Weighted MCBM problem into a Min Cost Max
Flow (MCMF) problem that will be discussed in Section 9.25. Alternatively, if we want to
get a perfect19 Weighted MCBM, we can use the faster but more specialized Kuhn-Munkres
(Hungarian) algorithm that will be discussed in Section 9.27.

Unweighted MCM

While the Graph Matching problem is easy on Bipartite Graphs, it is ‘hard’ on general
graphs. In the past, computer scientists thought that this variant was another NP-hard
optimization problem (see Section 8.6) that requires exponential time algorithm until Jack
Edmonds published an e�cient, polynomial algorithm for solving this problem in his 1965
paper titled “Paths, trees, and flowers” [12].

The main issue is that on general graphs, we may encounter odd-length augmenting cy-
cles. Edmonds calls such a cycle a ‘blossom’ and the details of Edmonds’ Matching algorithm
to deal with these ‘blossoms’ will be discussed in Section 9.28.

The O(V 3) implementation (with high constant factor) of Edmonds’ Matching algorithm
is not straightforward but it allows us to solve Unweighted MCM problem for graphs up
to V 200. Thus, to make this graph matching variant more manageable, many problem
authors limit their unweighted general graphs to be small (i.e., V 20) so that an O(V ⇥2V)
DP with bitmask algorithm can be used to solve it (see Exercise 8.3.1.1).

Weighted MCM

This is potentially the hardest variant. The given graph is a general graph and the edges have
associated weights. In typical programming contest environments, the most likely solution
is the DP with bitmask (see Section 8.3.1) as the problem authors usually set the problem
on a small general graph only and perhaps also require the perfect matching criteria from a
Complete Graph to further simplify the problem (see Section 9.29).

18Weighted MCBM/MCM problem can also ask for the maximum total weight.
19We can always transform standard Weighted MCBM problem into perfect Weighted MCBM by adding

dummy vertices to make size of the left set equals to size of the right set and add dummy edges with
appropriate weights that will not interfere with the final answer.

439

8.5. GRAPH MATCHING c� Steven, Felix, Suhendry

VisuAlgo

To help readers in understanding these Graph Matching variants and their solutions, we
have built the following visualization tool:

Visualization: https://visualgo.net/en/matching

The user can draw any (unweighted) undirected input graph and the tool will use the correct
Graph Matching algorithm(s) based on the two characteristics: whether the input graph is
bipartite or not.

Programming exercises related to Graph Matching are scattered throughout this book:

• See some greedy (bipartite) matching problems in Book 1,

• See some Unweighted MCBM problems in Book 1,

• See some assignment problems (bipartite matching with capacity) in Section 8.4,

• See some special cases of NP-hard problems that can be reduced into Unweighted
MCBM problems in Section 8.6.6 and Section 8.6.8,

• See some Weighted MCBM problems in Section 9.25 and 9.27,

• See some (small) MCM problem in Section 8.3 (DP) and Unweighted MCM prob-
lem in Section 9.28 (Edmonds’ Matching algorithm),

• See one other weighted MCM problem on small general graph in Section 9.29
(Chinese Postman Problem).

Profile of Algorithm Inventors

Dénes König (1884-1944) was a Hungarian mathematician who worked in and wrote the
first textbook on the field of graph theory. In 1931, König described an equivalence between
the Maximum Cardinality Bipartite Matching (MCBM) problem and the Minimum Vertex
Cover (MVC) problem in the context of Bipartite Graphs, i.e., he proved that the size of
MCBM equals to the size of MVC in Bipartite Graph via his constructive proof.

Jenö Egerváry (1891-1958) was a Hungarian mathematician who generalizes Denes König’s
theorem to the case of weighted graphs (in Hungarian). This work was translated and then
popularized by Kuhn in 1955.

Harold William Kuhn (1925-2014) was an American mathematician who published and
popularized the Hungarian algorithm described earlier by two Hungarian mathematicians:
König and Egerváry.

James Raymond Munkres (born 1930) is an American mathematician who reviewed
Kuhn’s Hungarian algorithm in 1955 and analyzed its polynomial time complexity. The
algorithm is now known as either Kuhn-Munkres algorithm or Hungarian algorithm.

Philip Hall (1904-1982) was an English mathematician. His main contribution that is
included in this book is Hall’s marriage theorem.

440

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.6 NP-hard/complete Problems

8.6.1 Preliminaries

NP-hard and NP-complete are related Computational Complexity classes. An optimization
(maximizing or minimizing) problem is said to be an NP-hard problem if one of the other
well-known NP-hard problems (some of which will be mentioned in this section) can be
reduced/transformed into this problem in polynomial20 time. A decision (yes/no) problem
is said to be an NP-complete problem if it is NP-hard and also in NP21. In short, unless
P = NP , which has not been proven by anyone as of year 2020, we can say that there
are no e�cient, i.e., polynomial, solutions for problems that fall into the NP-hard/complete
complexity classes. We invite interested readers to read references such as [7].

So if we are given a new programming contest problem, and we can somehow reduce or
transform a known NP-hard problem into that ‘new’ problem in polynomial time (notice the
direction of the reduction), then we need to ask ourself the next question22:

Is the input size constraint relatively small, i.e., ⇡ 10 or 11 for permutation-based prob-
lems or ⇡ 20 or 21 for subset-based problems? If it is, then we do not need to waste time
thinking of any e�cient/polynomial solution during contest time as there is likely no such
solution unless P = NP . Immediately code the best possible Complete Search (or if over-
lapping subproblems are spotted, Dynamic Programming) algorithm with as much pruning
as possible.

However, if the input size constraint is not that small, then our job is to re-read the
problem description again and hunt for any likely subtle constraint that will turn the general
NP-hard problem into a special case that may have a polynomial solution.

Note that in order to be able to (quickly) recognize that a given new problem, often
disguised in a seemingly unrelated storyline, is really NP-hard/complete, we need to enlarge
our list of known NP-hard problems (and their well known variants/polynomial solutions).
In this section, we list a few of them with a summary at Section 8.6.14.

Exercise 8.6.1.1*: Identify NP-hard/complete problems in this list of classic23 problems:
2-Sum, Subset-Sum,
Fractional Knapsack, 0-1 Knapsack,
Single-Source Shortest Paths (SSSP), Longest Path,
Minimum Spanning Tree (MST), Steiner-Tree,
Max Cardinality Bipartite Matching (MCBM), Max Cardinality Matching (MCM),
Eulerian Tour, Hamiltonian Tour,
generating de Bruijn sequence, Chinese Postman Problem, and
Integer Linear Programming.

20In Computational Complexity theory, we refer to an O(nk) algorithm, even with a rather large positive
value of k, as a polynomial time, or an e�cient algorithm. On the other hand, we say that an O(kn) or an
O(n!) algorithm to be an exponential time, or non-e�cient algorithm.

21NP stands for Non-deterministic Polynomial, a type of decision problem whereby a solution for a yes
instance can be verified in polynomial time.

22Actually, there is another possible question: Is it OK to produce a slightly non-optimal solution using
techniques like approximation algorithms or local search algorithms? However, this route is less likely to be
used in competitive programming where most optimization problems only seek for the optimal answer(s).

23You can use the Index section to quickly locate these classic problem names.

441

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

8.6.2 Pseudo-Polynomial: Knapsack, Subset-Sum, Coin-Change

In Book 1, we have discussed DP solutions for these three problems: 0-1 Knapsack
24,

Subset-Sum, and General Coin-Change. In that section, we were told that those prob-
lems have well known DP solutions and are considered classics. In this section, we update
your understanding that these three problems are actually NP-hard optimization problems
and our DP solution can only work under certain terms and conditions.

Each of the DP solutions uses two DP parameters, the current index that ranges from
[0..n-1] and one more parameter that is classified as pseudo-polynomial, i.e., remW for 0-1

Knapsack, curSum for Subset-Sum, and value for General Coin-Change. Notice the
warning that we put as footnotes in those sections. The pseudo-polynomial parameters of
these three problems can be memoized if and only if their sizes multiplied by n (for current
index) are ‘small enough’ to avoid Memory Limit Exceeded25. We put a rule of thumb
that nS and nV should not exceed 100M for typical DP solutions to work for these three
problems. In the general case where these parameters are not (and cannot be made to be)
bounded by a ‘small enough’ range26, this DP solution cannot be used and we will have to
resort to other exponential-based solutions.

We still leave most programming exercises involving these three (simpler) optimization
problems, now that you know that they are actually NP-hard problems, in Chapter 3.

Exercise 8.6.2.1: Find as many special cases as possible for the Subset-Sum problem that
have true polynomial solutions!

Exercise 8.6.2.2*: How would you solve UVa 12455 - Bars that we have discussed in depth
in Book 1 if 1 n 40 and each integer can be as big as 1B (109), i.e., see UVa 12911 -
Subset sum?

Exercise 8.6.2.3*: Suppose we add one more parameter to this classic 0-1 Knapsack

problem. Let Ki denote the number of copies of item i for use in the problem. Example:
n = 2, V = {100, 70}, W = {5, 4}, K = {2, 3}, S = 17 means that there are two copies of
item 0 with weight 5 and value 100 and there are three copies of item 1 with weight 4 and
value 70. The optimal solution for this example is to take one of item 0 and three of item
1, with a total weight of 17 and total value 310. Solve this variant of the 0-1 Knapsack

problem assuming that 1 n 500, 1 S 2000, n
Pn�1

i=0 Ki 100 000. Hint: Every
integer can be written as a sum of powers of 2.

Exercise 8.6.2.4*: Fractional Knapsack (or Continuous Knapsack) is like the 0-1 Knap-

sack (similar input, problem description, and output), but this time instead of deciding
whether to take (1) or not take (0) an item, we can now decide to take any fractional
amount of each item. This variant is not NP-hard. Design a polynomial algorithm for it!

24Usually, when we say Knapsack problem, we refer to the integer 0-1 version, i.e., not take or take an
item, that is, we do not take fractions of an item.

25Bottom-up DP with space saving technique may help a bit with the memory limit but we still have
issues with the time limit.

26In Computational Complexity theory, an algorithm is said to run in pseudo-polynomial time if its running
time is polynomial in the value of the input (i.e., has to be ‘small enough’), but is actually exponential in
the length of the input if we view it as the number of bits required to represent that input.

442

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.6.3 Traveling-Salesman-Problem (TSP)

The Classic TSP and Its DP Solution

In Book 1, we have also discussed another classic DP solution for this problem: the Held-
Karp DP solution for the Traveling-Salesman-Problem (TSP).

That DP solution for the TSP has two DP parameters, current index that ranges from
[0..n-1] and one more parameter visited, which is a bitmask, to store which subset of cities
have been visited in the current partial TSP tour. Notice that the bitmask parameter has a
space complexity of O(2b) where b is the number of bits used. Again, this value cannot be
too big as 2b grows very quickly. In fact, an optimized implementation of DP TSP will only
work for n up to 18 or 19 and will get TLE for larger input sizes.

We still leave most programming exercises involving general but small27 instance TSP,
now that you know that it is also an NP-hard problem, in Chapter 3. However, there is one
known special case of TSP: Bitonic TSP that has appeared in programming contests before
and has a polynomial solution (to admit larger inputs). We discuss this below.

VisuAlgo

We have provided the animation of some TSP-related algorithms in VisuAlgo:

Visualization: https://visualgo.net/en/tsp

Special Case: Bitonic TSP and Its Solution

The Bitonic-Traveling-Salesman-Problem (abbreviated as Bitonic-TSP) can be
described as follows: Given a list of coordinates of n vertices on 2D Euclidean space that
are already sorted by x-coordinates (and if tie, by y-coordinates), find a least cost tour that
starts from the leftmost vertex, then goes strictly from left to right (for now, we can skip
some vertices), and then upon reaching the rightmost vertex, the tour goes strictly from
right to left back to the starting vertex using all the other vertices that are not used in the
initial strictly from left to right path (this way, the TSP condition that all vertices are visited
once is fulfilled). This tour behavior is called ‘bitonic’.

The resulting tour may not be the shortest possible tour under the standard definition
of TSP (see Book 1). Figure 8.25 shows a comparison of these two TSP variants. The TSP
tour: 0-3-5-6-4-1-2-0 is not a Bitonic TSP tour because although the tour initially goes from
left to right (0-3-5-6) and then goes back from right to left (6-4-1), it then makes another left
to right (1-2) and then right to left (2-0) steps. The tour: 0-2-3-5-6-4-1-0 is a valid Bitonic
TSP tour because we can decompose it into two paths: 0-2-3-5-6 that goes from left to right
and 6-4-1-0 that goes back from right to left.

Figure 8.25: The Standard TSP versus Bitonic TSP

27For a challenge, see Kattis - tsp * which is an optimization problem involving large TSP instance up to
N 1000. To get high score for this problem, you need to use techniques outside this book.

443

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

Although a Bitonic TSP tour of a set of n vertices is usually longer than the standard
TSP tour, this bitonic constraint allows us to compute a ‘good enough tour’ in O(n2) time
using Dynamic Programming—as shown below—compared with the O(2n�1 ⇥ n2) time for
the standard TSP tour (see Book 1).

The main observation needed to derive the DP solution is the fact that we can (and have
to) split the tour into two paths: Left-to-Right (LR) and Right-to-Left (RL) paths. Both
paths include vertex 0 (the leftmost vertex) and vertex n-1 (the rightmost vertex). The LR
path starts from vertex 0 and ends at vertex n-1. The RL path starts from vertex n-1 and
ends at vertex 0.

Note that all vertices have been sorted28 by x-coordinates (and if tie, by y-coordinates).
We can then consider the vertices one by one. Both LR and RL paths start from vertex 0.
Let v be the next vertex to be considered. For each vertex v 2 [1 . . . n-2], we decide whether
to add vertex v as the next point of the LR path (to extend the LR path further to the
right) or as the previous point of the returning RL path (the RL path now starts at v and
goes back to vertex 0). For this, we need to keep track of two more parameters: p1 and p2.
Let p1/p2 be the current ending/starting vertex of the LR/RL path, respectively.

The base case is when vertex v = n-1 where we just need to connect the two LR and RL
paths with vertex n-1.

With these observations in mind, we can write a simple DP solution29 like this:

double dp1(int v, int p1, int p2) { // call dp1(1, 0, 0)
if (v == n-1) return d[p1][v]+d[v][p2]; // d[u][v]: distance between u->v
if (memo3d[v][p1][p2] > -0.5) return memo3d[v][p1][p2];
return memo3d[v][p1][p2] = min(

d[p1][v] + dp1(v+1, v, p2), // extend LR path: p1->v, RL stays: p2
d[v][p2] + dp1(v+1, p1, v)); // LR stays: p1, extend RL path: p2<-v

}

However, the time complexity30 of dp1 with three parameters: (v, p1, p2) is O(n3). This is
not e�cient and an experienced competitive programmer will notice that the time complexity
O(n3) is probably not tight. It turns out that parameter v can be dropped and recovered
from 1 + max(p1, p2) (see this DP optimization technique of dropping one parameter and
recovering it from other parameters as shown in Section 8.3.5). The improved DP solution
is shown below and runs in O(n2).

double dp2(int p1, int p2) { // call dp2(0, 0)
int v = 1+max(p1, p2); // this single line speeds up Bitonic TSP solution
if (v == n-1) return d[p1][v]+d[v][p2];
if (memo2d[p1][p2] > -0.5) return memo2d[p1][p2];
return memo2d[p1][p2] = min(

d[p1][v] + dp2(v, p2), // extend LR path: p1->v, RL stays: p2
d[v][p2] + dp2(p1, v)); // LR stays: p1, extend RL path: p2<-v

}

28Even if the vertices are not sorted, we can sort them in O(n log n) time.
29As the memo table is of type floating point that is initialized with -1.0 initially, we check if a cell in this

memo table has been assigned a value by comparing it with -0.5 to minimize floating point precision error.
30Note that initializing the 3D DP table by -1.0 already costs O(n3).

444

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.6.4 Hamiltonian-Path/Tour

Problem I - ‘Robots on Ice’ in ICPC World Finals 2010 can be viewed as a ‘tough test on
pruning strategy’. Abridged problem description: Given an M ⇥ N board with 3 check-in
points {A, B, C}, find a Hamiltonian31 path of length (M ⇥ N) from coordinate (0, 0) to
coordinate (0, 1). Although to check whether a graph has a Hamiltonian-Path or not is
NP-complete, this variant has small instance (Constraints: 2 M,N 8) and an additional
simplifying assumption: this Hamiltonian path must hit the three check points: A, B, and
C at one-quarter, one-half, and three-quarters of the way through its path, respectively.

Example: If given the following 3 ⇥ 6 board with A = (row, col) = (2, 1), B = (2, 4),
and C = (0, 4) as in Figure 8.26, then we have two possible paths.

Figure 8.26: Visualization of UVa 01098 - Robots on Ice

A näıve recursive backtracking algorithm will get TLE as there are up to 3 choices at every
step and the max path length is 8 ⇥ 8 = 64 in the largest test case. Trying all 364 possible
paths is infeasible. To speed up the algorithm, we prune the search space if the search:

1. Wanders outside the M ⇥N grid (obvious),

2. Does not hit the appropriate target check point at 1/4, 1/2, or 3/4 distance—the
presence of these three check points actually reduces the search space,

3. Hits target check point earlier than the target time,

4. Will not be able to reach the next check point on time from the current position,

5. Will not be able to reach certain coordinates as the current partial path self-block the
access to those coordinates. This can be checked with a simple DFS/BFS (see Book
1). First, we run DFS/BFS from the goal coordinate (0, 1). If there are coordinates in
the M ⇥N grid that are not reachable from (0, 1) and not yet visited by the current
partial path, we can prune the current partial path.

Exercise 8.6.4.1*: The five pruning strategies mentioned in this subsection are good but
actually insu�cient to pass the time limit set for LA 4793 and UVa 01098. There is a
faster solution for this problem that utilizes the meet in the middle technique (see Section
8.2.3). This example illustrates that the choice of time limit setting may determine which
Complete Search solutions are considered as fast enough. Study the idea of meet in the
middle technique in Section 8.2.3 and apply it to solve this Robots on Ice problem.

31A Hamiltonian path is a path in an undirected graph that visits each vertex exactly once.

445

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

8.6.5 Longest-Path

Problem Description

Longest-Path problem is about finding the longest simple path in a general graph. Recall
that a simple path is a path that has no repeated vertices. This is because if there is a
cycle in the graph, a path can go through that cycle one more time to make the path longer
than the current ‘longest’ path. This ill-defined situation is similar with negative cycle in
the shortest paths problem that has been discussed in Book 1.

This problem can be posed as unweighted version (number of edges along the longest
path) or as weighted version (sum of edge weights along the longest path). This Longest-
Path problem is NP-hard32 on general graphs.

Small Instances: General Graphs with 1 V [17..19]

If the graph is not special, we may only be able to solve up to V [17..19] by using a
modification of Dynamic Programming solution for DP-TSP mentioned in Book 1. There
are two modifications: 1). Unlike in TSP, we do not need to return to the starting vertex;
2). Unlike in TSP, we do not necessarily need to visit all vertices to get the longest path.

If 1 V [10..11], we may also use the simpler recursive backtracking solution to find
the longest path of the general graph.

Special Case: on DAG

In Book 1, we have discussed that if the input graph is a DAG, we can find the longest path
in that DAG using the O(V + E) topological sort (or Dynamic Programming) solution as
there is no positive weight cycle to be worried of.

The Longest Increasing Subsequence (LIS) problem that we have discussed in Book 1
can also be viewed as a problem of finding the Longest-Path in the implicit DAG where
the vertices are the numbers, initially placed along the x-axis according to their indices, and
then raised along y-axis according to their values. Then, two vertices a and b are connected
with a directed edge if a < b and b is on the right of a. As there can be up to O(V 2) edges
in such implicit DAG, this LIS problem requires O(V 2) if solved this way (the alternative
and faster O(n log k) solution has also been discussed in the same section).

Special Case: on Tree

In Book 1, we have also discussed that if the input graph is a tree, the longest path in that
tree equals to the diameter (greatest ‘shortest path length’) of that tree, as any unique path
between any two pair of vertices in the tree is both the shortest and the longest path. This
diameter can be found via two calls of DFS/BFS in O(V).

We still leave most programming exercises involving special cases of this Longest-Path
problems, now that you know that it is also an NP-hard problem, in Book 1.

32The common NP-hard proof is via reduction of a known NP-complete decision problem: Hamiltonian-

Path that we have discussed in Section 8.6.4.

446

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.6.6 Max-Independent-Set and Min-Vertex-Cover

Two Related Problems

An Independent Set (IS) is a set IS ✓ V such that for every pair of vertices {u, v} 2 IS are
not adjacent. A Vertex Cover (VC) is a set V C ✓ V such that for every edge e = (u, v) 2 E,
either u 2 V C or v 2 V C (or both u, v 2 V C).

Max-Independent-Set (often abbreviated as MIS) of G is a problem of selecting an
IS of G with the maximum cardinality. Min-Vertex-Cover (often abbreviated as MVC)
of G is a similar problem of selecting a V C of G with the minimum cardinality. Both are
NP-hard problems on a general graph [16].

Note that the complement of Independent Set (IS) is Vertex Cover (VC) regardless of
graph type, so we can usually use solution(s) for one problem, i.e., MIS and transform it
into another solution for the other related problem, i.e., MVC = V-MIS.

Small Instances: Compact Adjacency Matrix Graph Data Structure

The UVa 11065 - Gentlemen Agreement problem boils down to computation of two integers:
The number of Maximal33 Independent Sets and the size of the Maximum Independent Set
(MIS) of a given general graph with 1 V 60. Finding the MIS of a general graph is an
NP-hard problem. Therefore, it is unlikely that there exists a polynomial algorithm for this
problem unless P = NP. Notice that V is up to 60. Therefore we cannot simply use the 2V

iterative brute force solution with bitmask as outlined in Book 1 and Section 8.2.1 as 260 is
simply too big.

One solution that passes the current setup of UVa 11065 is the following clever recursive
backtracking. The state of the search is a triple: (i, mask, depth). The first parameter i
implies that we can consider vertices in [i..V -1] to be included in the Independent Set. The
second parameter mask is a bitmask of length V bits that denotes which vertices are still
available to be included into the current Independent Set. The third parameter depth stores
the depth of the recursion—which is also the size of the current Independent Set.

There is a clever bitmask technique for this problem that can be used to speed up the
solution significantly. Notice that the input graph is small, V 60. Therefore, we can store
the input graph in an Adjacency Matrix of size V ⇥ V (for this problem, we set all cells
along the main diagonal of the Adjacency Matrix to true). However, we can compress one
row of V Booleans (V 60) into one bitmask using a 64-bit signed integer. This technique
has been mentioned in Book 1.

With this compact Adjacency Matrix AM—which is just V rows of 64-bit signed integers—
we can use a fast bitmask operation to flag neighbors of vertices e�ciently. If we decide to
take a free vertex v, we increase depth by one and then use an O(1) bitmask operation:
mask & ⇠AM[v] to flag o↵ all neighbors of v including itself (remember that AM[v] is also
a bitmask of length V bits with the v-th bit on).

When all bits in mask are turned o↵, we have just found one more Maximal Independent
Set. We also record the largest depth value throughout the process as this is the size of the
Maximum Independent Set of the input graph.

Note that the worst case time complexity of this complete search solution is still O(2V).
It is actually possible34 (although probably not included in the secret test case for this
problem) to create a test case with up to V = 60 vertices that can make the solution run
very slowly. For example, a star graph of size V = 60 is a connected graph. Any subset of
non-root vertices are Independent Sets and there are up to O(259) of them.

33Maximal IS is an IS that is not a subset of any other IS. MIS is both maximum and maximal.
34Hence this problem is actually an ‘impossible’ problem.

447

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

The key parts of the code are shown below:

void backtrack(int u, ll mask, int depth) {
if (mask == 0) { // all have been visited

++numIS; // one more possible IS
MIS = max(MIS, depth); // size of the set

}
else {

ll m = mask;
while (m) {

ll two_pow_v = LSOne(m);
int v = __builtin_ctzl(two_pow_v); // v is not yet used
m -= two_pow_v;
if (v < u) continue; // do not double count
backtrack(v+1, mask & ~AM[v], depth+1); // use v + its neighbors

}
}

}

// inside int main()
// compact AM for faster set operations
for (int u = 0; u < V; ++u)

AM[u] = (1LL<<u); // u to itself
while (E--) {

int a, b; scanf("%d %d", &a, &b);
AM[a] |= (1LL<<b);
AM[b] |= (1LL<<a);

}

Source code: ch8/UVa11065.cpp|java|ml

Special Cases: MIS and MVC on Tree

Figure 8.27: The Given General Graph/Tree (left) is Converted to DAG

The Min-Vertex-Cover (MVC) problem on a Tree has polynomial solutions. One of
them is Dynamic Programming (also see Exercise 8.6.6.3*). For the sample tree shown
in Figure 8.27—left, the solution is to take vertex {1} only, because all edges 1-2, 1-3, 1-4
are all incident to vertex 1. Note that Max-Independent-Set (MIS) is the complement
of MVC, so vertices {2, 3, 4} are the solution of the MIS problem for this sample tree.

448

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

There are only two possible states for each vertex. Either a vertex is taken or it is
not. By attaching this ‘taken or not taken’ status to each vertex and rooting the tree into
a directed graph with edges going away (downwards) from the root, we convert the tree
into a DAG (see Figure 8.27—right). Each vertex now has (vertex number, boolean flag
taken/not). The implicit edges are determined with the following rules: 1). If the current
vertex is not taken, then we have to take all its children to have a valid solution. 2). If
the current vertex is taken, then we take the best between taking or not taking its children.
The base cases are the leaf vertices. We return 1/0 if a leaf is taken/not taken, respectively.
We can now write this top down DP recurrences: MVC(u, flag). The answer can be found
by calling min(MVC(root, true), MVC(root, false)). Notice the presence of overlapping
subproblems (dotted circles) in the DAG. However, as there are only 2⇥ V states and each
vertex has at most two incoming edges, this DP solution runs in O(V).

int MVC(int u, int flag) { // get |MVC| on Tree
int &ans = memo[u][flag];
if (ans != -1) return ans; // top down DP
if ((int)Children[u].size() == 0) // u is a leaf

ans = flag; // 1/0 = taken/not
else if (flag == 0) { // if u is not taken,

ans = 0; // we must take
for (auto &v : Children[u]) // all its children

ans += MVC(v, 1);
}
else if (flag == 1) { // if u is taken,

ans = 1; // we take the minimum
for (auto &v : Children[u]) // between taking or

ans += min(MVC(v, 1), MVC(v, 0)); // not taking its children
}
return ans;

}

Source code: ch8/UVa10243.cpp|py

Special Cases: MIS and MVC on Bipartite Graph

In Bipartite Graph, the number of matchings in an MCBM equals the number of vertices
in a Min Vertex Cover (MVC)—this is a theorem by a Hungarian mathematician Dénes
König. The constructive proof of König ’s theorem is as follows: obtain the MCBM of the
Bipartite Graph and let U be unmatched vertices on the left set and let Z be vertices in
U or connected to U via alternating path (free edge-matched edge-free edge-...). Then, the
MV C = (L \ Z)

S
(R

T
Z).

In Figure 8.28—A, we see that the MCBM of the Bipartite Graph is 2.
In Figure 8.28—B, we see that vertex 2 is the only unmatched vertex on the left set,

so U = {2}.
In Figure 8.28—C, we see that vertex 2 is connected to vertex 5 via a free edge and then

to vertex 1 via a matched edge, so Z = {1, 2, 5}.
In Figure 8.28—D, we can use König’s theorem to conclude that:

MV C = ({0, 1, 2} \ {1, 2, 5})
S
({3, 4, 5}

T
{1, 2, 5}) = {{0}

S
{5}} = {0, 5} of size 2.

449

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

Figure 8.28: MCBM and König’s Theorem

In Bipartite Graph, the size of the MIS + the size of the MCBM = |V |. In another words,
the size of the MIS = |V | - the size of the MCBM. In Figure 8.28—D, we have a Bipartite
Graph with 3 vertices on the left side and 3 vertices on the right side—a total of 6 vertices.
The size of the MCBM is 2 (two highlighted lines in Figure 8.28—A). For each of these
2 matched edges, we can only take one of the endpoints into the MIS. In another words,
|MCBM| vertices cannot be selected, i.e., the size of the MIS is 6-2 = 4. Indeed, {1, 2, 3, 4}
of size 4 are the members of the MIS of this Bipartite Graph and this is the complement of
{0, 5} – the members of the MVC which has size 2 (same as size of the MCBM) found via
König’s theorem constructive proof earlier.

Note that although the MCBM/MIS/MVC values are unique, the solutions may not be
unique. Example: In Figure 8.28—A, we can also match {0, 4} and {2, 5} instead with the
same maximum cardinality of 2.

Kattis - guardianofdecency/UVa 12083 - Guardian of Decency

Abridged problem description: Given N 500 students (in terms of their heights, genders,
music styles, and favorite sports), determine how many students are eligible for an excursion
if the teacher wants any pair of two students to satisfy at least one of these four criteria so
that no pair of students becomes a couple: 1). Their heights di↵er by more than 40 cm.; 2).
They are of the same sex.; 3). Their preferred music styles are di↵erent.; 4). Their favorite
sports are the same (they may be fans of di↵erent teams which may result in fighting).

First, notice that the problem is about finding the Maximum Independent Set, i.e., the
chosen students should not have any chance of becoming a couple. Independent Set is a
hard problem in general graph, so let’s check if the graph is special. Next, notice that there
is an easy Bipartite Graph in the problem description: The gender of students (constraint
number two). We can put the male students on the left side and the female students on the
right side. At this point, we should ask: what should be the edges of this Bipartite Graph?
The answer is related to the Independent Set problem: we draw an edge between a male
student i and a female student j if there is a chance that (i, j) may become a couple.

In the context of this problem: if student i and j have di↵erent genders and their heights
di↵er by not more than 40 cm and their preferred music styles are the same and their favorite
sports are di↵erent, then this pair, one male student i and one female student j, has a high
probability to be a couple. The teacher can only choose one of them.

Now, once we have this Bipartite Graph, we can run the MCBM algorithm and report:
N -MCBM . With this example, we again highlight the importance of having good graph
modeling skills! There is no point knowing the MCBM algorithm and its code if you cannot
identify the Bipartite Graph from the problem description in the first place.

450

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

The Weighted Variants

The MIS and MVC problems can also be posed as their weighted variants by giving a
vertex-weighted graph G as input, thus we have the Max-Weight-Independent-Set (often
abbreviated as MWIS) and Min-Weight-Vertex-Cover (often abbreviated as MWVC)
problems. This time, our task35 is to select an IS (or VC) of G with the maximum (or
minimum) total (vertex) weight. As the unweighted variant is already NP-hard, the weighted
variant is also an NP-hard problem. In fact, the weighted variant is a bit harder to solve than
its unweighted variant. Obviously, (the usually slower) solutions for the weighted variant will
also work for the unweighted variant. However, if the given graph G is a tree or a bipartite
graph, we still have e�cient (but slightly di↵erent) solutions.

MWIS and MWVC on Tree

If graph G is a tree, we can find the MWIS of G using DP as with the unweighted variant
discussed earlier, but this time instead of giving a cost 1/0 for taking or not taking a vertex,
we use cost w(v)/0 for taking or not taking a vertex. The rest are identical.

MWIS and MWVC on Bipartite Graph

If the graph G is a Bipartite Graph, we have to reduce MWIS (and MWVC) problem into a
Max Flow problem instead of Max Cardinality Bipartite Matching (MCBM) problem as in
the unweighted version. We assign the original vertex cost (the weight of taking that vertex)
as capacity from source to that vertex for the left set of the Bipartite Graph and capacity
from that vertex to sink for right set of the Bipartite Graph. Then, we give ‘infinite’ (or
large) capacity in between any edge in between the left and right sets. The MWVC of this
Bipartite Graph is the max flow value of this flow graph. The MWIS of this Bipartite Graph
is the weight of all vertex costs minus the max flow value of this flow graph.

In Figure 8.29—left, we see a sample reduction of a MWVC instance where the cost of
taking vertex 1 to 6 are {2, 3, 4, 7, 1, 5}, respectively. In Figure 8.29—right, we see the max
flow value of this flow graph is 7 and this is the MWVC value of this instance.

Figure 8.29: Reduction of MWVC into a Max Flow Problem

We can also apply König’s theorem on this flow graph too. In Figure 8.30—left, see that
the set Z that we discussed in the unweighted version is simply the S-component—vertices
that are still reachable from the source vertex s after we found the max flow of the ini-
tial flow graph. The set that are not in Z is simply the T -component. In this exam-
ple, the S-component are vertices {0 (source s), 2, 3, 6} and the T -component are ver-
tices {1, 4, 5, 7}. So we can transform MV C = (L \ Z)

S
(R

T
Z) into MWV C = (LT

T-component)
S

(R
T

S-component). In Figure 8.30—right, we apply MWV C =
({1, 2, 3}

T
{1, 4, 5, 7})

S
({4, 5, 6}

T
{0, 2, 3, 6}) = {{1}

S
{6}} = {1, 6} of size 2.

35For a challenge, see Kattis - mwvc * which is an optimization problem involving large MWVC instance
up to N 4000. To get high score for this problem, you need to use techniques outside this book.

451

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

Figure 8.30: König’s Theorem for MWVC Variant

UVa 01212 - Duopoly

Abridged problem description: There are two companies: company A and B. Each company
has bids, e.g., A has bids {A1, A2, . . . , An} and each bid has a price, e.g., P (A1), P (A2), etc.
These transactions use shared channels, e.g., bid A1 uses channels: {r1, r2}. Access to a
channel is exclusive, e.g., if A1 is selected, then any of company B’s bid(s) that use either
r1 or r2 cannot be selected. It is guaranteed that two bids from company A will never use
the same channel, but two bids from di↵erent companies may be competing for the same
channel. Our task is to maximize the sum of weight of the selected bids!

Let’s do several keyword analysis of this problem. If a bid from company A is selected,
then bids from user B that share some or all channels cannot be selected. This is a strong hint
for the Independent Set requirement. And since we want to maximize sum of weight of
selected transactions, this is Max-Weighted-Independent-Set (MWIS) problem. And
since there are only two companies (two sets) and the problem statement guarantees that
there is no channel conflict between the bids from within one company, we are sure that the
input graph is a Bipartite Graph. Thus, this problem is actually an MWIS on Bipartite
Graph solvable with a Max Flow algorithm.

VisuAlgo

We have provided the animation of various MIS/MVC/MWIS/MWVC-related algorithms
that are discussed in this section in VisuAlgo. Use it to further strengthen your understand-
ing of these algorithms. The URL is shown below.

Visualization: https://visualgo.net/en/mvc

Exercise 8.6.6.1: What are the solutions for another two special cases of the MVC and
MIS problems: on isolated vertices and on complete graph?

Exercise 8.6.6.2: What should be done if the input graph of the theMVC orMIS problems
contains multiple connected components?

Exercise 8.6.6.3*: Solve the MVC and MIS problems on Tree using Greedy algorithm
instead of DP presented in this section. Does the Greedy algorithm works for the MWVC

and MWIS variant?

Exercise 8.6.6.4*: Solve the MVC problem using an O(2k ⇥ E) recursive backtracking if
we are guaranteed that the MVC size will be at most k and k is much smaller than V .

Exercise 8.6.6.5*: Solve the MVC and MIS problems on Pseudoforest using greedy al-
gorithm or Dynamic Programming variant. A Pseudoforest is an undirected graph in which
every connected component has at most one cycle.

452

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.6.7 Min-Set-Cover

Problem Description

Min-Set-Cover
36 can be described as follows: Given a set of items {1, 2, . . . , n} (called the

universe) and a collection S of m sets whose union equals the universe, the Min-Set-Cover
problem wishes to find the smallest subset of S whose union equals the universe. This Min-

Set-Cover problem can also be posed as weighted version, i.e., Min-Weight-Set-Cover

where we seek to minimize the sum of weights of the subsets that we select.

Small Instances: 1 n [24..26] Items

Kattis - font is a simple problem of counting the possible Set-Covers. Given n (up to
25) words, determine how many possible sets cover the entire [‘A’..‘Z’]. Each word covers at
least 1 letter and up to the entire 26 letters. We can store this information in a compact
Adjacency Matrix as discussed in Book 1. This way, we can do a simple O(2n) backtracking
that simply take or not take a word and use the fast O(1) speed of bitmask operation to
union two (small) sets (overall set and set of letters covered by the taken word) together. We
increment answer by one when we have examined all n words and the taken words formed
a pangram37. In fact, n [24..26] is probably the upper limit of what an O(2n) algorithm
can do in 1s on a typical year 2020 computer.

Exercise 8.6.7.1*: Show that every instance of Min-Vertex-Cover can be easily reduced
into Min-Set-Cover instance in polynomial time but the reverse is not true!

Exercise 8.6.7.2*: Dominating-Set of a graph G = (V,E) is a subset D of V such that
every vertex not in D is adjacent to at least one member of D. We usually want to find the
domination number �(G), the smallest size of a valid D. This problem is similar but not the
same as the Min-Vertex-Cover problem discussed in Section 8.6.6 and best explained
with an illustration (see Figure 8.31). We call this problem as the Min-Dominating-Set

problem. Show that every instance of the Min-Dominating-Set can be easily reduced into
the Min-Set-Cover instance in polynomial time but the reverse is not true!

Figure 8.31: Left: MVC/MIS of the Graph; Right: Dominating-Set of the Graph

36
Min-Set-Cover problem can be easily proven to be NP-hard via reduction from Vertex-Cover.

37Pangram is a sentence that uses every letter of a given alphabet at least once, i.e., the entire 26 letters
are covered.

453

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

8.6.8 Min-Path-Cover

General Case

The Min-Path-Cover (MPC) problem is described as the problem of finding the minimum
number of paths to cover each vertex on a graph G = (V,E). A path v0, v1, . . . , vk is said to
cover all vertices along its path. This optimization problem is NP-hard on general graphs
but has an interesting polynomial solution if posed on Directed Acyclic Graphs (DAGs).

Special Case: on DAG

The MPC problem on DAG is a special case where the given G = (V,E) is a DAG, i.e.,
directed and acyclic.

Abridged problem description of UVa 01201 - Taxi Cab Scheme: Imagine that the vertices
in Figure 8.32—A are passengers, and we draw an edge between two vertices u�v if one taxi
can serve passenger u and then passenger v on time. The question is: what is the minimum
number of taxis that must be deployed to serve all passengers?

The answer is two taxis. In Figure 8.32—D, we see one possible optimal solution. One
taxi (dotted line) serves passenger 1, passenger 2, and then passenger 4. Another taxi
(dashed line) serves passenger 3 and passenger 5. All passengers are served with just two
taxis. Notice that there is other optimal solution, e.g.,: 1! 3! 5 and 2! 4.

Figure 8.32: Min Path Cover on DAG (from UVa 01201 [28])

Solution(s)

This problem has a polynomial solution: construct a bipartite graph G0 = (Vout

S
Vin, E 0)

from G, where Vout = {v 2 V : v has positive out-degree}, Vin = {v 2 V : v has positive
in-degree}, and E 0 = {(u, v) 2 (Vout ⇥ Vin) : (u, v) 2 E}. This G0 is a bipartite graph. A
matching on bipartite graph G0 forces us to select at most one outgoing edge from every
u 2 Vout (and similarly at most one incoming edge for v 2 Vin). DAG G initially has n
vertices, which can be covered with n paths of length 0 (the vertices themselves). One
matching between vertex a and vertex b using edge (a, b) says that we can use one less path
as edge (a, b) 2 E 0 can cover both vertices in a 2 Vout and b 2 Vin. Thus if the MCBM in G0

has size m, then we just need n-m paths to cover each vertex in G.
The MCBM in G0 that is needed to solve the MPC in G can be solved via several

polynomial solutions discussed in Section 8.5, e.g., maximum flow solution, augmenting paths
algorithm++, or Dinic’s/Hopcroft-Karp algorithm. As the solution for bipartite matching
runs in polynomial time, the solution for the MPC in DAG also runs in polynomial time.
Note that MPC on general graphs is NP-hard.

454

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.6.9 Satisfiability (SAT)

3-CNF-SAT (3-SAT)

You are given a conjunction of disjunctions (“and of ors”) where each disjunction (“the or
operation”) has three (3) arguments that may be variables or the negation of variables. The
disjunctions of pairs are called ‘clauses’ and the formula is known as the 3-CNF (Conjunctive
Normal Form) formula. The 3-CNF-SAT (often just referred as 3-SAT) problem is to find
a truth (that is, true or false) assignment to these variables that makes the 3-CNF formula
true, i.e., every clause has at least one term that evaluates to true. This 3-SAT problem is
NP-complete38 but if there are only two (2) arguments for each disjunction, then there is a
polynomial solution.

2-CNF-SAT (2-SAT)

Simplified Problem Description

The 2-CNF-SAT (often just referred to as 2-SAT) is a SAT problem where each disjunction
has two (2) arguments.

Example 1: (x1 _ x2) ^ (¬x1 _ ¬x2) is satisfiable because we can assign x1 = true and
x2 = false (alternative assignment is x1 = false and x2 = true).

Example 2: (x1 _ x2) ^ (¬x1 _ x2) ^ (¬x2 _ x3) ^ (¬x2 _ ¬x3) is not satisfiable. You can
try all 8 possible combinations of boolean values of x1, x2, and x3 to realize that none of
them can make the 2-CNF formula satisfiable.

Solution(s)

Complete Search

Contestants who only have a vague knowledge of the Satisfiability problem may think that
this problem is an NP-complete problem and therefore attempt a complete search solution.
If the 2-CNF formula has n variables and m clauses, trying all 2n possible assignments and
checking each assignment in O(m) has an overall time complexity of O(2n ⇥ m). This is
likely TLE.

The 2-SAT is a special case of Satisfiability problem and it admits a polynomial solution
like the one shown below.

Reduction to Implication Graph and Finding SCC

First, we have to realize that a clause in a 2-CNF formula (a_ b) can be written as (¬a) b)
and (¬b) a). Thus, given a 2-CNF formula, we can build the corresponding ‘implication
graph’. Each variable has two vertices in the implication graph, the variable itself and
the negation/inverse of that variable39. An edge connects one vertex to another if the
corresponding variables are related by an implication in the corresponding 2-CNF formula.
For the two 2-CNF example formulas above, we have the following implication graphs shown
in Figure 8.33.

38One of the best known algorithms for CNF-SAT is the Davis-Putnam-Logemann-Loveland (DPLL)
recursive backtracking algorithm. It still has exponential worst case time complexity but it does prune lots
of search space as it goes.

39Programming technique: We give a variable an index i and its negation with another index i+ 1. This
way, we can find one from the other by using bit manipulation i� 1 where � is the ‘exclusive or’ operator.

455

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

Figure 8.33: The Implication Graph of Example 1 (Left) and Example 2 (Right)

As you can see in Figure 8.33, a 2-CNF formula with n variables (excluding the negation)
and m clauses will have V = ⇥(2n) = ⇥(n) vertices and E = O(2m) = O(m) edges in the
implication graph.

Now, a 2-CNF formula is satisfiable if and only if “there is no variable that belongs to
the same Strongly Connected Component (SCC) as its negation”.

In Figure 8.33—left, we see that there are two SCCs: {0,3} and {1,2}. As there is no
variable that belongs to the same SCC as its negation, we conclude that the 2-CNF formula
shown in Example 1 is satisfiable.

In Figure 8.33—right, we observe that all six vertices belong to a single SCC. Therefore,
we have both vertex 0 (that represents ¬x1) and vertex 1 (that represents40 x1); both vertex
2 (¬x2) and vertex 3 (x2); and both vertex 4 (¬x3) and vertex 5 (x3) in the same SCC.
Therefore, we conclude that the 2-CNF formula shown in Example 2 is not satisfiable.

To find the SCCs of a directed graph, we can use either Kosaraju’s or Tarjan’s SCC
algorithms shown in Book 1.

Exercise 8.6.9.1*: To find the actual truth assignment, we need to do a bit more work than
just checking if there is no variable that belongs to the same SCC as its negation. What are
the extra steps required to actually find the truth assignment of a satisfiable 2-CNF formula?

Exercise 8.6.9.2*: Study Davis-Putnam-Logemann-Loveland (DPLL) recursive backtrack-
ing algorithm that can solve small-medium instances of the NP-complete 3-CNF-SAT variant!

Profile of Algorithm Inventor
Jakob Steiner (1796-1863) was a Swiss mathematician. The Steiner-Tree and its related
problems are named after him.

40Notice that using this indexing technique (0/1 for ¬x1/x1; 2/3 for ¬x2/x2; and so on), we can easily
test whether a vertex x and another vertex y are a variable and its negation by testing if x == y � 1.

456

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.6.10 Steiner-Tree

Problem Description

Steiner-Tree problem is a broad term for a group of related41 problems. In this section,
we refer to the Steiner-Tree problem in graphs42 with the following problem description:
Given a connected undirected graph with non-negative edge weights (e.g., Figure 8.34—left)
and a subset of k vertices, usually referred to as terminal (or required) vertices (for this
variant, we simplify43 the terminal vertices to be vertices numbered with 0, 1, . . . , k-1), find
a tree of minimum total weight that includes all the terminal vertices, but may also include
additional vertices, called the Steiner vertices/points. This problem is NP-hard [16].

Figure 8.34: Steiner Tree Illustrations—Part 1

Special Case, k = 2

This Steiner-Tree problem44 with k = 2 degenerates into a standard Single-Source Single-
Destination Shortest Paths (SSSDSP) problem. This shortest path between the two required
terminal vertices is the required answer. Review Book 1 for the solution, e.g., the Dijkstra’s
algorithm that runs in O((V + E) log V). In Figure 8.34—middle, if the k = 2 terminal
vertices are vertex 0 and 1, then the solution is simply the shortest path from 0 to 1, which
is path 0-3-1 with cost 2+3 = 5.

Special Case, k = N

This Steiner-Tree problem with k = N degenerates into a standard Minimum Spanning
Tree (MST) problem. When k = N , all vertices in the graph are required and thus the MST
that spans all vertices is clearly the required solution. Review Book 1 for the solution, e.g.,
the Prim’s or Kruskal’s algorithm that both runs in O(E log V). In Figure 8.34—right, if
the terminal vertices are all k = N = 5 vertices, then the solution is the MST of the input
graph, which takes edges 0-4, 0-3, 3-1, and 3-4 with total cost of 1+2+3+4 = 10.

Special Case, k = 3

We first run k = 3 calls of an SSSP algorithm (e.g., Dijkstra’s) from these k = 3 terminal
vertices to get the shortest path values from these k = 3 terminal vertices to all other
vertices. There is a result in the study of this Steiner-Tree problem saying that if there
are k terminal vertices, there can only be up to k-2 additional Steiner vertices. As there are
only45 k = 3 terminal vertices, there can only be at most 3-2 = 1 Steiner vertex.

41We do not discuss Euclidean Steiner-Tree problem in this section.
42The Steiner-Tree problem is closely related to the Minimum Spanning Tree problem.
43In the full version, we can pick any subset of k vertices as terminal vertices.
44Solution to special case with k = 1 is too trivial: just take that only terminal vertex with 0 cost.
45This idea can also be used for other low values of k, e.g., k = 4, etc.

457

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

So, we try each vertex i in graph G as the (only) potential Steiner vertex (for simplicity,
we will treat the 3 terminal vertices as candidate Steiner vertex too—which means we do
not use a Steiner vertex if that is the case) and report the minimum total shortest paths
of these k = 3 terminal vertices to Steiner vertex i. The time complexity of this solution
remains O((V + E) log V). In Figure 8.35—left, if the k = 3 terminal vertices are vertex 0,
1, and 2, then the best option is to include vertex 3 as an additional Steiner vertex. The
total cost is the shortest path from 0 to 3, 1 to 3, and 2 to 3, which is 2+3+4 = 9. This is
better than if we form a subtree that does not include any Steiner vertex at all, e.g., subtree
0-2-1 with total cost 5+5 = 10.

Special Case, the Input Graph is a Tree

Steiner-Tree problem can also be posed on a Tree, i.e., we want to get a (smaller) subtree
that connects all k required terminal vertices (that are still numbered with 0, 1, . . . , k-1).
We can run a modified DFS starting from vertex 0 (for k > 0, vertex 0 is a required vertex).
If we are at vertex u and there is an edge u! v and there is a required vertex in the subtree
rooted at v, we have no choice but to take edge u! v.. In Figure 8.35—right, if the k = 3
terminal vertices are vertex 0, 1, and 2, then the solution is to take edge 0 ! 1 (with cost
1) as vertex 1 is a required vertex, and then take edge 3 ! 2 (with cost 1) as vertex 2 is a
required vertex, skip edge 4 ! 5 (we don’t require vertex 5) and 3 ! 4 (we don’t require
vertex 4), and finally take edge 0 ! 3 (with cost 2) as vertex 3, albeit not required, has
vertex 2 as its child that is required. The total cost is 1+1+2 = 4.

Figure 8.35: Steiner Tree Illustrations—Part 2

Small-size Instance, k V 15

Because V 15, we can try all possible subsets (including empty set) of vertices of graph
G that are not the required vertices as potential Steiner points (there are at most 2V�k such
subsets). We combine the k terminal points with those Steiner points and find the MST of
that subset of vertices. We keep track of the minimum one. The time complexity of this
solution is O(2V�k ⇥ E log V) and only work for small V .

VisuAlgo

We have built a visualization of this Steiner-Tree problem variant at VisuAlgo:

Visualization: https://visualgo.net/en/steinertree

Exercise 8.6.10.1*: For medium-size Instance where V 50 but k 11, the idea of trying
all possible subsets of non-required vertices as potential Steiner points will get TLE. Study
Dreyfus-Wagner Dynamic Programming algorithm that can solve this variant.

458

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.6.11 Graph-Coloring

Problem Description

Graph-Coloring problem is a problem of coloring the vertices of a graph such that no
two adjacent vertices share the same color. The decision problem of Graph-Coloring is
NP-complete except for 0-coloring (trivial, only possible for graph with no vertex at all),
1-coloring (also trivial, only possible for graph with no edge at all), 2-coloring, and special
case of 4-coloring.

2-Coloring

A graph is bi-colorable (2-coloring) if and only if the graph is a bipartite graph. We can
check whether a graph is a bipartite graph by running a simple O(V + E) DFS/BFS check
as shown in DFS/BFS section in Book 1.

4-Coloring

The four color theorem states, in simple form, that “every planar graph is 4-colorable”. Four
color theorem is not applicable to general graphs.

9-Coloring and Sudoku

Sudoku puzzle is actually an NP-complete problem and it is the most popular instance
of the Graph-Coloring problem. Most Sudoku puzzles are ‘small’ and thus recursive
backtracking can be used to find one solution for a standard 9 ⇥ 9 (n = 3) Sudoku board.
This backtracking solution can be sped up using bitmask: For each empty cell (r, c), we
try putting a digit [1..n2] one by one if it is a valid move or prune as early as possible.
The n2 row, n2 column, and n⇥ n square checks can be done with three bitmasks of length
n2 bits. Solve two similar problems: UVa 00989 and UVa 10957 with this technique!

Relationship with Min-Clique-Cover and O(3n) DP for Small Instances

Graph-Coloring is very related to Clique-Cover (or Partition-Into-Cliques) of a
given undirected graph that is discussed in the next subsection.

A Graph-Coloring of a graph G = (V,E) may be seen as a Clique-Cover of the
complement graph G0 of G (basically, G0 = (V, (u, v) /2 E)). Therefore running a Min-

Clique-Cover solution on G is also the solution of the optimization version of Graph-

Coloring on G0, i.e., finding the least amount (chromatic number) of colors needed for G0.
Try finding the chromatic numbers of the graphs in Figure 8.36.

With this similarities, we will discuss the O(3n) DP solution for small instances for either
Graph-Coloring or Min-Clique-Cover in the next subsection.

Figure 8.36: Color These Planar Graphs with As Few Color as Possible

459

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

8.6.12 Min-Clique-Cover

In Clique-Cover, we are asked to partition the vertices of the input graph into cliques
(subsets of vertices within which every two vertices are adjacent). Min-Clique-Cover is
the NP-hard optimization version of Clique-Cover that uses as few cliques as possible.

Partition-Into-2-Cliques

A graph G can be partitioned into 2 cliques if and only if its complement G0 is a bipartite
graph (2-colorable). We can check whether a graph is a bipartite graph by running a simple
O(V + E) DFS/BFS check as shown in DFS/BFS section in Book 1.

Small Instances: 1 n [16..17] Items

Kattis - busplanning can be seen as a Min-Clique-Cover problem. We are given a small
graph G with up to n (1 n 17) kids and a list of k pairs of kids that are enemies. If we
draw an edge between two kids that are not enemy, we have the complement graph G0. Our
job now is to partition G0 into cliques of kids that are not enemy, subject to bus capacity
constraint of c kids.

We can first pre-process the 2n possible subsets of kids that are not enemy and have
size at most c in O(2n ⇥ n2) time. The hard part is to use this information to solve the
Min-Clique-Cover problem. We can use DP bitmask f(mask) where bit 1/0 in mask
describes kids that have been/have not been assigned to a bus, respectively. The base case
is when mask = 0 (all kids have been assigned into a bus), we do not need additional bus
and return 0. However, how to generate subsets of a bitmask mask where not all of its bits
are 1s? Example: when mask1 = 137 = (10001001)2, i.e., we only have 3 bits that are on
in mask1, then its (non-empty) subsets are {137 = (10001001)2, 136 = (10001000)2, 129 =
(10000001)2, 128 = (10000000)2, 9 = (00001001)2, 8 = (00001000)2, 1 = (00000001)2}. In
Book 1, we have learned the following technique:

int mask = 137; // (10001001)_2
int N = 8;
for (int ss = 1; ss < (1<<N); ++ss) // previous way, exclude 0

if ((mask & ss) == ss) // ss is a subset of mask
cout << ss << "\n";

With the implementation above, we will incur strictly O(2n) per computation of a state of
f(mask), making the overall DP runs in O(2n ⇥ 2n) = O(4n), TLE for n 17 (over 17
Billion). However, we can do much better with the following implementation:

int mask = 137; // (10001001)_2
for (int ss = mask; ss; ss = (ss-1) & mask) // new technique

cout << ss << "\n"; // ss is a subset of mask

We claim that the overall work done by f(mask) is O(3n) which will pass the time limit for
n 17 (around 100 Million). Notice that with this updated implementation, we iterate only
over the subsets ofmask. If amask has k on bits, we do exactly 2k iterations. The important
part is that k gets smaller as the DP recursion goes deeper. Now, the total number of masks
with exactly k on bits is C(n, k). With a bit of combinatorics, we compute that the total
work done is

Pn
k=0 C(n, k) ⇤ 2k = 3n. This is much smaller than the n-th Bell number – the

number of possible partitions of a set of n items/the search space of a näıve complete search
algorithm (17-th Bell number is over 80 Billion).

460

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.6.13 Other NP-hard/complete Problems

There are a few other NP-hard/complete problems that have found their way into interesting
programming contest problems but they are very rare, e.g.,:

1. Partition: Decide whether a given multiset S of positive integers can be parti-
tioned/split into two subsets S1 and S2 such that the sum of the numbers in S1 equals
the sum of the numbers in S2. This decision problem46 is NP-complete. We can modify
the Partition problem slightly into an optimization problem: partition the multiset
S into two subsets S1 and S2 such that the di↵erence between the sum of elements in
S1 and the sum of elements in S2 is minimized. This version is NP-hard.

2. Min-Feedback-Arc-Set: A Feedback Arc (Edge) Set (FAS) is a set of edges which,
when removed from the graph, leaves a DAG. In Min-Feedback-Arc-Set, we seek
to minimize the number47 of edges that we remove in order to have a DAG.

Example: You are given a graph G = (V,E) with V = 10K vertices and up to
E = 100K distinct-weighted directed edges. Only edges with a weight equal to a
Fibonacci number (see Section 5.4.1) less than 2000 can be deleted from G. Now, your
job is to delete as few edges as possible from G so that G becomes a Directed Acyclic
Graph (DAG) or output impossible if no subset of edges in G can be deleted in order
to make G a DAG.

If you are very familiar with the theory of NP-completeness, this problem is called the
Min-Feedback-Arc-Set optimization problem that is NP-hard (see Section 8.6).
However, there are two stand-out constraints for those who are well trained: distinct-
weighted edges and Fibonacci numbers less than 2000. There are only 16 distinct
Fibonacci numbers less than 2000. Thus, we just need to check 216 possible subsets of
edges to be deleted and see if we have a DAG (this check can be done in O(E)). Among
possible subsets of edges, pick the one with minimum cardinality as our answer.

3. Shortest-Common-Superstring: Given a set of strings S = {s1, s2, . . . , sn}, find
the shortest string S⇤ that contains each element of S as a substring, i.e., S⇤ is a
superstring of S. For example: S = {‘‘steven’’, ‘‘boost’’, ‘‘vent’’}, S⇤ =
‘‘boostevent’’.

4. Partition-Into-Triangles: Given a graph G = (V,E) (for the sake of discussion,
let V be a multiple of 3, i.e., |V | = 3k), is there a partition of V into k disjoint subsets
{V1, V2, . . . , Vk} of 3 vertices each such that the 3 possible edges between every Vi are
in E? Notice that forming ICPC teams from a group of 3k students where there is
an edge between 2 students if they can work well with each other is basically this
NP-complete decision problem.

5. Max-Clique: Given a graph G = (V,E), find a clique (complete subgraph) of G with
the largest possible number of vertices.

46
Partition problem can be easily proven to be NP-complete via reduction from Subset-Sum.

47This problem can also be posed as weighted version where we seek to minimize the sum of edge weights
that we remove.

461

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

8.6.14 Summary

Name Exponential Solution(s)
0-1 Knapsack Small: DP Knapsack

Medium: Meet in the Middle
Subset-Sum DP Subset-Sum, similar as DP Knapsack above
Coin-Change DP Coin-Change, similar as DP Knapsack above
TSP/Hamiltonian-Tour Small: DP Held-Karp

Small: Backtracking with heavy pruning
Longest-Path V 10: Backtracking with heavy pruning

V 18: DP Held-Karp variant
MWVC/MWIS Small: Optimized bitmask

Small k: Clever Backtracking (Exercise 8.6.6.4*)
MSC Small: Backtracking with bitmask
SAT Small 3-SAT: DPLL
Steiner-Tree k V 15, CS + MST

Medium: DP Dreyfus-Wagner (Exercise 8.6.10.1*)
Graph-Coloring/MCC Medium: O(3n) DP over subsets

Table 8.2: Summary of Exponential Solution(s) of NP-hard/complete Problems

Name Special Case(s)
0-1 Knapsack Fractional Knapsack
Subset-Sum 2/3/4-SUM
TSP Bitonic TSP
Longest-Path On DAG: Toposort/DP

On Tree: 2 DFS/BFS
MWVC/MWIS On Tree: DP/Greedy

On Bipartite: Max Flow/Matching
MPC On DAG: MCBM
SAT 2-SAT: Reduction to SCC
Steiner-Tree k = 2, SSSDSP

k = N , MST
k = 3, CS +1 Steiner point
On Tree: LCA

Graph-Coloring Bi-coloring/2 color/Bipartite
4 color/planar
9 color/Sudoku

Table 8.3: Summary of Special Case(s) of NP-hard/complete Problems

462

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

Programming Exercises related to NP-hard/complete Problems:

a. Small Instances of the NP-hard/complete Problems, Easier

1. Entry Level: Kattis - equalsumseasy * (Partition; generate all possible
subsets with bitmask; use set to record which sums have been computed)

2. UVa 00989 - Su Doku * (classic Sudoku puzzle; the small 9x9 instance
is solvable with backtracking with pruning; use bitmask to speed up)

3. UVa 11088 - End up with More Teams * (similar to UVa 10911 but
partitioning of three persons to one team; Partition-Into-Triangles)

4. UVa 12455 - Bars * (Subset-Sum; try all; see the harder UVa 12911 that
requires meet in the middle)

5. Kattis - flowfree * (brute force combination 310 or 48; then Longest-Path

problem on non DAG between two end points of the same color)

6. Kattis - font * (count number of possible Set-Covers; use 2N backtracking;
but use bitmask to represent small set of covered letters)

7. Kattis - socialadvertising * (Min-Dominating-Set/Min-Set-Cover; n
20; use compact Adjacency Matrix technique)

Extra UVa: 00193, 00539, 00574, 00624, 00775, 10957.

Extra Kattis: balanceddiet, satisfiability, ternarianweights, tightfitsudoku,
vivoparc.

b. Small Instances of the NP-hard/complete Problems, Harder

1. Entry Level: UVa 01098 - Robots on Ice * (LA 4793 - WorldFinals
Harbin10; Hamiltonian-Tour; backtracking+pruning; meet in the middle)

2. UVa 10571 - Products * (hard backtracking problem; it has similar flavor
as Sudoku puzzle)

3. UVa 11095 - Tabriz City * (optimization version of Min-Vertex-Cover

on general graph which is NP-hard)

4. UVa 12911 - Subset sum * (Subset-Sum; we cannot use DP as 1 N
40 and �109 T 109; use meet in the middle)

5. Kattis - beanbag * (Set-Cover problem; T farmers can collude to give Jack
the hardest possible subset of beans to be given freely to Jack)

6. Kattis - busplanning * (Min-Clique-Cover; DP bitmask over sets)

7. Kattis - programmingteamselection * (Partition-Into-Triangles; prune
if #students %3 6= 0; generate up to m/3 teams; backtracking with memo)

Extra UVa: 01217, 10160, 11065.

Extra Kattis: celebritysplit, coloring, mapcolouring, sudokunique, sumsets,
tugofwar.

Review all programming exercises for DP classics that actually have pseudo-
polynomial time complexities: 0-1Knapsack, Subset-Sum, Coin-Change,
and TSP back in Book 1 and in Section 8.3.

463

8.6. NP-HARD/COMPLETE PROBLEMS c� Steven, Felix, Suhendry

c. Special Cases of the NP-hard/complete Problems, Easier

1. Entry Level: UVa 01347 - Tour * (LA 3305 - SoutheasternEurope05; this
is the pure version of Bitonic-TSP problem)

2. UVa 10859 - Placing Lampposts * (Min-Vertex-Cover; on several
trees; maximize number of edges with its two endpoints covered)

3. UVa 11159 - Factors and Multiples * (Max-Independent-Set; on
Bipartite Graph; ans equals to its MCBM)

4. UVa 11357 - Ensuring Truth * (not a pure CNF SAT(isfiability) prob-
lem; it is a special case as only one clause needs to be satisfied)

5. Kattis - bilateral * (this isMin-Vertex-Cover on Bipartite Graph; MCBM;
Konig’s theorem that can handle the 1 009 correctly)

6. Kattis - europeantrip * (Steiner-Tree with 3 terminal vertices and up to
1 Steiner point; we can use two ternary searches)

7. Kattis - reactivity * (verify if a Hamiltonian-Path exists in the DAG; find
one topological sort of the DAG; verify if it is the only one in linear time)

Extra UVa: 01194, 10243, 11419, 13115.

Extra Kattis: antennaplacement, bookcircle, catvsdog, citrusintern, counting-
clauses, cross, guardianofdecency.

d. Special Cases of the NP-hard/complete Problems, Harder

1. Entry Level: UVa 01096 - The Islands * (LA 4791 - WorldFinals Harbin10;
Bitonic-TSP variant; print the actual path)

2. UVa 01086 - The Ministers’ ... * (LA 4452 - WorldFinals Stockholm09;
can be modeled as a 2-SAT problem)

3. UVa 01184 - Air Raid * (LA 2696 - Dhaka02; Min-Path-Cover; on
DAG; ⇡ MCBM)

4. UVa 01212 - Duopoly * (LA 3483 - Hangzhou05; Max-Weighted-
Independent-Set; on Bipartite Graph; ⇡ Max Flow)

5. Kattis - jailbreak * (Steiner-Tree; on grid; 3 terminal vertices: ‘outside’
and 2 prisoners; BFS; get the best Steiner point that connects them)

6. Kattis - ridofcoins * (not the minimizing Coin-Change problem; but the
maximizing one; greedy pruning; complete search on smaller instance)

7. Kattis - wedding * (can be modeled as a 2-SAT problem; also available at
UVa 11294 - Wedding)

Extra UVa: 01220, 10319.

Extra Kattis: airports, delivering, eastereggs, itcanbearranged, ironcoal, jog-
gers, mafija, taxicab.

Also review all programming exercises involving Special Graphs, e.g., Longest-
Path (on DAG, on Tree) back in Book 1.

464

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.7 Problem Decomposition

While there are only ‘a few’ basic data structures and algorithms tested in programming
contest problems (we believe that many of them have been covered in this book), the harder
problems may require a combination of two (or more) algorithms and/or data structures.
To solve such problems, we must first decompose the components of the problems so that
we can solve each component independently. To be able to do so, we must first be familiar
with the individual components (the content of Chapter 1-Section 8.6).

Although there are NC2 possible combinations of two out of N algorithms and/or data
structures, not all of the combinations make sense. In this section, we compile and list down
some48 of the more common combinations of two algorithms and/or data structures based on
our experience in solving ⇡ 3458 UVa and Kattis online judge problems. We end this section
with the discussion of the rare combination of three algorithms and/or data structures.

8.7.1 Two Components: Binary Search the Answer and Other

In Book 1, we have seen Binary Search the Answer (BSTA) on a (simple) simulation problem
that does not depend on the fancier algorithms that have not been discussed back then.
Actually, this technique can be combined with some other algorithms in this book. Several
variants that we have encountered so far are BSTA plus:

• Greedy algorithm (discussed in Book 1), e.g., UVa 00714, 12255, Kattis - wifi,

• Graph connectivity test (discussed in Book 1), e.g., UVa 00295, 10876, Kattis - get-
tingthrough,

• SSSP algorithm (discussed in Book 1), e.g., UVa 10537, 10816, Kattis - arachnophobia,
enemyterritory, IOI 2009 (Mecho),

• Max Flow algorithm (discussed in Section 8.4), e.g., UVa 10983, Kattis - gravamen,

• MCBM algorithm (discussed in Book 1 and in Section 8.5), e.g., UVa 01221, 11262,
Kattis - gridgame,

• Big Integer operations (discussed in Book 1), e.g., UVa 10606, Kattis - prettygood-
cuberoot,

• Geometry formulas (discussed in Section 7.2), e.g., UVa 10566, 11646, 12097, 12851,
12853, Kattis - expandingrods,

• Others, e.g., UVa 10372/Physics, 11670/Physics, 12428/Graph Theory, 12908/Math,
Kattis - skijumping/Physics, etc.

In this section, we write two more examples of using Binary Search the Answer technique.
This combination of Binary Search the Answer plus another algorithm can be spotted by
asking this question: “If we guess the required answer in binary search fashion, will the
original problem turn into a True/False question?”.

48This list is not and probably will not be exhaustive.

465

8.7. PROBLEM DECOMPOSITION c� Steven, Felix, Suhendry

Binary Search the Answer (BSTA) plus Greedy algorithm

Abridged problem description of UVa 00714 - Copying Books: You are given m 500 books
numbered 1, 2, . . . ,m that may have di↵erent number of pages (p1, p2, . . . , pm). You want
to make one copy of each of them. Your task is to assign these books among k scribes,
k m. Each book can be assigned to a single scriber only, and every scriber must get a
continuous sequence of books. That means, there exists an increasing succession of numbers
0 = b0 < b1 < b2 · · · < bk�1 < bk = m such that i-th scriber (i > 0) gets a sequence of books
with numbers between bi�1 +1 and bi. Each scribe copies pages at the same rate. Thus, the
time needed to make one copy of each book is determined by the scriber who is assigned the
most work. Now, you want to determine: “What is the minimum number of pages copied
by the scriber with the most work?”.

There exists a Dynamic Programming solution for this problem, but this problem can
also be solved by guessing the answer in binary search fashion. We will illustrate this with
an example when m = 9, k = 3 and p1, p2, . . . , p9 are 100, 200, 300, 400, 500, 600, 700, 800,
and 900, respectively.

If we guess that the answer = 1000, then the problem becomes ‘simpler’, i.e., If the
scriber with the most work can only copy up to 1000 pages, can this problem be solved?
The answer is ‘no’. We can greedily assign the jobs from book 1 to book m as follows: {100,
200, 300, 400} for scribe 1, {500} for scribe 2, {600} for scribe 3. But if we do this, we still
have 3 books {700, 800, 900} unassigned. Therefore the answer must be > 1000.

If we guess answer = 2000, then we can greedily assign the jobs as follows: {100, 200,
300, 400, 500} for scribe 1, {600, 700} for scribe 2, and {800, 900} for scribe 3. All books
are copied and we still have some slacks, i.e., scribe 1, 2, and 3 still have {500, 700, 300}
unused potential. Therefore the answer must be 2000.

This answer is binary-searchable between [lo..hi] where lo = max(pi), 8i 2 [1..m]
(the number of pages of the thickest book) and hi = p1 + p2 + . . .+ pm (the sum of all pages
from all books). And for those who are curious, the optimal answer for the test case in this
example is 1700. The time complexity of this solution is O(m log hi). Notice that this extra
log factor is usually negligible in programming contest environment49.

Binary Search the Answer (BSTA) plus Geometry formulas

We use UVa 11646 - Athletics Track for another illustration of Binary Search the Answer
tecnique. The abridged problem description is as follows: Examine a rectangular soccer field
with an athletics track as seen in Figure 8.37—left where the two arcs on both sides (arc1
and arc2) are from the same circle centered in the middle of the soccer field. We want the
length of the athletics track (L1 + arc1 + L2 + arc2) to be exactly 400m. If we are given
the ratio of the length L and width W of the soccer field to be a : b, what should be the
actual length L and width W of the soccer field that satisfy the constraints above?

It is quite hard (but not impossible) to obtain the solution with pen and paper strategy
(analytical solution), but with the help of a computer and binary search the answer (actually
bisection method) technique, we can find the solution easily.

We binary search the value of L. From L, we can get W = b/a⇥L. The expected length
of an arc is (400� 2⇥L)/2. Now we can use Trigonometry to compute the radius r and the
angle o via triangle CMX (see Figure 8.37—right). CM = 0.5 ⇥ L and MX = 0.5 ⇥W .
With r and o, we can compute the actual arc length. We then compare this value with the
expected arc length to decide whether we have to increase or decrease the length L.

49Setting lo = 1 and hi = 1e9 will also work as this value will be binary-searched in logarithmic time.
That is, we may not need to set these lo and hi values very precisely as long as answer is 2 [lo..hi].

466

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

Figure 8.37: Athletics Track (from UVa 11646)

The snippet of the code is shown below.

double lo = 0.0, hi = 400.0, L, W; // the range of answer
for (int i = 0; i < 40; ++i) {

L = (lo+hi) / 2.0; // bisection method on L
W = (double)b/a*L; // derive W from L and a:b
double expected_arc = (400 - 2.0*L) / 2.0; // reference value
double CM = 0.5*L, MX = 0.5*W; // Apply Trigonometry here
double r = sqrt(CM*CM + MX*MX);
double angle = 2.0 * atan(MX/CM) * 180.0/M_PI;
double this_arc = angle/360.0 * M_PI * (2.0*r);
(this_arc > expected_arc) ? hi = L : lo = L;

}
printf("Case %d: %.12lf %.12lf\n", ++caseNo, L, W);

Source code: ch8/UVa11646.cpp|java|py

Exercise 8.7.1.1*: Prove that other strategies will not be better than the greedy strategy
mentioned for the UVa 00714 solution above?

Exercise 8.7.1.2*: Derive the analytical solution for UVa 11646 instead of using this binary
search the answer technique.

8.7.2 Two Components: Involving E�cient Data Structure

This problem combination usually appear in some ‘standard’ problems but with large input
constraint such that we have to use a more e�cient data structure to avoid TLE. The e�cient
data structures are usually the very versatile balanced BSTs (set/map), the fast Hash Tables,
Priority Queues, UFDS, or Fenwick/Segment Tree.

For example, UVa 11967-Hic-Hac-Hoe is an extension of a board game Tic-Tac-Toe.
Instead of the small 3⇥ 3 board, this time the board size is ‘infinite’. Thus, there is no way
we can record the board using a 2D array. Fortunately, we can store the coordinates of the
‘noughts’ and ‘crosses’ in a balanced BST and refer to this BST to check the game state.

467

8.7. PROBLEM DECOMPOSITION c� Steven, Felix, Suhendry

8.7.3 Two Components: Involving Geometry

Many (computational) geometry problems can be solved using Complete Search (although
some require Divide and Conquer, Greedy, Dynamic Programming, or other techniques).
When the given input constraints allow for such Complete Search solution, do not hesitate
to go for it. In the list of problem decomposition programming exercises, we have split
problems that are of “Geometry + Complete Search” and “Geometry + Others”.

For example, UVa 11227 - The silver bullet boils down into this problem: Given N
(1 N 100) points on a 2D plane, determine the maximum number of points that are
collinear. We can a↵ord to use the following O(N3) Complete Search solution as N 100
(there is a better solution). For each pair of point i and j, we check the other N -2 points if
they are collinear with line i� j. This solution can be written with three nested loops and
the bool collinear(point p, point q, point r) function shown in Section 7.2.2.

Exercise 8.7.3.1*: Design an O(N2 logN) solution for this UVa 11227 problem that allows
us to solve this problem even if the N is raised up to 2000.

8.7.4 Two Components: Involving Graph

This type of problem combinations can be spotted as follows: one clear component is a graph
algorithm. However, we need another supporting algorithm, which is usually some sort of
mathematics or geometric rule (to build the underlying graph) or even another supporting
graph algorithm. In this subsection, we illustrate one such example.

In Book 1, we have mentioned that for some problems, the underlying graph does not
need to be stored in any graph specific data structures (implicit graph). This is possible
if we can derive the edges of the graph easily or via some rules. UVa 11730 - Number
Transformation is one such problem.

While the problem description is all mathematics, the main problem is actually a Single-
Source Shortest Paths (SSSP) problem on unweighted graph solvable with BFS. The un-
derlying graph is generated on the fly during the execution of the BFS. The source is the
number S. Then, every time BFS processes a vertex u, it enqueues unvisited vertex u + x
where x is a prime factor of u that is not 1 or u itself. The BFS layer count when target
vertex T is reached is the minimum number of transformations needed to transform S into
T according to the problem rules.

8.7.5 Two Components: Involving Mathematics

In this problem combination, one of the components is clearly a mathematics problem, but
it is not the only one. It is usually not graph as otherwise it will be classified in the previous
subsection. The other component is usually recursive backtracking or binary search. It is
also possible to have two di↵erent mathematics algorithms in the same problem. In this
subsection, we illustrate one such example.

UVa 10637 - Coprimes is the problem of partitioning S (0 < S 100) into t (0 < t 30)
co-prime numbers. For example, for S = 8 and t = 3, we can have 1 + 1 + 6, 1 + 2 + 5,
or 1 + 3 + 4. After reading the problem description, we will have a strong feeling that this
is a mathematics (number theory) problem. However, we will need more than just Sieve of
Eratosthenes algorithm to generate the primes and GCD algorithm to check if two numbers
are co-prime, but also a recursive backtracking routine to generate all possible partitions (in
fact, partitioning problem in general is NP-complete).

468

CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

8.7.6 Two Components: Graph Preprocessing and DP

In this subsection, we want to highlight a problem where graph pre-processing is one of the
components as the problem clearly involves some graphs and DP is the other component.
We show this combination with two examples.

SSSP/APSP plus DP TSP

We use UVa 10937 - Blackbeard the Pirate to illustrate this combination of SSSP/APSP
plus DP TSP. The SSSP/APSP is usually used to transform the input (usually an implicit
graph/grid) into another (usually smaller) graph. Then we run Dynamic Programming
solution for TSP on the second (usually smaller) graph.

The given input for this problem is shown on the left of the diagram below. This is a ‘map’
of an island. Blackbeard has just landed at this island and at position labeled with a ‘@’.
He has stashed up to 10 treasures in this island. The treasures are labeled with exclamation
marks ‘!’. There are angry natives labeled with ‘*’. Blackbeard has to stay away at least 1
square away from the angry natives in any of the eight directions. Blackbeard wants to grab
all his treasures and go back to his ship. He can only walk on land ‘.’ cells and not on water
‘⇠’ cells nor on obstacle cells ‘#’.

Input: Index @ and ! The APSP Distance Matrix
Implicit Graph Enlarge * with X A complete (small) graph

~~~~~~~~~~ ~~~~~~~~~~ -------------------
~~!!!###~~ ~~123###~~ | 0| 1| 2| 3| 4| 5|
~##...###~ ~##..X###~ -------------------
~#....*##~ ~#..XX*##~ |0| 0|11|10|11| 8| 8|
~#!..**~~~ ~#4.X**~~~ |1|11| 0| 1| 2| 5| 9|
~~....~~~~ ==> ~~..XX~~~~ ==> |2|10| 1| 0| 1| 4| 8|
~~~....~~~ ~~~....~~~ |3|11| 2| 1| 0| 5| 9|
~~..~..@~~ ~~..~..0~~ |4| 8| 5| 4| 5| 0| 6|
~#!.~~~~~~ ~#5.~~~~~~ |5| 8| 9| 8| 9| 6| 0|
~~~~~~~~~~ ~~~~~~~~~~ ---------------------

This is an NP-hard TSP optimization problem (see Book 1 and Section 8.6), but before we
can use DP TSP solution, we have to transform the input into a distance matrix.

In this problem, we are only interested in the ‘@’ and the ‘!’s. We give index 0 to ‘@’
and give positive indices to the other ‘!’s. We enlarge the reach of each ‘*’ by replacing the
‘.’ around the ‘*’ with an ‘X’. Then we run BFS on this unweighted implicit graph starting
from ‘@’ and all the ‘!’, by only stepping on cells labeled with ‘.’ (land cells), ‘!’ (other
treasure), or ‘@’ (Blackbeard’s starting point). This gives us the All-Pairs Shortest Paths
(APSP) distance matrix as shown in the diagram above.

Now, after having the APSP distance matrix, we can run DP TSP as shown in Book 1
to obtain the answer. In the test case shown above, the optimal TSP tour is: 0-5-4-1-2-3-0
with cost = 8+6+5+1+1+11 = 32.

SCC Contraction plus DP Algorithm on DAG

In some modern problems involving directed graph, we have to deal with the Strongly Con-
nected Components (SCCs) of the directed graph (see Book 1). One of the variants is the
problem that requires all SCCs of the given directed graph to be contracted first to form
larger vertices (called as super vertices).

469



8.7. PROBLEM DECOMPOSITION c� Steven, Felix, Suhendry

The original directed graph is not guaranteed to be acyclic, thus we cannot immediately
apply DP techniques on such graph. But when the SCCs of a directed graph are contracted,
the resulting graph of super vertices is a DAG. If you recall our discussion in Book 1, DAG is
very suitable for DP techniques as it is acyclic. UVa 11324 - The Largest Clique50 is one such
problem. This problem in short, is about finding the longest path on the DAG of contracted
SCCs. Each super vertex has weight that represents the number of original vertices that are
contracted into that super vertex.

8.7.7 Two Components: Involving 1D Static RSQ/RMQ

This combination should be rather easy to spot. The problem involves another algorithm to
populate the content of a static 1D array (that will not be changed anymore once it is popu-
lated) and then there will be many Range Sum/Minimum/Maximum Queries (RSQ/RMQ)
on this static 1D array. Most of the time, these RSQs/RMQs are asked at the output
phase of the problem. But sometimes, these RSQs/RMQs are used to speed up the internal
mechanism of the other algorithm to solve the problem.

The solution for 1D Static RSQ with Dynamic Programming has been discussed in Book
1. For 1D Static RMQ, we have the Sparse Table Data Structure (which is a DP solution)
that is discussed in Section 9.3. Without this RSQ/RMQ DP speedup, the other algorithm
that is needed to solve the problem usually ends up receiving the TLE verdict.

As a simple example, consider a simple problem that asks how many primes there are
in various query ranges [a..b] (2  a  b  1 000 000). This problem clearly involves Prime
Number generation (e.g., Sieve algorithm, see Section 5.3.1). But since this problem has
2  a  b  1 000 000, we will get TLE if we keep answering each query in O(b � a + 1)
time by iterating from a to b, especially if the problem author purposely set b� a+ 1 to be
near 1 000 000 at (almost) every query. We need to speed up the output phase into O(1) per
query using 1D Static RSQ DP solution.

8.7.8 Three (or More) Components

In Section 8.7.1-8.7.7, we have seen various examples of problems involving two components.
In this subsection, we show two examples of rare combinations of three (or more51) di↵erent
algorithms and/or data structures.

Prime Factors, DP, Binary Search

Abridged problem description of UVa 10856 - Recover Factorial: Given N , the number of
prime factors in X!, what is the minimum possible value of X? (N  10 000 001). This
problem can be decomposed it into several components.

First, we compute the number of prime factors of an integer i and store it in a table
NumPF[i] with the following recurrence: if i is a prime, then NumPF[i] = 1 prime factor;
else if i = PF ⇥ i0, then NumPF[i] = 1 + the number of prime factors of i0. We compute this
number of prime factors 8i 2 [1..2 703 665]. The upper bound of this range is obtained by
trial and error according to the limits given in the problem description.

Then, the second part of the solution is to accumulate the number of prime factors of N !
by setting NumPF[i] += NumPF[i-1]; 8i 2 [1..N]. Thus, NumPF[N] contains the number
of prime factors of N !. This is the DP solution for the 1D Static RSQ problem.

50The title of this UVa 11324 problem is a bit misleading for those who are aware with the theory of
NP-completeness. This problem is not the NP-hard Max-Clique problem.

51It is actually very rare to have more than three components in a single programming contest problem.

470



CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

Now, the third part of the solution should be obvious: we can do binary search to find
the index X such that NumPF[X] = N. If there is no answer, we output “Not possible.”.

Complete Search, Binary Search, Greedy

In this write up, we discuss an ICPCWorld Finals programming problem that combines three
problem solving paradigms that we have learned in Chapter 3, namely: Complete Search,
Divide & Conquer (Binary Search), and Greedy.

Abridged problem description of UVa 01079 - A Careful Approach (ICPC World Finals
Stockholm09): You are given a scenario of airplane landings. There are 2  n  8 airplanes
in the scenario. Each airplane has a time window during which it can safely land. This time
window is specified by two integers ai and bi, which give the beginning and end of a closed
interval [ai..bi] during which the i-th plane can land safely. The numbers ai and bi are
specified in minutes and satisfy 0  ai  bi  1440 (24 hours). In this problem, you can
assume that the plane landing time is negligible. Your tasks are:

1. Compute an order for landing all airplanes that respects these time windows.
HINT: order = (very small) permutation = Complete Search?

2. Furthermore, the airplane landings should be stretched out as much as possible
so that the minimum achievable time gap between successive landings is as large as
possible. For example, if three airplanes land at 10:00am, 10:05am, and 10:15am, then
the smallest gap is five minutes, which occurs between the first two airplanes. Not all
gaps have to be the same, but the smallest gap should be as large as possible.
HINT: Is this similar to ‘interval covering’ problem (see Book 1)?

3. Print the answer split into minutes and seconds, rounded to the closest second.

See Figure 8.38 for illustration:
line = the safe landing time window of a plane.
star = the plane’s optimal landing schedule.

Figure 8.38: Illustration for ICPC WF2009 - A - A Careful Approach

Solution: Since the number of planes is at most 8, an optimal solution can be found by simply
trying all 8! = 40 320 possible orders for the planes to land. This is the Complete Search
component of the problem which can be easily implemented using next permutation in
C++ STL algorithm.

Now, for each specific landing order, we want to know the largest possible landing window.
Suppose we guess that the answer is a certain window length L. We can greedily check
whether this L is feasible by forcing the first plane to land as soon as possible and the
subsequent planes to land in max(a[that plane], previous landing time + L). This is
the Greedy component.

A window length L that is too long/short will cause lastLanding (see the code) to
overshoot/undershoot b[last plane], so we have to decrease/increase L. We can Binary
Search the Answer L. This is the Divide and Conquer component of this problem. As we
only want the answer rounded to the nearest integer, stopping binary search when the error
✏ < 1e-3 is enough. For more details, please study our source code in the next page.

471



8.7. PROBLEM DECOMPOSITION c� Steven, Felix, Suhendry

int n, order[8];
double a[8], b[8], L;

// with certain landing order and ‘answer’ L, greedily land those planes
double greedyLanding() {

double lastLanding = a[order[0]]; // greedy for 1st aircraft
for (int i = 1; i < n; ++i) { // for the other aircrafts

double targetLandingTime = lastLanding+L;
if (targetLandingTime <= b[order[i]])

// can land: greedily choose max of a[order[i]] or targetLandingTime
lastLanding = max(a[order[i]], targetLandingTime);

else
return 1;

} // return +ve/-ve value to force binary search to reduce/increase L
return lastLanding - b[order[n-1]];

}

int main() {
int caseNo = 0;
while (scanf("%d", &n), n) { // 2 <= n <= 8

for (int i = 0; i < n; ++i) { // plane i land at [ai,bi]
scanf("%lf %lf", &a[i], &b[i]);
a[i] *= 60; b[i] *= 60; // convert to seconds
order[i] = i;

}
double maxL = -1.0; // the answer
do { // permute landing order

double lo = 0, hi = 86400; // min 0s, max 86400s
L = -1;
for (int i = 0; i < 30; ++i) { // BSTA (L)

L = (lo+hi) / 2.0;
double retVal = greedyLanding(); // see above
(retVal <= 1e-2) ? lo = L : hi = L; // increase/decrease L

}
maxL = max(maxL, L); // the max overall

}
while (next_permutation(order, order+n)); // try all permutations
maxL = (int)(maxL+0.5); // round to nearest second
printf("Case %d: %d:%0.2d\n", ++caseNo, (int)(maxL/60), (int)maxL%60);

} // other way for rounding is to use printf format string: %.0lf:%0.2lf
return 0;

}

Source code: ch8/UVa01079.cpp|java|ml

Exercise 8.7.8.1: The code uses ‘double’ data type for lo, hi, and L. This is unnecessary
as all computations can be done in integers. Please rewrite this code!

472



CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

Programming Exercises related to Problem Decomposition:

a. Two Components - BSTA and Other, Easier

1. Entry Level: UVa 00714 - Copying Books * (+greedy matching)

2. UVa 10816 - Travel in Desert * (+Dijkstra’s)

3. UVa 11262 - Weird Fence * (+MCBM; similar with UVa 10804)

4. UVa 12097 - Pie * (+geometric formula)

5. Kattis - arrivingontime * (BSTA: the latest starting time; use Dijkstra’s to
compute whether we can still arrive at meeting point on time)

6. Kattis - charlesincharge * (BSTA: max edge that Charles can use; SSSP from
1 to N passing through edges that do not exceed that; is it OK?)

7. Kattis - programmingtutors * (+perfect MCBM)

Extra UVa: 10566, 10606, 10804, 11646, 12851, 12853, 12908.

Extra Kattis: expandingrods, fencebowling, forestforthetrees, gridgame, pret-
tygoodcuberoot, rockclimbing, skijumping.

Others: IOI 2009 - Mecho (+multi-sources BFS).

b. Two Components - BSTA and Other, Harder

1. Entry Level: Kattis - wifi * (+greedy; also available at UVa 11516 - WiFi)

2. UVa 01221 - Against Mammoths * (LA 3795 - Tehran06; +MCBM)

3. UVa 10537 - The Toll, Revisited * (+Dijkstra’s on State-Space graph)

4. UVa 10983 - Buy one, get ... * (+max flow)

5. Kattis - catandmice * (BSTA: the initial velocity of Cartesian Cat; DP TSP
to verify if the cat can catch all mice in the shortest possible time)

6. Kattis - enemyterritory * (MSSP from all enemy vertices; BSTA, run BFS
from (xi, yi) to (xr, yr) avoiding vertices that are too close to any enemy)

7. Kattis - gravamen * (BSTA + max flow)

Extra UVa: 10372, 11670, 12255, 12428.

Extra Kattis: arachnophobia, carpet, freighttrain, low, risk.

c. Two Components - Involving E�cient Data Structure, Easier

1. Entry Level: Kattis - undetected * (brute force; simple geometry; UFDS)

2. UVa 11960 - Divisor Game * (modified Sieve, number of divisors; static
Range Maximum Query, use Sparse Table data structure)

3. UVa 12318 - Digital Roulette * (brute force with unordered set)

4. UVa 12460 - Careful teacher * (a simple BFS problem; use set of string
data structure to speed up the check if a word is inside dictionary)

5. Kattis - bing * (map all prefixes to frequencies using Hash Table; or use Trie)

6. Kattis - busnumbers2 * (complete search; use unordered map)

7. Kattis - selfsimilarstrings * (complete search as the string is short; frequency
counting; use unordered map; repetition)

Extra UVa: 10789, 11966, 11967, 13135.

Extra Kattis: gcds, reducedidnumbers, thesaurus, znanstvenik.

473



8.7. PROBLEM DECOMPOSITION c� Steven, Felix, Suhendry

d. Two Components - Involving E�cient Data Structure, Harder

1. Entry Level: Kattis - dictionaryattack * (time limit is generous; you can
generate all possible password with just 3 swaps; store in sets)

2. UVa 00843 - Crypt Kicker * (backtracking; try mapping each letter to
another letter in alphabet; use Trie for speed up)

3. UVa 11474 - Dying Tree * (UFDS; connect all tree branches; connect
two reachable trees (use geometry); connect trees that can reach doctor)

4. UVa 11525 - Permutation * (use Fenwick Tree and binary search the
answer to find the lowest index i that has RSQ(1, i) = Si)

5. Kattis - doublets * (s: (string); BFS; use trie to quickly identify neighbor
that is one Hamming distance away; also available at UVa 10150 - Doublets)

6. Kattis - magicallights * (LA 7487 - Singapore15; flatten the tree with DFS;
use Fenwick Tree for Range Odd Query; use long long)

7. Kattis - sparklesseven * (seven nested loops with fast DS)

Extra UVa: 00922, 10734.

Extra Kattis: chesstournament, circular, clockconstruction, dailydivision,
downfall, kletva, lostisclosetolose, mario, numbersetseasy, numbersetshard,
setstack.

e. Two Components - Geometry and Complete Search

1. Entry Level: UVa 11227 - The silver ... * (brute force; collinear test)

2. UVa 10012 - How Big Is It? * (try all 8! permutations; Euclidean dist)

3. UVa 10167 - Birthday Cake * (brute force A and B; ccw tests)

4. UVa 10823 - Of Circles and Squares * (complete search; check if point
inside circles/squares)

5. Kattis - collidingtra�c * (try all pairs of boats; 0.0 if one pair collide; or, use
a quadratic equation; also available at UVa 11574 - Colliding Tra�c)

6. Kattis - cranes * (circle-circle intersection; backtracking or brute force sub-
sets with bitmask; also available at UVa 11515 - Cranes)

7. Kattis - doggopher * (complete search; Euclidean distance dist; also avail-
able at UVa 10310 - Dog and Gopher)

Extra UVa: 00142, 00184, 00201, 00270, 00356, 00638, 00688, 10301.

Extra Kattis: areyoulistening, beehives, splat, unlockpattern2, unusualdarts.

f. Two Components - Geometry and Others

1. Entry Level: Kattis - humancannonball * (build the travel time graph with
Euclidean distance computations; use Floyd-Warshall)

2. UVa 10514 - River Crossing * (use basic geometry to compute edge
weights of the graph of islands and the two riverbanks; SSSP; Dijkstra’s)

3. UVa 11008 - Antimatter Ray Clear... * (collinear test; DP bitmask)

4. UVa 12322 - Handgun Shooting Sport * (first, use atan2 to convert
angles to 1D intervals; then sort it and use a greedy scan to get the answer)

5. Kattis - findinglines * (randomly pick two points; there is a good chance that
20% or more points are on that line defined by those two points)

6. Kattis - umbraldecoding * (recursive subdivision; overlap check; umbra)

7. Kattis - walkway * (we can build the graph and compute area of trapezoid
using simple geometry; SSSP on weighted graph; Dijkstra’s)

Extra Kattis: dejavu, galactic, particlecollision, subwayplanning, targetprac-
tice, tram, urbandesign.

474



CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

g. Two Components - Involving Graph

1. Entry Level: UVa 12159 - Gun Fight * (LA 4407 - KualaLumpur08; use
simple CCW tests (geometry) to build the bipartite graph; MCBM)

2. UVa 00393 - The Doors * (build the small visibility graph with line
segment intersection checks; run Floyd-Warshall routine to get the answer)

3. UVa 01092 - Tracking Bio-bots * (LA 4787 - WorldFinals Harbin10;
compress graph; traversal from exit with S/W direction; inclusion-exclusion)

4. UVa 12797 - Letters * (iterative subset; pick subset of UPPERCASE
letters for this round; BFS to find the SSSP; pick the best)

5. Kattis - crowdcontrol * (maximin path problem; MST; DFS from train sta-
tion to BAPC; block unused edges)

6. Kattis - gears2 * (graph reachability test; cycle with equal ratio is actually
OK; math fraction)

7. Kattis - gridmst * (Singapore15 preliminary; rectilinear MST problem; small
2D grid; multi-sources BFS to construct short edges; run Kruskal’s)

Extra UVa: 00273, 00521, 01039, 01243, 01263, 10068, 10075, 11267, 11635,
11721, 11730, 12070.

Extra Kattis: artur, bicikli, borg, deadend, diplomacy, findpoly, godzilla,
primepath, units, uniquedice, vuk, wordladder2.

h. Two Components - Involving Mathematics

1. Entry Level: Kattis - industrialspy * (brute force recursive bitmask with
prime check; also available at UVa 12218 - An Industrial Spy)

2. UVa 01069 - Always an integer * (LA 4119 - WorldFinals Ban↵08; string
parsing, divisibility of polynomial, brute force, and modPow)

3. UVa 10539 - Almost Prime Numbers * (sieve; get ‘almost primes’ by
listing the powers of each prime, sort them; binary search)

4. UVa 11282 - Mixing Invitations * (derangement and binomial coe�-
cient; Big Integer)

5. Kattis - emergency * (the problem is posed as an SSSP problem on special
graph; but turns out a simple formula solves the problem; Big Integer)

6. Kattis - megainversions * (a bit of combinatorics; use Fenwick Tree to com-
pute smaller/larger numbers quickly)

7. Kattis - ontrack * (DFS on Tree; the input is a tree, we can try all possible
junctions as the critical junction)

Extra UVa: 01195, 10325, 10419, 10427, 10637, 10717, 11099, 11415, 11428,
12802.

Extra Kattis: digitdivision, dunglish, thedealoftheday, unicycliccount.

475



8.7. PROBLEM DECOMPOSITION c� Steven, Felix, Suhendry

i. Two Components - Graph Preprocessing and DP

1. Entry Level: UVa 10937 - Blackbeard the ... * (BFS ! APSP informa-
tion for TSP; then DP or backtracking)

2. UVa 00976 - Bridge Building * (flood fill to separate North and South
banks; compute the cost of installing a bridge at each column; DP)

3. UVa 11324 - The Largest Clique * (Longest-Path on DAG; first,
transform the graph into DAG of its SCCs; toposort)

4. UVa 11331 - The Joys of Farming * (bipartite graph checks; compute
size of left/right sets per bipartite component; DP Subset-Sum)

5. Kattis - globalwarming * (the biggest clique has at most 22 vertices; matching
in (small) general graph (component))

6. Kattis - treasurediving * (SSSP from source and all idol positions; TSP-like
but there is a knapsack style parameter ‘air left’; use backtracking)

7. Kattis - walkforest * (counting paths in DAG; build the DAG; Dijkstra’s
from ‘home’; also available at UVa 10917 - A Walk Through the Forest)

Extra UVa: 10944, 11284, 11405, 11643, 11813.

Extra Kattis: contestscheduling, dragonball1, ntnuorienteering, shopping,
speedyescape.

j. Two Components - Involving DP 1D RSQ/RMQ

1. Entry Level: UVa 10533 - Digit Primes * (sieve; check if a prime is a
digit prime; DP 1D range sum)

2. UVa 10891 - Game of Sum * (Double DP; 1D RSQ plus another DP to
evaluate decision tree; s: (i, j); try all splitting points; minimax)

3. UVa 11032 - Function Overloading * (observation: sod(i) can be only
from 1 to 63; use 1D Range Sum Query for fun(a, b))

4. UVa 11408 - Count DePrimes * (need 1D Range Sum Query)

5. Kattis - centsavings * (1D RSQ DP for sum of prices from [i..j]; round
up/down; s: (idx, d left); t: try all positioning of the next divider)

6. Kattis - dvoniz * (involving 1D RSQ DP; binary search the answer)

7. Kattis - program * (somewhat like Sieve of Eratosthenes initially and 1D
RSQ DP speedup at the end)

Extra UVa: 00967, 10200, 10871, 12028, 12904.

Extra Kattis: eko, hnumbers, ozljeda, sumandproduct, tiredterry.

476



CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

k. Three (or More) Components, Easier

1. Entry Level: Kattis - gettingthrough * (BSTA+graph connectivity; Union-
Find; similar to UVa 00295)

2. UVa 00295 - Fatman * (BSTA x: if the person has diameter x, can he go
from left to right? graph connectivity; similar with UVa 10876)

3. UVa 01250 - Robot Challenge * (LA 4607 - SoutheastUSA09; geometry;
SSSP on DAG ! DP; DP 1D range sum)

4. UVa 10856 - Recover Factorial * (compute number of prime factors of
each integer in the desired range; use 1D RSQ DP; binary search)

5. Kattis - beeproblem * (transform bee grid into 2D grid; compute size of each
CCs; sort; greedy)

6. Kattis - researchproductivityindex * (sort papers by decreasing probability;
brute force k and greedily submit k best papers; DP probability; keep max)

7. Kattis - shrine * (a bit of geometry (chord length); BSTA + brute force first
shrine + greedy sweep checks)

Extra UVa: 10876, 11610.

Extra Kattis: cardhand, cpu, enviousexponents, equilibrium, glyphrecognition,
gmo, highscore2, ljutnja, mobilization, pyro, wheels.

l. Three (or More) Components, Harder

1. Entry Level: Kattis - artwork * (flood fill to count CCs; UFDS; try undoing
the horizontal/vertical line stroke in reverse)

2. UVa 00811 - The Fortified Forest * (LA 5211 - WorldFinals Eind-
hoven99; get CH and perimeter of polygon; generate all subsets iteratively
with bitmask)

3. UVa 01040 - The Traveling Judges * (LA 3271 - WorldFinals Shang-
hai05; try all subsets of 220 cities; MST; complex output formatting)

4. UVa 01079 - A Careful Approach * (LA 4445 - WorldFinals Stock-
holm09; iterative complete search (permutation); BSTA + greedy)

5. Kattis - carpool * (Floyd-Warshall/APSP; iterative brute force subset and
permutation; DP; also available at UVa 11288 - Carpool)

6. Kattis - clockpictures * (sort angles; compute ‘string’ of di↵erences of adja-
cent angles (use modulo); min lexicographic rotation)

7. Kattis - guessthenumbers * (brute force permute up to 5!; recursive string
parsing (simple BNF); also available at UVa 12392 - Guess the Numbers)

Extra UVa: 01093.

Extra Kattis: installingapps, pikemanhard, sprocketscience, tightlypacked,
weather.

477



8.8. SOLUTION TO NON-STARRED EXERCISES c� Steven, Felix, Suhendry

8.8 Solution to Non-Starred Exercises

Exercise 8.2.2.1: State-Space Search is essentially an extension of the Single-Source Short-
est Paths problem, which is a minimization problem. The longest path problem (maximiza-
tion problem) is NP-hard (see Section 8.6) and usually we do not deal with such variant as
the (minimization problem of) State-Space Search is already complex enough to begin with.

Exercise 8.3.1.1: The solution is similar with UVa 10911 solution as shown in Book 1. But
in the “Maximum Cardinality Matching” problem, there is a possibility that a vertex is not
matched. The DP with bitmask solution for a small general graph is shown below:

int MCM(int bitmask) {
if (bitmask == (1<<N) - 1) return 0; // no more matching
int &ans = memo[bitmask];
if (ans != -1) return ans;

int p1, p2;
for (p1 = 0; p1 < N; ++p1) // find a free vertex p1

if (!(bitmask & (1<<p1)))
break;

// This is the key difference: we can skip free vertex p1
ans = MCM(bitmask | (1<<p1));

// Assume that the small graph is stored in an Adjacency Matrix AM
for (p2 = 0; p2 < N; ++p2) // find p2 that is free

if (AM[p1][p2] && (p2 != p1) && !(bitmask & (1<<p2)))
ans = max(ans, 1 + MCM(bitmask | (1<<p1) | (1<<p2)));

return ans;
}

Exercise 8.4.3.1: A. 150; B = 125; C = 60.

Exercise 8.4.5.1: We use 1 for the capacity of the ‘middle directed edges’ between the
left and the right sets of the Bipartite Graph for the overall correctness of this flow graph
modeling on other similar assignment problems. If the capacities from the right set to sink
t is not 1 as in UVa 00259, we will get wrong Max Flow value if we set the capacity of these
‘middle directed edges’ to 1.

Exercise 8.4.6.1: If we analyze using default time complexity of Edmonds-Karp/Dinic’s,
i.e., O(V E2) for Edmonds-Karp or O(V 2E) for Dinic’s, then we may fear TLE because
V = 30⇥ 30⇥ 2 = 1800 (as we use vertex splitting) and E = (1 + 4)⇥ V = 5⇥ 900 = 4500
(each vin is connected to vout and each vout is connected to at most 4 other uin). Even
O(V 2E) Dinic’s algorithm requires up to 18002 ⇥ 4500 = 1⇥ 1010 operations.

However, we need to realize one more important insight. Edmonds-Karp/Dinic’s are
Ford-Fulkerson based algorithm, so it is also bounded by the dreaded O(mf ⇥ E) time
complexity that we are afraid of initially. The flow graph of UVa 11380 will only have
very small mf value because the mf value is the minimum of number of ‘*’/people (upper
bounded by 50% * 900 = 450) and number of ‘#’/large wood (upper bounded by 900 if
all cells are ‘#’s) multiplied by the highest possible value of P (so 900 * 10 = 9000). This
min(450, 9000)⇥ 4500 is ‘small’ (only 2M operations).

478



CHAPTER 8. MORE ADVANCED TOPICS c� Steven, Felix, Suhendry

The ‘tighter’ time complexity of Dinic’s algorithm is O(min(min(a, b) ⇥ E, V 2 ⇥ E))
where a/b are the sum of edge capacities that go out from s/go in to t, respectively. Keep a
lookout of these potentially ‘low’ values of a or b in your next network flow problem.

Exercise 8.6.2.1: A few special cases of Subset-Sum that have true polynomial solutions
are listed below:

• 1-SUM: Find a subset of exactly 1 integer in an array A that sums/has value v.
We can do O(n) linear search if A is unsorted or O(log n) binary search if A is sorted.

• 2-SUM: Find a subset of exactly 2 integers in an array A that sums to value v.
This is a classic ‘target pair’ problem that can be solved in O(n) time after sorting A
in O(n log n) time if A is not yet sorted.

• 3-SUM: Find a subset of exactly 3 integers in an array A that sums to value v.
This is also a classic problem that can be solved in O(n2) (or better). One possible
solution is to hash each integer of A into a hash table and then for every pair of indices
i and j, we check whether the hash table contains the integer v � (A[i] + A[j]).

• 4-SUM: Find a subset of exactly 4 integers in an array A that sums to value v.
This is also a classic problem that can be solved in O(n3) (or better). One possible
solution is to sort A first in O(n log n) and then try all possible A[i] where i 2 [0..n�3]
and A[j] where j 2 [i+ 1..n� 2] and solve the target pair in O(n).

Exercise 8.6.6.1: The MVC and MWVC of a graph with just isolated vertices is clearly 0.
The MVC of a complete unweighted graph is just V -1; However, the MWVC of a complete
weighted graph is the weight of all vertices - the weight of the heaviest vertex.

Exercise 8.6.6.2: If the graph contains multiple Connected Components (CCs), we can
process each CC separately as they are independent.

Exercise 8.7.8.1: Please review Divide and Conquer section in Book 1 for the solution.

479



8.9. CHAPTER NOTES c� Steven, Felix, Suhendry

8.9 Chapter Notes

Mastering this chapter (and beyond, e.g., the rare topics in Chapter 9) is important for those
who are aspiring to do (very) well in the actual programming contests.

In CP4, we have moved the Sections about Network Flow (Section 8.4) from Chapter 4
into this Chapter. We also have moved Graph Matching (Section 8.5) from Chapter 9 into
this Chapter to consolidate various subtopics of this interesting graph problem.

Also in CP4, this Chapter 8 contains one additional important Section 8.6 about NP-
hard/complete problems in programming contests. We will not be asked to solve the general
case of those NP-hard/complete problems but rather the smaller instances or the special cases
of those problems. Familiarity with this class of problems will help competitive programmers
from wasting their time during precious contest time thinking of a polynomial solution (which
likely does not exist unless P = NP ) but rather write an e�cient Complete Search solution
or hunt for the (usually very subtle) special condition(s) in the problem description that
may help simplify the problem so that a polynomial solution is still possible. We compile
many smaller writeups that were previously scattered in various other sections in the earlier
editions of this book into this section and then add a substantial more amount of exposition
of this exciting topic.

The material aboutMin-Vertex-Cover, Min-Set-Cover, and Steiner-Tree prob-
lems are originally from A/P Seth Lewis Gilbert, School of Computing, National Uni-
versity of Singapore. The material has since evolved from a more theoretical style into the
current competitive programming style.

This is not the last chapter of this book. We still have one more Chapter 9 where we
list down rare topics that rarely appear in programming contests, but may be of interest for
enthusiastic problem solvers.

Statistics 1st 2nd 3rd 4th
Number of Pages - 15 33 80 (+142%)
Written Exercises - 3 13 9+24*=33 (+146%)
Programming Exercises - 83 177 495 (+180%)

The breakdown of the number of programming exercises from each section52 is shown below:

Section Title Appearance % in Chapter % in Book
8.2 More Advanced Search 79 ⇡ 16% ⇡ 2.3%
8.3 More Advanced DP 80 ⇡ 22% ⇡ 2.3%
8.4 Network Flow 43 ⇡ 10% ⇡ 1.3%
8.5 Graph Matching - - -
8.6 NP-hard/complete Problems 69 ⇡ 14% ⇡ 2.0%
8.7 Problem Decomposition 224 ⇡ 45% ⇡ 6.5%

Total 495 ⇡ 14.3%

52Programming exercises for Section 8.5 are scattered throughout the book and are not compiled here.

480



Chapter 9

Rare Topics

Learning is a treasure that will follow its owner everywhere.
— Chinese Proverb

9.1 Overview and Motivation

In this chapter, we list down rare, ‘exotic’, and harder topics in Computer Science (CS)
that may (but not always) appear in a typical programming contest. These data structures,
algorithms, and problems are mostly one-o↵ unlike the more general topics that have been
discussed in Chapters 1-8. Some problems listed in this chapter even already have alternative
solution(s) that have discussed in earlier chapters. Learning the topics in this chapter can
be considered as not ‘cost-e�cient’ because after so much e↵orts on learning a certain topic,
it will likely not appear in a typical programming contest. But we believe that these rare
topics will appeal those who love to expand their knowledge in CS. Who knows that the
skills that you acquire by reading this chapter may be applicable elsewhere.

Skipping this chapter will not cause a major damage towards the preparation for an
ICPC-style programming contest as the probability of appearance of any of these topics is
low1 anyway2. But when those rare topics do appear, contestants with a priori knowledge of
those rare topics will have an advantage over others who do not have such knowledge. Some
good contestants can probably derive the solution from basic concepts during contest time
even if they have only seen the problem for the first time, but usually in a slower pace than
those who already know the problem and especially its solution before.

For IOI, many of these rare topics are still outside the IOI syllabus [15]. Thus, IOI
contestants can choose to defer learning the material in this chapter until they enroll in
University. However, skimming through this chapter may be a good idea.

In this chapter, we keep the discussion for each topic as concise as possible, i.e., most
discussions will be just around one, two, or three page(s). Most discussions do not contain
sample code as readers who have mastered the content of Chapter 1-8 should not have too
much di�culty in translating the algorithms given in this chapter into a working code. We
only have a few starred written exercises (without hints/solutions) in this chapter.

As of 19 July 2020, this Chapter 9 contains 32 topics: 3 rare data structures, 14 rare
algorithms, 14 rare problems, and 1 to-be-written. The topics are also listed according to
their relationship with earlier Chapter 1-8 (see Table 9.1). If you are still unable to find a
specific rare topic, it is either we do not write it in this book yet or we use di↵erent/alternative
name for it (try using the indexing feature at the back of this book).

1None of the section in this Chapter 9 has more than 20 UVa+Kattis exercises.
2Some of these topics—also with low probability—are used as interview questions for IT companies.

481



9.1. OVERVIEW AND MOTIVATION c� Steven, Felix, Suhendry

Ch Topic Remarks Sec
1 n/a - -
2 Sliding Window Rare but useful technique 9.2

Sparse Table Simpler (static) RMQ solution 9.3
Square Root Decomposition Rare DS technique 9.4
Heavy-Light Decomposition Rare DS technique 9.5

3 Tower of Hanoi Rare Ad Hoc problem 9.6
Matrix Chain Multiplication Classic but now rare DP 9.7

4 Lowest Common Ancestor Tree-based problem 9.8
Tree Isomorphism Tree-based problem 9.9
De Bruijn Sequence Euler graph problem 9.10

5 Fast Fourier Transform Rare polynomial algorithm 9.11
Pollard’s rho Rare prime factoring algorithm 9.12
Chinese Remainder Theorem Rare math problem 9.13
Lucas’ Theorem Rare C(n, k) % m technique 9.14
Rare Formulas or Theorems Extremely rare math formulas 9.15
Combinatorial Game Theory Emerging trend 9.16
Gaussian Elimination Rare Linear Algebra 9.17

6 n/a - -
7 Art Gallery Problem Rare comp. geometry problem 9.18

Closest Pair Problem Classic D&C problem 9.19
8 A* and IDA* Rare advanced search algorithm 9.20

Pancake Sorting Extremely rare state-search 9.21
Egg Dropping Puzzle Extremely rare DP 9.22
Dynamic Programming Optimization Rare and hard DP techniques 9.23
Push-Relabel Algorithm Alternative Max Flow algorithm 9.24
Min Cost (Max) Flow Rare w.r.t. normal Max Flow 9.25
Hopcroft-Karp Algorithm Simpler MCBM solution exists 9.26
Kuhn-Munkres Algorithm Rare weighted MCBM 9.27
Edmonds’ Matching Algorithm Extremely rare MCM 9.28
Chinese Postman Problem Not NP-hard 9.29

9 Constructive Problem Emerging problem type 9.30
Interactive Problem Emerging problem type 9.31
Linear Programming Rare problem type 9.32
Gradient Descent Extremely rare local search 9.33

Table 9.1: Topics Listed According to Their Relationship with Earlier Chapter 1-8

482



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.2 Sliding Window

Problem Description

There are several variants of Sliding Window problems. But all of them have similar basic
idea: ‘slide’ a sub-array (that we call a ‘window’, which can have static or dynamic length,
usually � 2) in linear fashion from left to right over the original array of n elements in order
to compute something. Some of the known variants are:

1. Find the smallest sub-array size (smallest window length) so that the sum of the sub-
array is greater than or equal to a certain constant S in O(n)? Examples:
For array A1 = {5, 1, 3, [5, 10], 7, 4, 9, 2, 8} and S = 15, the answer is 2 as highlighted.
For array A2 = {1, 2, [3, 4, 5]} and S = 11, the answer is 3 as highlighted.

2. Find the smallest sub-array size (smallest window length) so that the elements inside
the sub-array contains all integers in range [1..K]. Examples:
For array A = {1, [2, 3, 7, 1, 12, 9, 11, 9, 6, 3, 7, 5, 4], 5, 3, 1, 10, 3, 3} and K = 4, the an-
swer is 13 as highlighted.
For the same array A = {[1, 2, 3], 7, 1, 12, 9, 11, 9, 6, 3, 7, 5, 4, 5, 3, 1, 10, 3, 3} and K = 3,
the answer is 3 as highlighted.

3. Find the maximum sum of a certain sub-array with (static) size K. Examples:
For array A1 = {10, [50, 30, 20], 5, 1} and K = 3, the answer is 100 by summing the
highlighted sub-array.
For array A2 = {49, 70, 48, [61, 60], 60} and K = 2, the answer is 121 by summing the
highlighted sub-array.

4. Find the minimum of each possible sub-arrays with (static) size K. Example:
For array A = {0, 5, 5, 3, 10, 0, 4}, n = 7, and K = 3, there are n�K+1 = 7�3+1 = 5
possible sub-arrays with size K = 3, i.e. {0, 5, 5}, {5, 5, 3}, {5, 3, 10}, {3, 10, 0}, and
{10, 0, 4}. The minimum of each sub-array is 0, 3, 3, 0, 0, respectively.

Solution(s)

We ignore the discussion of näıve solutions for these Sliding Window variants and go straight
to the O(n) solutions to save space. The four solutions below run in O(n) as what we do is
to ‘slide’ a window over the original array of n elements—some with clever techniques.

For variant number 1, we maintain a window that keeps growing (append the current
element to the back—the right side—of the window) and add the value of the current element
to a running sum or keeps shrinking (remove the front—the left side—of the window) as long
as the running sum is � S. We keep the smallest window length throughout the process and
report the answer.

For variant number 2, we maintain a window that keeps growing if range [1..K] is not
yet covered by the elements of the current window or keeps shrinking otherwise. We keep the
smallest window length throughout the process and report the answer. The check whether
range [1..K] is covered or not can be simplified using a kind of frequency counting. When
all integers 2 [1..K] has non zero frequency, we said that range [1..K] is covered. Growing
the window increases a frequency of a certain integer that may cause range [1..K] to be
fully covered (it has no ‘hole’) whereas shrinking the window decreases a frequency of the
removed integer and if the frequency of that integer drops to 0, the previously covered range
[1..K] is now no longer covered (it has a ‘hole’).

483



9.2. SLIDING WINDOW c� Steven, Felix, Suhendry

For variant number 3, we insert the first K integers into the window, compute its sum,
and declare the sum as the current maximum. Then we slide the window to the right by
adding one element to the right side of the window and removing one element from the left
side of the window—thereby maintaining window length to K. We add the sum by the value
of the added element minus the value of the removed element and compare with the current
maximum sum to see if this sum is the new maximum sum. We repeat this window-sliding
process n-K times and report the maximum sum found.

Variant number 4 is quite challenging especially if n is large. To get O(n) solution, we
need to use a deque (double-ended queue) data structure to model the window. This is
because deque supports e�cient—O(1)—insertion and deletion from front and back of the
queue (see Book 1). This time, we maintain that the window (that is, the deque) is sorted
in ascending order, that is, the front most element of the deque has the minimum value.
However, this changes the ordering of elements in the array. To keep track of whether an
element is currently still inside the current window or not, we need to remember the index of
each element too. The detailed actions are best explained with the C++ code below. This
sorted window can shrink from both sides (back and front) and can grow from back, thus
necessitating the usage of deque3 data structure.

void SlidingWindow(int A[], int n, int K) {
// ii---or pair<int, int>---represents the pair (A[i], i)
deque<ii> window; // we maintain window to be sorted in ascending order
for (int i = 0; i < n; ++i) { // this is O(n)

while (!window.empty() && (window.back().first >= A[i]))
window.pop_back(); // keep window ordered

window.push_back({A[i], i});

// use the second field to see if this is part of the current window
while (window.front().second <= i-K) // lazy deletion

window.pop_front();
if (i+1 >= K) // first window onwards

printf("%d\n", window.front().first); // answer for this window
}

}

Programming exercises related to Sliding Window:

1. Entry Level: UVa 01121 - Subsequence * (LA 2678 - SouthEasternEurope06;
sliding window variant)

2. UVa 00261 - The Window Property * (sliding window variant)

3. UVa 11536 - Smallest Sub-Array * (sliding window variant)

4. Kattis - sound * (sliding window variant 4; max and min)

5. Kattis - subseqhard * (interesting sliding window variant)

Others: IOI 2011 - Hottest, IOI 2011 - Ricehub, IOI 2012 - Tourist Plan.

3Note that we do not actually need to use deque data structure for variant 1-3 above.

484



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.3 Sparse Table Data Structure

In Book 1, we have seen that the Segment Tree data structure can be used to solve the Range
Minimum Query (RMQ) problem—the problem of finding the index that has the minimum
element within a range [i..j] of the underlying array A. It takes O(n) pre-processing time
to build the Segment Tree, and once the Segment Tree is ready, each RMQ is just O(log n).
With a Segment Tree, we can deal with the dynamic version of this RMQ problem, i.e., when
the underlying array is updated, we usually only need O(log n) to update the corresponding
Segment Tree structure.

However, some problems involving RMQ never change the underlying array A after the
first query. This is called the static RMQ problem. Although Segment Tree can still be used
to deal with the static RMQ problem, this static version has an alternative DP solution with
O(n log n) pre-processing time and O(1) per RMQ. Two notable examples are to answer the
Longest Common Prefix (LCP) of a range of sorted su�xes (Exercise 6.5.4.5* in Section
6.5.4) and the Lowest Common Ancestor (LCA) problem in Section 9.8.

The key idea of the DP solution is to split A into sub arrays of length 2j for each non-
negative integer j such that 2j  n. We will keep an array SpT of size log n ⇥ n where
SpT[i][j] stores the index of the minimum value in the sub array starting at index j and
having length 2i. This array SpT will be sparse as not all of its cells have values (hence the
name ‘Sparse Table’ [3]). We use an abbreviation SpT to di↵erentiate this data structure
from Segment Tree (ST).

To build up the SpT array, we use a technique similar to the one used in many Divide
and Conquer algorithms such as merge sort. We know that in an array of length 1, the
single element is the smallest one. This is our base/initialization case. To find out the index
of the smallest element in an array of size 2i, we can compare the values at the indices
of the smallest elements in the relevant two distinct sub arrays of size 2i�1, i.e., sub array
[j..(j + 2i�1 � 1)] and [(j + 2i�1)..(j + 2i � 1)], and take the index of the smallest element of
the two. It takes O(n log n) time to build up the SpT array like this. Please scrutinize the
constructor of class SparseTable shown in the source code below that implements this SpT
array construction.

Figure 9.1: Explanation of an Example RMQ(i, j)

It is simple to understand how we would process a query if the length of the range were
a power of 2. Since this is exactly the information SpT stores, we would just return the
corresponding entry in the array. However, in order to compute the result of a query with
arbitrary start and end indices, we have to fetch the entry for two smaller sub arrays within
this range and take the minimum of the two. Note that these two sub arrays might have to
overlap, the point is that we want cover the entire range with two sub arrays and nothing

485



9.3. SPARSE TABLE DATA STRUCTURE c� Steven, Felix, Suhendry

outside of it. This is always possible even if the length of the sub arrays have to be a power
of 2. First, we find the length of the query range, which is j-i+1. Then, we apply log2 on
it and round down the result, i.e., k = blog2(j-i+1)c. This way, 2k  (j-i+1). In Figure
9.1—top side, we have i = 3, j = 8, a span of j � i+1 = 8� 3+ 1 = 6 indices. We compute
k = 2. Then, we compare the value of sub-ranges [i..(i + 2k � 1)] and [(j � 2k + 1)..j]
and return the index of the smallest element of the two sub-ranges. In Figure 9.1—bottom
side, we have the first range as [3..k = (3 + 22 � 1)] = [3..k = 6] and the second range as
[l = (8� 22 + 1)..8] = [l = 5..8]. As there are some potentially overlapping sub-problems (it
is range [5..6] in Figure 9.1—bottom side), this part of the solution is classified as DP.

An example implementation of Sparse Table to solve the static RMQ problem is shown
below. You can compare this version with the Segment Tree version shown in Book 1. Note
that the RMQ(i, j) function below returns the index of the RMQ (that can be converted to
value) whereas the Segment Tree code with lazy update returns the value of the RMQ.

typedef vector<int> vi;

class SparseTable { // OOP style
private:

vi A, P2, L2;
vector<vi> SpT; // the Sparse Table

public:
SparseTable() {} // default constructor

SparseTable(vi &initialA) { // pre-processing routine
A = initialA;
int n = (int)A.size();
int L2_n = (int)log2(n)+1;
P2.assign(L2_n, 0);
L2.assign(1<<L2_n, 0);
for (int i = 0; i <= L2_n; ++i) {

P2[i] = (1<<i); // to speed up 2^i
L2[(1<<i)] = i; // to speed up log_2(i)

}
for (int i = 2; i < P2[L2_n]; ++i)

if (L2[i] == 0)
L2[i] = L2[i-1]; // to fill in the blanks

// the initialization phase
SpT = vector<vi>(L2[n]+1, vi(n));
for (int j = 0; j < n; ++j)

SpT[0][j] = j; // RMQ of sub array [j..j]

// the two nested loops below have overall time complexity = O(n log n)
for (int i = 1; P2[i] <= n; ++i) // for all i s.t. 2^i <= n

for (int j = 0; j+P2[i]-1 < n; ++j) { // for all valid j
int x = SpT[i-1][j]; // [j..j+2^(i-1)-1]
int y = SpT[i-1][j+P2[i-1]]; // [j+2^(i-1)..j+2^i-1]
SpT[i][j] = A[x] <= A[y] ? x : y;

}
}

486



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

int RMQ(int i, int j) {
int k = L2[j-i+1]; // 2^k <= (j-i+1)
int x = SpT[k][i]; // covers [i..i+2^k-1]
int y = SpT[k][j-P2[k]+1]; // covers [j-2^k+1..j]
return A[x] <= A[y] ? x : y;

}
};

Source code: ch9/SparseTable.cpp|java|py|ml

For the same test case with n = 7 and A = {18, 17, 13, 19, 15, 11, 20} as in Segment Tree
section in Book 1, the content of the sparse table SpT is as follows:

A 18 17 13 19 15 11 20
index 0 1 2 3 4 5 6
i = 20 = 1 0 1 2 3 4 5 6
Covers RMQ(0,0) RMQ(1,1) RMQ(2,2) RMQ(3,3) RMQ(4,4) RMQ(5,5) RMQ(6,6)
i = 21 = 2 1 2 2 4 5 5 -
Covers RMQ(0,1) RMQ(1,2) RMQ(2,3) RMQ(3,4) RMQ(4,5) RMQ(5,6) -
i = 22 = 4 2 2 5 5 - - -
Covers RMQ(0,3) RMQ(1,4) RMQ(2,5) RMQ(3,6) - - -

In the first row, we have i = 20 = 1 that denotes the RMQ of sub array starting at index
j with length 20 = 1 (j itself), we clearly have SpT[i][j] = j. This is the initialization
phase/base case of the DP.

In the second row, we have i = 21 = 2 that denotes the RMQ of sub array starting at
index j with length 21 = 2. We derive the value by using DP by considering the previous
(first) row. Notice that the last column is empty.

In the third row, we have i = 22 = 4 that denotes the RMQ of sub array starting at index
j with length 22 = 4. Again, we derive the value by using DP by considering the previous
(second) row. Notice that the last three columns are empty.

When there are more rows, the latter rows will have lesser and lesser columns, hence
this data structure is called “Sparse Table”. We can optimize the space usage a bit to take
advantage of its sparseness, but such space usage optimization is usually not critical for this
data structure.

487



9.4. SQUARE ROOT DECOMPOSITION c� Steven, Felix, Suhendry

9.4 Square Root Decomposition

Square root (sqrt) decomposition is a technique to compute some operations on an array in
O(
p
N) by partitioning the data or operations into

p
N bins each of size

p
N .

Square Root Decomposition-based Data Structure

To illustrate this data structure, let us consider the following example problem: given an
array of N integers (A[]), support Q queries of the following types:

1. update value(X, K) – update the value of A[X] to be K.

2. gcd range(L, R) – return the Greatest Common Divisor (GCD) of A[L..R].

Näıvely, the first operation can be done in O(1) while the second operation can be done in
O(N) by simply iterating through all the a↵ected integers. However, if N and Q are large
(e.g., N,Q  200 000), then this näıve approach will get TLE and we might need a data
structure such as Segment Tree which can perform both operations in O(logN) each.

Segment Tree is essentially a binary tree where the leaf vertices are the original array and
the internal vertices are the “segment” vertices. For example, two leaf vertices a and b are
connected to the same parent vertex c implies that vertex c represents a segment containing
both a and b. Segment Tree is built recursively with logN depth and each internal vertex
has 2 direct children (see Book 1).

Now, instead of a binary tree with logN depth where each internal vertex has 2 direct
children, we can build a seemingly “less powerful” yet simpler tree data structure similar to
Segment Tree but with only 2 levels where each internal vertex has

p
N direct children.

The total space required for this data structure is N +
p
N as there are N leaf vertices

(the original array) and
p
N internal vertices. On the other hand, both types of a query

now have an O(
p
N) time-complexity4. This data structure looks no better in terms of

e�ciency than its counterpart, Segment Tree, which is able to perform both types of a query
in O(logN). However, the fact that the tree depth is only 2 makes the implementation of
this data structure to be trivial as there is no need to build the tree explicitly.

The following code is an implementation of the update value() operation with the sqrt
decomposition technique. Array A/B represents the leaf/internal vertices, respectively. Each
internal vertex stores the GCD value of all its children. Note that this implementation uses
2N space (instead of N+

p
N space) as array B uses the same index as array A causing many

elements in B to be unused (there are only
p
N elements in B which will be used); however,

space usage is usually our least concern when we use this approach.

int sqrt_n = sqrt(N)+1;
int A[maxn] = {0};
int B[maxn] = {0};

void update_internal(int X) {
int idx = X / sqrt_n * sqrt_n; // idx of internal vertex
B[idx] = A[idx]; // copy first
for (int i = idx; i < idx+sqrt_n; ++i) // O(sqrt(n)) iteration

B[idx] = gcd(B[idx], A[i]); // gcd A[idx..idx+sqrt(n))
}

4The time-complexity analysis of this data structure is very similar to the analysis of Segment Tree.

488



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

void update_value(int X, ll K) {
A[X] = K; // O(1)
update_internal(X); // plus O(sqrt(n))

}

Now, the following is an implementation of the gcd range() operation.

int gcd_range(int L, int R) {
int ans = 0; // gcd(0, any) = any
for (int i = L; i <= R; ) { // O(sqrt(n)) overall

if ((i%sqrt_n == 0) && (i+sqrt_n-1 <= R)) // idx of internal vertex
ans = gcd(res, B[i]), i += sqrt_n; // skip sqrt(n) indices

else
ans = gcd(res, A[i]), ++i; // process one by one

}
return res;

}

Observe that with this technique, both operations are in O(
p
N) time complexity.

While this problem is fairly easy (it can also be solved with Segment Tree, albeit with
longer implementation), there are problems which are much easier to be solved with the sqrt
decomposition technique. Consider the next example problem.

Kattis - modulodatastructures

Kattis - modulodatastructures is simple to explain: given an array, Arr[1..N] that contains
all zeroes initially (N  200 000), support Q queries of the following types:

1. Increase all Arr[k] by C for all k ⌘ A (mod B),

2. Output Arr[D] for a given D.

Implementing the solution verbatim (do queries of type 1 in O(N) and do queries of type 2
in O(1)) is TLE as it can be made to run in O(Q⇥N) by having many type 1 queries with
occasional type 2 queries to update the values.

However, if one knows the square root decomposition technique, this problem becomes
easy. We decompose the array Arr into

p
N ⇥

p
N buckets. For the largest N = 200 000,p

200 000 is just 447 (note that N does not have to be necessarily a perfect square number).
Now for each query of type 1, we perform either one of these two updates:

1. If B 
p
N , we just update one cell: bucket[B][A] += C in O(1).

2. Otherwise if B >
p
N , we do Arr[j] += C for each j 2 [A,A + B,A + 2B, ...] and

stop when j > N (as B >
p
N , this loop will be just O(N/

p
N) = O(

p
N), which is

a major improvement compared to the verbatim implementation above).

Now, we can answer each query of type 2 also in O(
p
N) time by combining values from

Arr[D] (this is O(1)) and sum of bucket[B][D%B] for each B 2 [1..
p
N ] (this is O(

p
N)).

We will get the correct answer again and have a fast enough solution.

489



9.4. SQUARE ROOT DECOMPOSITION c� Steven, Felix, Suhendry

O✏ine Queries Processing (Reordering Technique)

Supposed there are Q segment queries on a one-dimensional array A[] which can be per-
formed o✏ine5, then there is a technique using the square root decomposition to reduce the
time-complexity of processing all the queries.

Let’s consider an example problem: given an array A[] of N integers, support Q queries
of (L, R)—the number of distinct integers in A[L..R].

A näıve approach would be simply iterating through all a↵ected indexes for each query
and count the number of distinct integers (e.g., with C++ set). This method has an
⌦(N) time-complexity per query, thus, the total time-complexity to process all queries is
⌦(QN). Note that the Big-⌦ notation is used here to abstract the data structure being
used, e.g., C++ set insertion and query-related operations are O(logN) causing the total
time-complexity to be O(QN logN) but it is not the main subject to be discussed as we can
use any data structure we want with this technique.

Now, let us consider an alternative approach. Instead of doing each query independently,
we can perform a query using the previous query’s result by doing an “update” operation.
Suppose the latest query we performed is for segment A[4..17], and the next query we
want to perform is for segment A[2..16]. Then, we can obtain the answer for segment
A[2..16] by exploiting the result of segment A[4..17], e.g., A[4..17] + A[3] + A[2] -
A[17]. Note that this + and - operations are not a conventional addition and subtraction but
a set addition and subtraction. In this example problem, we can achieve this set addition op-
eration with, for example, C++ map container. For + operation, simply perform ++m[A[x]].
On the other hand, for - operation, we need to perform --m[A[x]] and check whether the
m[A[x]] becomes 0 after the operation; if yes, then delete the key, i.e., m.erase(A[x]).
Then, for the query result, we simply return (int)m.size(). This method looks promising,
however, the time-complexity to process all queries is still ⌦(QN).

Now we are ready for the technique. Consider the approach in the previous paragraph
but instead of performing the queries in the given order, perform the queries in the following
order: decompose array A[] into

p
N subarray (buckets) each with the size of

p
N . Then,

sort all queries in non-descending order by the bucket in which the left part of the segment
(L) falls into; in case of a tie, sort in non-descending order by the right part of the segment
(R). If we perform the previous approach with this queries order, then the time-complexity
becomes ⌦((Q+N)

p
N) to process all queries—to be explained later.

For example, let N = 16 (from 0 to 15), and the Q = 5 queries are:

(5, 12), (2, 9), (3, 7), (14, 15), (6, 15)

The bucket size s =
p
16 = 4, thus, the bucket ranges are: [0..3], [4..7], [8..11], and [12..15].

• Segment (3, 7) and (2, 9) fall into the 1st bucket, i.e. [0..3],

• Segment (5, 12) and (6, 15) fall into the 2nd bucket, i.e. [4..7], and

• Segment (14, 15) falls into the 4th bucket, i.e. [12..15].

Therefore, the sorted queries are:

(3, 7), (2, 9), (5, 12), (6, 15), (14, 15)

5O✏ine query implies that the query can be processed not in the order of appearance, thus, we can
reorder the queries and it will not a↵ect the output of each query. Contrast it with online query where
the query should be performed in the given order, otherwise, the result would not be correct, e.g., see the
interactive problems in Section 9.31.

490



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

The following code implements the reordering technique.

struct tquery { int idx, L, R; };
struct toutput { int idx, value; };

vi answerAllQueries(vi A, vector<tquery> query) {
int L = 0;
int R = -1;
map<int, int> m;
vector<toutput> out;
sort(query.begin(),query.end());
for (tquery q : query) {

while (L > q.L) {
--L;
++m[A[L]];

}
while (R < q.R) {

++R;
++m[A[R]];

}
while (L < q.L) {

if (--m[A[L]] == 0) m.erase(A[L]);
++L;

}
while (R > q.R) {

if (--m[A[R]] == 0) m.erase(A[R]);
--R;

}
out.push_back((toutput){q.idx, (int)m.size()});

}
sort(out.begin(),out.end());
vi ans;
for (toutput t : out)

ans.push_back(t.value);
return ans;

}

The sorting rules are given in the following code.

int s = sqrt(N)+1;

bool operator < (const tquery &a, const tquery &b) {
if ((a.L/s) != (b.L/s)) return a.L < b.L;
return a.R < b.R;

}

bool operator < (const toutput &a, const toutput &b) {
return a.idx < b.idx;

}

The overall time-complexity for this method is ⌦(Q logQ+ (Q+N)
p
N).

491



9.4. SQUARE ROOT DECOMPOSITION c� Steven, Felix, Suhendry

Why the Time-Complexity Becomes ⌦(Q logQ+ (Q+N)
p
N)?

The time-complexity analysis has two components, i.e., ⌦(Q logQ) and ⌦((Q+N)
p
N). The

first part comes from sorting all the queries, while the second part comes from processing
all the queries. Observe that there are two types of query processing:

1. Processing a query with the same bucket as the previous query. In this type of query,
the left part of the segment (L) may move around but it will not go outside the bucket’s
range (note: same bucket as the previous query), which has the size of

p
N , thus, the

time-complexity to process Q such queries is ⌦(Q
p
N). On the other hand, the right

part of the segment (R) can only go to the right direction as the queries are sorted in
non-decreasing order of R when they are in the same bucket, thus, the time-complexity
to process Q such queries is ⌦(Q+N). Therefore, the time-complexity to process this
type of queries is ⌦(Q

p
N +Q+N) or simply ⌦(Q

p
N +N).

2. Processing a query with a di↵erent bucket than the previous query. In this type of
query, both L and R may move around the array in O(N). However, there can be
only O(

p
N) of this type of query (changing bucket) as there are only

p
N buckets

(recall that we process all queries from the same bucket first before moving to the next
bucket causing the number of changing bucket queries to be only at most the number
of available buckets). Therefore, the time-complexity to process this type of queries is
⌦(N
p
N).

With both types of a query being considered, the total time-complexity to process all queries
after being sorted is ⌦(Q

p
N +N +N

p
N) or simply ⌦((Q+N)

p
N).

Programming exercises related to Square Root Decomposition6:

1. Kattis - cardboardcontainer * (two out of L, W , and H must be 
p
V ; brute

force L and W in
p
V ⇥

p
V and test if V is divisible by (L ⇤W ))

2. Kattis - modulodatastructures * (basic problem that can be solved with Square
Root Decomposition technique)

6This sqrt decomposition technique does not appear frequently in competitive programming, but look
out for (data structure) problems that are amenable to such technique.

492



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.5 Heavy-Light Decomposition

Heavy-Light Decomposition (HLD) is a technique to decompose a tree into a set of disjoint
paths. This technique is particularly useful to deal with problems which require us to do
some path-queries in a tree which seemingly complicated but easy enough to be solved for
a line-graph. The idea is to decompose the tree into several paths (line-graph) of disjoint
vertices. Then, each path-query in the original tree might be able to be answered by queries
in one or more of those paths.

Randomly decomposing a tree (removing random edges) is not good enough as there can
be a path-query which involves O(N) paths, i.e., no better than a Complete Search solution.
We need to decompose the tree such that any query involves only a few amount of paths.
The Heavy-Light Decomposition achieves this perfectly. It guarantees that any query in the
original tree only involves O(logN) paths.

HLD can be done constructively on a rooted tree. For unrooted tree, simply choose
one arbitrary vertex as the root. Let size(u) be the size of the subtree rooted at vertex u
including vertex u itself.

An edge (a, b) is heavy if and only if size(b) � size(a)/2; otherwise, it is light.

Then, remove all light-edges from the tree such that only heavy-edges remain. Observe that
vertices which are connected by heavy-edges form paths because each vertex can only have
at most one heavy-edge to its children. We will call such paths as heavy-paths.

Consider the following example (Figure 9.2) of tree with 19 vertices with vertex a as the
root. In this example, there are 8 light-edges and a total of 10 heavy-edges.

Figure 9.2: HLD of a Rooted Tree. The number next to each vertex is the size of the subtree
rooted at that vertex. The heavy edges are thicker than the light edges.

493



9.5. HEAVY-LIGHT DECOMPOSITION c� Steven, Felix, Suhendry

Figure 9.3 shows the decomposed heavy-paths.

Figure 9.3: Heavy-Paths of the Tree in Figure 9.2

With these heavy-paths, any query in the original tree involves only O(logN) heavy-paths.
For example, a path-query from vertex k to vertex m involves 2 heavy-paths: (b, e, k, n) and
(a, c, h,m, p). A path-query from vertex j to vertex g involves 4 heavy-paths: (j), (b, e, k, n),
(a, c, h,m, p), and (g).

HLD creates such a nice property because a light-edge (a, b) implies that the size of b’s
subtree is less than half of the size of a’s subtree, thus, a path-query which pass through a
light-edge will decrease the number of vertices by more than half. Therefore, any path-query
in the original tree will pass through at most logN light-edges.

Implementation

To make the implementation easier, we can slightly change the definition of a heavy-edge
into an edge to a child with the largest subtree. This new definition of heavy-edge has the
same property as the original one but easier to implement as it allows us to determine the
heavy-edge while counting the subtree size.

vector<vi> AL; // undirected tree
vi par, heavy;

int heavy_light(int x) { // DFS traversal on tree
int size = 1;
int max_child_size = 0;
for (auto &y : AL[x]) { // edge x->y

if (y == par[x]) continue; // avoid cycle in a tree
par[y] = x;
int child_size = heavy_light(y); // recurse
if (child_size > max_child_size) {

max_child_size = child_size;
heavy[x] = y; // y is x’s heaviest child

}
size += child_size;

}
return size;

}

The following code decompose the vertices into their own groups of heavy-paths.

494



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

vi group;

void decompose(int x, int p) {
group[x] = p; // x is in group p
for (auto &y : AL[x]) { // edge x->y

if (y == par[x]) continue; // avoid cycle in a tree
if (y == heavy[x])

decompose(y, p); // y is in group p
else

decompose(y, y); // y is in a new group y
}

}

You can review the sample code to understand more about this Heavy-Light Decomposition.

Source code: ch9/HLD.cpp|java|py|ml

Example: Query Update/Sum on a Path on a Tree

Given a rooted tree of N vertices (with initial value of 0) and Q queries of two types:

1. add a b k — add the value of each vertex in the path from vertex a to vertex b by k.

2. sum a b — return the sum of all vertices in the path from vertex a to vertex b.

If the graph is a line-graph, then this problem can be solved easily with a data structure
such as Fenwick/Binary Indexed Tree (BIT) or Segment Tree. However, since it is a tree,
then plain Fenwick or Segment Tree cannot be used.

First, we decompose the tree into several paths of disjoint vertices with the Heavy-Light
Decomposition technique discussed earlier. Then, we construct a data structure like Fenwick
or Segment Tree for each heavy-path. For each query (a, b) (either an add or a sum query),
we break it into (a, x) and (x, b) where x is the Lowest Common Ancestor (LCA, see Section
9.8) of vertex a and vertex b, thus vertex a and vertex x have an descendant-ancestor relation
(likewise, vertex x and vertex b). Solve for (a, x) by doing the query on all heavy-paths from
vertex a to vertex x. To find the heavy-paths, we simply jump from a vertex to the head of its
heavy-path (with group[]), and then pass through a light edge (with par[]), and jump to
the head of the next heavy path, and so on. Similarly, solve for (x, b). The time-complexity
to do a query on a heavy-path with a proper data structure is O(logN), as there are at most
O(logN) heavy-paths involved in a query, thus, the total time-complexity is O(log2 N).

Programming exercises related to Heavy-Light Decomposition:

1. Entry Level: LA 5061 - Lightning Energy Report * (HLD + Segment Tree)

495



9.6. TOWER OF HANOI c� Steven, Felix, Suhendry

9.6 Tower of Hanoi

Problem Description

The classic description of the problem is as follows: There are three pegs: A, B, and C, as
well as n discs, will all discs having di↵erent sizes. Starting with all the discs stacked in
ascending order on one peg (peg A), your task is to move all n discs to another peg (peg C).
No disc may be placed on top of a disc smaller than itself, and only one disc can be moved
at a time, from the top of one peg to another.

Solution(s)

There exists a simple recursive backtracking solution for the classic Tower of Hanoi problem.
The problem of moving n discs from peg A to peg C with additional peg B as intermediate
peg can be broken up into the following sub-problems:

1. Move n� 1 discs from peg A to peg B using peg C as the intermediate peg.
After this recursive step is done, we are left with disc n by itself in peg A.

2. Move disc n from peg A to peg C.

3. Move n� 1 discs from peg B to peg C using peg A as the intermediate peg.
These n� 1 discs will be on top of disc n which is now at the bottom of peg C.

Note that step 1 and step 3 above are recursive steps. The base case is when n = 1 where
we simply move a single disc from the current source peg to its destination peg, bypassing
the intermediate peg. A sample C++ implementation code is shown below:

void solve(int count, char source, char destination, char intermediate) {
if (count == 1)

printf("Move top disc from pole %c to pole %c\n", source, destination);
else {

solve(count-1, source, intermediate, destination);
solve(1, source, destination, intermediate);
solve(count-1, intermediate, destination, source);

}
}

int main() {
solve(3, ’A’, ’C’, ’B’); // first parameter <= 26

} // return 0;

The minimum number of moves required to solve a classic Tower of Hanoi puzzle of n discs
using this recursive backtracking solution is 2n � 1 moves, hence it cannot be used to solve
large instances (e.g., 227 > 108 operations in one second).

Programming exercises related to Tower of Hanoi:

1. Entry Level: UVa 10017 - The Never Ending ... * (classical problem)

2. UVa 00254 - Towers of Hanoi * (define a recursive formula)

3. UVa 10254 - The Priest Mathematician * (find pattern; Java BigInteger)

496



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.7 Matrix Chain Multiplication

Problem Description

Given nmatrices: A1, A2, . . . , An, each Ai has size Pi�1⇥Pi, output a complete parenthesized
product A1⇥A2⇥ . . .⇥An that minimizes the number of scalar multiplications. A product
of matrices is called completely parenthesized if it is either:

1. A single matrix

2. The product of 2 completely parenthesized products surrounded by parentheses

Example: We are given the size of 3 matrices as an array P = {10, 100, 5, 50} which implies
that matrix A1 has size 10⇥ 100, matrix A2 has size 100⇥ 5, and matrix A3 has size 5⇥ 50.
We can completely parenthesize these three matrices in two ways:

1. (A1 ⇥ (A2 ⇥ A3)) = 100⇥ 5⇥ 50 + 10⇥ 100⇥ 50 = 75 000 scalar multiplications

2. ((A1 ⇥ A2)⇥ A3) = 10⇥ 100⇥ 5 + 10⇥ 5⇥ 50 = 7 500 scalar multiplications

From the example above, we can see that the cost of multiplying these 3 matrices—in terms of
the number of scalar multiplications—depends on the choice of the complete parenthesization
of the matrices. However, exhaustively checking all possible complete parenthesizations is
too slow as there are a huge number of such possibilities (for interested readers, there are
Cat(n-1) complete parenthesization of n matrices—see Section 5.4.3).

Matrix Multiplication

We can multiply two matrices a of size p ⇥ q and b of size q ⇥ r if the number of columns
of a is the same as the number of rows of b (the inner dimensions agree). The result of this
multiplication is a matrix c of size p ⇥ r. The cost of this valid matrix multiplication is
p ⇥ q ⇥ r multiplications and can be implemented with a short C++ code as follows (note
that this code is an extension of square matrix multiplication discussed in Section 5.8.3):

const int MAX_N = 10; // inc/decrease as needed

struct Matrix {
int mat[MAX_N][MAX_N];

};

Matrix matMul(Matrix a, Matrix b, int p, int q, int r) { // O(pqr)
Matrix c;
for (int i = 0; i < p; ++i)

for (int j = 0; j < r; ++j) {
c.mat[i][j] = 0;
for (int k = 0; k < q; ++k)

c.mat[i][j] += a.mat[i][k] + b.mat[k][j];
}

return c;
}

497



9.7. MATRIX CHAIN MULTIPLICATION c� Steven, Felix, Suhendry

For example, if we have the 2⇥3 matrix a and the 3⇥1 matrix b below, we need 2⇥3⇥1 = 6
scalar multiplications.


a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

�
⇥

2

4
b1,1
b2,1
b3,1

3

5 =


c1,1 = a1,1 ⇥ b1,1 + a1,2 ⇥ b2,1 + a1,3 ⇥ b3,1
c2,1 = a2,1 ⇥ b1,1 + a2,2 ⇥ b2,1 + a2,3 ⇥ b3,1

�

When the two matrices are square matrices of size n⇥ n, this matrix multiplication runs in
O(n3) (see Section 5.8.3).

Solution(s)

This Matrix Chain Multiplication problem is usually one of the classic examples used to
illustrate Dynamic Programming (DP) technique. As we have discussed DP in details in
Book 1, we only outline the key ideas here. Note that for this problem, we do not actually
multiply the matrices as shown in earlier subsection. We just need to find the optimal
complete parenthesization of the n matrices.

Let cost(i, j) where i < j denotes the number of scalar multiplications needed to multiply
matrices Ai ⇥ Ai+1 ⇥ . . .⇥ Aj. We have the following Complete Search recurrences:

1. cost(i, j) = 0 if i = j, otherwise:

2. cost(i, j) = min(cost(i, k) + cost(k + 1, j) + Pi�1 ⇥ Pk ⇥ Pj), 8k 2 [i . . . j � 1]

The optimal cost is stored in cost(1, n). There are O(n2) di↵erent pairs of subproblems (i, j).
Therefore, we need a DP table of size O(n2). Each subproblem requires up to O(n) to be
computed. Therefore, the time complexity of this DP solution for the Matrix Chain Multipli-
cation problem is O(n3), much better than exploring all Cat(n�1) complete parenthesization
of n matrices.

Programming exercises related to Matrix Chain Multiplication:

1. Entry Level: UVa 00348 - Optimal Array Mult ... * (DP; s(i, j); output the
optimal solution; the optimal sequence is not unique)

498



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.8 Lowest Common Ancestor

Problem Description

Given a rooted tree T with n vertices, the Lowest Common Ancestor (LCA) between two
vertices u and v, or LCA(u, v), is defined as the lowest vertex in T that has both u and v as
descendants. We allow a vertex to be a descendant of itself, i.e., there is a possibility that
LCA(u, v) = u or LCA(u, v) = v.

Figure 9.4: An example of a rooted tree T with n = 10 vertices

For example, in Figure 9.4, verify that the LCA(4, 5) = 3, LCA(4, 6) = 1, LCA(4, 1) = 1,
LCA(8, 9) = 7, LCA(4, 8) = 0, and LCA(0, 0) = 0.

Solution(s)

Complete Search Solution

A näıve solution is to do two steps. From the first vertex u, we go all the way up to the root
of T and record all vertices traversed along the way (this can be O(n) if the tree is a very
unbalanced). From the second vertex v, we also go all the way up to the root of T , but this
time we stop if we encounter a common vertex for the first time (this can also be O(n) if the
LCA(u, v) is the root and the tree is very unbalanced). This common vertex is the LCA.
This requires O(n) per (u, v) query and can be very slow if there are many queries.

For example, if we want to compute LCA(4, 6) of the tree in Figure 9.4 using this complete
search solution, we will first traverse path 4! 3! 1! 0 and record these 4 vertices. Then,
we traverse path 6! 1 and then stop. We report that the LCA is vertex 1.

Reduction to Range Minimum Query

We can reduce the LCA problem into a Range Minimum Query (RMQ) problem (see Segment
Tree section in Book 1). If the structure of the tree T is not changed throughout allQ queries,
we can use the Sparse Table data structure with O(n log n) construction time and O(1) RMQ
time. The details on the Sparse Table data structure is shown in Section 9.3. In this section,
we highlight the reduction process from LCA to RMQ as discussed in [3].

We can reduce LCA to RMQ in linear time. The key idea is to observe that LCA(u, v)
is the shallowest vertex in the tree that is visited between the visits of u and v during a DFS
traversal. So what we need to do is to run a DFS on the tree and record information about
the depth and the time of visit for every node. Notice that we will visit a total of 2 ⇤ n� 1
vertices in the DFS since the internal vertices will be visited several times. We need to build
three arrays during this DFS: E[0..2*n-2] (which records the sequence of visited nodes and
also the Eulerian tour of the tree), L[0..2*n-2] (which records the depth of each visited
node), and H[0..n-1] (where H[i] records the index of the first occurrence of node i in E).
The key portion of the implementation is shown below:

499



9.8. LOWEST COMMON ANCESTOR c� Steven, Felix, Suhendry

int L[2*MAX_N], E[2*MAX_N], H[MAX_N], idx;

void dfs(int cur, int depth) {
H[cur] = idx;
E[idx] = cur;
L[idx++] = depth;
for (auto &nxt : children[cur]) {

dfs(nxt, depth+1);
E[idx] = cur; // backtrack to cur
L[idx++] = depth;

}
}

void buildRMQ() {
idx = 0; memset(H, -1, sizeof H);
dfs(0, 0); // root is at index 0

}

Source code: ch9/LCA.cpp|java|py
For example, if we call dfs(0, 0) on the tree in Figure 9.4, we will have:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
H 0 1 2 4 5 7 10 13 14 16
E 0 1 2 1 3 4 3 5 3 (1) 6 1 0 7 8 7 9 7 0
L 0 1 2 1 2 3 2 3 2 1 2 1 0 1 2 1 2 1 0

Table 9.2: The Reduction from LCA to RMQ

Once we have these three arrays to work with, we can solve LCA using RMQ. Assume that
H[u] < H[v] or swap u and v otherwise. We notice that the problem reduces to finding the
vertex with the smallest depth in E[H[u]..H[v]]. So the solution is given by LCA(u, v)
= E[RMQ(H[u], H[v])] where RMQ(i, j) is executed on the L array. If we use the Sparse
Table data structure shown in Section 9.3, it is the L array that needs to be processed in the
construction phase.

For example, if we want to compute LCA(4, 6) of the tree in Figure 9.4, we will compute
H[4] = 5 and H[6] = 10 and find the vertex with the smallest depth in E[5..10]. Calling
RMQ(5, 10) on array L (see the underlined entries in row L of Table 9.2) returns index 9.
The value of E[9] = 1 (see the italicized entry in row E of Table 9.2), therefore we report 1
as the answer of LCA(4, 6).

Programming exercises related to LCA:

1. Entry Level: UVa 10938 - Flea circus * (basic LCA problem)

2. UVa 12238 - Ants Colony * (similar to UVa 10938)

3. Kattis - boxes * (unite the forests into a tree; LCA; DP size of subtree)

4. Kattis - chewbacca * (complete short k-ary tree; binary heap indexing; LCA)

5. Kattis - rootedsubtrees * (let d be the number of vertices that are strictly between
r and p, inclusive (computed using LCA); derive formula w.r.t d)

500



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.9 Tree Isomorphism

The term isomorphism comes from Ancient Greek words, isos (equal) and morphe (shape).
Two graphs G and H are said to be isomorphic if and only if they have an equal shape
(regardless of their labels); in other words, two graphs are isomorphic if and only if there
exists a bijection7 between all vertices in G and H, f : V (G) ! V (H), such that vertex u
and vertex v in G are connected by an edge if and only if vertex f(u) and vertex f(v) in H
are connected by an edge8. The problem to determine whether two graphs are isomorphic
is known as the graph isomorphism problem, which is a hard problem9. However, tree
isomorphism problem is in P; in other words, there is a polynomial-time complexity algorithm
to determine whether two trees are isomorphic. We discuss this variant.

Figure 9.5 shows an example of three isomorphic trees. The vertices bijection relations
are: (a, 5, ii), (b, 4, i), (c, 2, iii), (d, 1, iv), and (e, 3, v). In other words, vertex a in the
first graph is equal to vertex 5 in the second graph and vertex ii in the third graph, vertex b
in the first graph is equal to vertex 4 in the second graph and vertex i in the third graph, etc.
We can check whether these bijection relations produce a tree isomorphism by verifying the
existence (or non-existence) of edges for every pair of vertices in those graphs. For example,
vertex a and vertex b are connected by an edge; the same thing also happens on vertex 5
and vertex 4, and vertex ii and vertex i; vertex b and vertex e are not connected by an
edge; the same thing also happens on vertex 4 and vertex 3, and vertex i and vertex v.

Figure 9.5: Three Isomorphic Trees.

Wrong Approach: Degree Sequence

A degree sequence10 of a graph is a collection of its vertices degree sorted in non-increasing
order. For example, the degree sequence of the tree in Figure 9.5 is {3, 2, 1, 1, 1}, i.e., there
is one vertex with a degree of 3, one vertex with a degree of 2, and three vertices with a
degree of 1. Two trees (it also applies to a general graph) cannot be isomorphic if their
degree sequences are di↵erent. However, two trees with the same degree sequence do not
necessarily isomorphic11. Consider the trees in Figure 9.6. Both trees are having the same
degree sequence, i.e., {3, 2, 2, 1, 1, 1}, but they are not isomorphic.

7A bijection is a one-to-one mapping between two sets such that each element in the first set is paired
with exactly one element in the second set, and each element in the second set is paired with exactly one
element in the first set.

8In other words, there exists a one-to-one mapping between vertices in G and vertices in H.
9To the writing of this book, it is not known whether the graph isomorphism problem is P or NP-complete.

On a related subject, the subgraph isomorphism problem has been proven to be NP-complete.
10Interested reader can also read about Erdős-Gallai Theorem in Section 9.15.
11In our experience, beginners in competitive programming who have no strong background in computer

science or mathematics tend to use degree sequence in determining tree isomorphism, and of course, failed.

501



9.9. TREE ISOMORPHISM c� Steven, Felix, Suhendry

Figure 9.6: Two non-isomorphic trees with the same degree sequence of {3, 2, 2, 1, 1, 1}.

One could also “be creative” (but still fails) by checking the degree of each vertex’s neigh-
bours. This is also known as the neighbourhood degree sequence. To get the neighbourhood
degree sequence of a graph, simply replace each degree in its degree sequence with the list
of the degree of its neighbours. For example, the neighbourhood degree sequence of the tree
in Figure 9.5 would be {{2, 1, 1}, {3, 1}, {3}, {3}, {2}}. Note that if we consider only the
size of each element in that neighbourhood degree sequence, then we will get {3, 2, 1, 1, 1},
which is its degree sequence.

The trees in Figure 9.6 are having a di↵erent neighbourhood degree sequence. The tree
on the left has a neighbourhood degree sequence of {{2, 2, 1}, {3, 1}, {3, 1}, {3}, {2}, {2}}
while the tree on the right is {{2, 1, 1}, {3, 2}, {2, 1}, {3}, {3}, {2}}.

However, the trees in Figure 9.7 are having the same degree and neighbourhood degree
sequence, but they are not isomorphic. Their degree sequence is {3, 2, 2, 2, 2, 2, 2, 1, 1, 1}
while their neighbourhood degree sequence is {{2, 2, 1}, {3, 2}, {3, 2}, {2, 2}, {2, 2}, {2, 1},
{2, 1}, {3}, {2}, {2}}.

Figure 9.7: Two non-isomorphic trees with the same neighbourhood degree sequence.

Rooted Tree Isomorphism in O(N2)

In this section, let us assume the trees that we would like to check the isomorphism are
rooted (later, we will remove this assumption). To determine whether two rooted trees are
isomorphic, we can encode each tree and check whether both trees have the same encoding.
For this purpose, we need an encoding which works for an unlabeled rooted tree.

Assign a bracket tuple12 to each vertex u to represent the subtree rooted at vertex u.
The bracket tuple for a vertex u is in the form of ( H ) where H is the concatenation of all u’s
(direct) children’s bracket tuples sorted in non-descending13 order. The bracket characters
we used are ( and ); however, you can use any other pair of symbols to represent the opening
and closing brackets, e.g., 01, ab, {}. The encoding of a rooted tree is the root’s encoding.

For example, a leaf vertex will have the bracket tuple of () as it has no child; an internal
vertex with 3 children each with a bracket tuple of ((())), (()), and (()()), respectively,
will have a bracket tuple of ( ((())) (()()) (()) ). Note that (()()) appears first
in sorted order compared to (()). Also, note that the spaces are for clarity only; there
shouldn’t be any space in a bracket tuple.

Figure 9.8 shows an example of a rooted tree encoding with the bracket tuple. Observe
that the sorting children’s bracket tuple part is important if we want to use this encoding
to check the tree isomorphism. The reason is similar to why anagrams can be checked by
sorting the strings.

12Recall the Bracket Matching problem discussed in Book 1.
13Any order will do as long as there is a tie-breaker and used consistently throughout all vertices’ encoding.

502



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Figure 9.8: Example of Rooted Tree Encoding with Bracket Tuples.

With this method, each vertex has a bracket tuple of length O(N), causing the overall
time complexity to be O(N2). The following code is one implementation of the tree encoding
with bracket tuple. To check whether the trees are isomorphic, we only need to compare
whether they have the same encoding.14

string encodeTree(int u) {
vector<string> tuples;
for (auto &v : child[u])

tuples.push_back(encodeTree(v));
sort(tuples.begin(), tuples.end());
string H;
for (auto &c : tuples)

H += c;
return "(" + H + ")";

}

Rooted Tree Isomorphism in O(N)

Observe that each vertex in the previous method is encoded to a bracket tuple of length
O(N). To improve the running time, we can represent each bracket tuple with an integer.
One way to do this is by string hashing (see Section 6.6), i.e., hash the bracket tuple into a
single integer where the integer is assumed15 to be unique to the tuple. With this method,
the total time complexity to encode the rooted tree is reduced to O(N).

Unrooted Tree Isomorphism

To check unrooted trees isomorphism, simply make the trees rooted and perform the previous
rooted tree encoding. However, we cannot simply select any arbitrary vertex to be the root
of the tree as each vertex (if selected as a root) may produce a di↵erent encoding. We need
a vertex with a unique property which exists in any tree.

Commonly, there are two kinds of vertices which are “unique” in a tree which can be
helpful for our purpose, i.e., the center and centroid vertices.

A center vertex of a tree is a vertex with the smallest eccentricity in the tree; in other
words, the distance to the farthest vertex is minimum. This vertex lies in the center of the
longest path (diameter) of the tree. Also, there can be at most two of such vertices depends
on whether the tree’s diameter is odd or even length.

14We only need to check the roots as the encoding at the root is the encoding of the tree itself.
15See Chapter 6.6 on how to handle the collision probability of a hashing.

503



9.9. TREE ISOMORPHISM c� Steven, Felix, Suhendry

The following O(N) algorithm will find the center(s) of a tree:

1. Perform a BFS from any arbitrary vertex and find the farthest vertex u from it.

2. Perform a BFS from vertex u and find the farthest vertex v from vertex u. The path
from vertex u to vertex v is (one of) the tree’s diameter path, i.e., the longest path in
the tree. We have discussed this in Book 1.

3. Find the vertex(s) in the middle/median of the path between vertex u and vertex v.
There can be one or two such center vertices.

On the other hand, a centroid vertex of a tree is a vertex whose removal will split the tree
into a forest (of disconnected trees) such that none of the disconnected trees has more than
half of the number of vertices in the original tree. Similar to the tree center, there can be at
most two centroid vertices in a tree.

To find the centroids, first, assume an arbitrary vertex as the root and compute the size
of each rooted subtree (e.g., with a DFS). Then, evaluate each vertex one-by-one starting
from the root while moving towards a child with the largest rooted subtree.

The following code finds the centroid(s) of a tree. The array’s element size[x] contains
the size of the rooted subtree of vertex x. The variable psize contains the size of (the
parent’s) inverse subtree, i.e., the size of the rooted subtree of vertex p (vertex u’s parent)
if the tree is rooted at vertex u.

vi getCentroids(int u, int psize) {
if (2*psize > N) return vi(0);
bool is_centroid = true;
int sum = 0; // sum of subtree sizes
int next = -1; // the largest subtree
for (auto &v : child[u]) {

sum += size[v];
if (2*size[v] > N)

is_centroid = false;
if ((next == -1) || (size[next] < size[v]))

next = v;
}
vi res = getCentroids(next, psize+sum-size[next]+1);
if (is_centroid)

res.push_back(u);
return res;

}

If there are two centers (or centroids), then we need the encodings of the tree rooted at each
of those vertices, sorted, and concatenated. The trees are isomorphic if they have the same
encoding. Finding the center(s) or centroid(s) of a tree can be done in O(N) and encoding a
rooted tree is also O(N) as described above, thus, unrooted tree isomorphism can be solved
in O(N) time complexity.

Programming exercises related to Tree Isomorphism:

1. LA 2577 - Rooted Trees Isomorphism *

504



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.10 De Bruijn Sequence

A de Bruijn sequence (also called a de Bruijn cycle) is the shortest circular string16 which
contains every possible string of length n on the alphabets ⌃ (|⌃| = k) as its substring. As
there are kn possible string of length n on ⌃, then the length of such a string is at least
kn. Furthermore, it can be shown that there exists such a string with a length of exactly kn

(refer to the constructive algorithm below).17

For example, let k = 2 (⌃ = {a, b}) and n = 3. One de Bruijn sequence for such k and
n, or also denoted by B(k = 2, n = 3), is aaababbb of length 23 = 8. Let’s verify this. All
the substrings of length n = 3 of a circular string aaababbb are: aaa, aab, aba, bab, abb,
bbb, bba, and baa. All those 8 substrings are unique, and the fact that there are 23 possible
strings of length n = 3 on k = 2 alphabets implies that those 8 substrings are complete
(contains every possible string of length n = 3 on k = 2 alphabets). Another de Bruijn
sequence for B(2, 3) is aaabbbab. Other de Bruijn sequences such as aababbba, babbbaaa,
aabbbaba, etc. are also valid, but they are considered the same as the previous two (can be
obtained by rotating the string), i.e., aababbba and babbbaaa are the same as aaababbb,
and aabbbaba is the same as aaabbbab.

Consider another example with k = 6 (⌃ = {a, b, c, d, e, f}) and n = 2. All possible
string of length n = 2 on ⌃ = {a, b, c, d, e, f} are aa, ab, ac, . . . , fe, ff, and all of them can
be found as substrings of a circular string aabacadaeafbbcbdbebfccdcecfddedfeeff with
a length of 62 = 36. Of course, other de Bruijn sequences for B(6, 2) also exist.

De Bruijn Graph

A de Bruijn sequence can be generated with the help of a de Bruijn graph. Anm-dimensional
de Bruijn graph on alphabets ⌃ is defined as follows.

• There is a vertex for every possible string of length m on ⌃.

• A vertex u has a directed edge to vertex v, (u, v), if and only if the string represented
by v can be obtained by removing the first character of the string represented by u and
appending a new character to the end of that string. Then, the directed edge (u, v) has
a label equals to the new appended character. For example, a vertex representing aa
has a directed edge with a label of b to a vertex representing ab; a vertex representing
abcde has a directed edge with a label of f to a vertex representing bcdef.

These two properties imply that such a graph has km vertices and km+1 directed edges.
Moreover, each vertex has m outgoing edges and m incoming edges. Figure 9.9 and Figure
9.10 show examples of de Bruijn graphs on alphabets ⌃ = {a, b} with 2 and 3 dimension,
respectively.

Generally, there are two ways of generating a de Bruijn sequence with the help of a de
Bruijn graph, i.e., with a Hamiltonian path/tour and with an Eulerian tour.

Generating a de Bruijn Sequence with a Hamiltonian Path/Tour

This method is quite apparent once you construct an n-dimensional de Bruijn graph to
generate a de Bruijn sequence of B(k, n). Consider Figure 9.10 for example. All the vertices

16A circular string is a string in which the two ends (left-most and right-most) are joint together to form a
cycle. For example, abcdef and cdefab are the same circular string as the later can be obtained by rotating
the former to the left twice.

17If we do not want the string to be circular, then the length becomes kn + n� 1, i.e., simply append the
first n� 1 characters to the end of the string.

505



9.10. DE BRUIJN SEQUENCE c� Steven, Felix, Suhendry

aa

ab

bb

ba

a

b

a

b

a

b

a

b

Figure 9.9: 2-dimensional de Bruijn graph on alphabets ⌃ = {a, b}.

aaa

aab

aba bab

abb

bbb

bbabaa

a

b a

b

a

b

a

b

a

b

a

b

a

ba

b

Figure 9.10: 3-dimensional de Bruijn graph on alphabets ⌃ = {a, b}.

in a 3-dimensional de Bruijn graph are all possible strings of length n = 3 which must exist
in a de Bruijn sequence B(2, n = 3). On the other hand, an edge in such a graph implies that
we can get the next string (of the adjacent vertex) just by adding one character. Therefore,
what we need to do to obtain a de Bruijn sequence is simply find a path in such a graph that
visits each vertex exactly once, which is what a Hamiltonian path is. The list of vertices
in such a path is the list of strings of length n of a de Bruijn sequence in their appearance
order.

For example, one Hamiltonian path in Figure 9.10 is as follows.

aaa! aab! abb! bbb! bba! bab! aba! baa

To get the corresponding de Bruijn sequence, we can merge those strings while shrinking
every adjacent strings (e.g., merge aaa and aab into aaab); the result for the above example
is aaabbbabaa. Note that the sequence obtained by this method has excess characters as
we have not made it into a circular string. Simply remove the last n � 1 (in this example,
n� 1 = 2) characters from the result to obtain the de Bruijn sequence, i.e., aaabbbab.

Alternatively, we can use the edges’ label of a Hamiltonian tour to get a de Bruijn
sequence.

aaa
b�! aab

b�! abb
b�! bbb

a�! bba
b�! bab

a�! aba
a�! baa

a�! aaa

The edges’ label which also a de Bruijn sequence is bbbabaaa. Note that bbbabaaa is equal
to aaabbbab (simply rotate it).

You might already notice that finding a Hamiltonian path/tour in a graph is an NP-
complete problem, thus, we might not be able to use this method to solve a contest problem.
Fortunately, there is a much better alternative method to generate a de Bruijn sequence,
i.e., with an Eulerian tour.

506



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Generating a de Bruijn Sequence with an Eulerian Tour

Recall that to generate a de Bruijn sequence B(k, n) from a Hamiltonian path/tour, we need
an n-dimensional de Bruijn graph. The same de Bruijn sequence can also be generated from
an Eulerian tour on an (n� 1) dimensional de Bruijn graph.

In an (n � 1) dimensional de Bruijn graph, each outgoing edge corresponds to a string
of length n, i.e., the vertex’s string (length of n� 1) concatenated with the outgoing edge’s
label (length of 1). Therefore, to get all possible strings of length n, all we need to do is to
find a tour that traverses each edge exactly once, which is what an Eulerian tour is.

For example, consider Figure 9.9 (of 2-dimensional) when we want to generate a de Bruijn
sequence B(2, n = 3). One Eulerian tour in such a graph is as follows.

bb
a�! ba

a�! aa
a�! aa

b�! ab
a�! ba

b�! ab
b�! bb

b�! bb

Similar to what we did previously with a Hamiltonian tour, the edges’ label of an Eulerian
tour on a 2-dimensional de Bruijn graph is a de Bruijn sequence B(2, n = 3), i.e., aaababbb.

Also note that such a de Bruijn graph is connected and each vertex has the same number
of incoming and outgoing edges, thus, an Eulerian tour must exist.

To find such a tour, we can simply use an algorithm such as Hierholzer’s as discussed
in Book 1 which runs in a polynomial-time complexity. Note that there are other methods
to generate a de Bruijn sequence without the help of a de Bruijn graph, e.g., with Lyndon
words18 concatenation, or shift-based construction algorithm, but both methods are not
discussed in this book.

Counting Unique de Bruijn Sequences

The total number of unique de Bruijn sequences of B(k, n) can be found with the following
formula.

(k!)k
n�1

kn

If we do not want to consider the rotated string as the same string, then simply remove the
fractional part.

For the special case k = 2, the formula reduced to

22
n�1�n

For example, the number of unique de Bruijn sequences for B(2, 3) is 22
3�1�3 = 24�3 = 2

which has been shown in the beginning of this section to be aaababbb and aaabbbab.

Programming exercises related to de Bruijn Sequence:

1. Entry Level: UVa 10506 - The Ouroboros problem * (basic de Bruijn Se-
quence problem)

2. UVa 10040 - Ouroboros Snake * (lexicographically smallest de Bruijn seq)

3. UVa 10244 - First Love!!! *

4. ICPC 2018 Jakarta Problem C - Smart Thief (partial de Bruijn sequence)

18A Lyndon word is an aperiodic string that is lexicographically smallest among all of its rotations.

507



9.11. FAST FOURIER TRANSFORM c� Steven, Felix, Suhendry

9.11 Fast Fourier Transform

The proper title for this section should be Fast Polynomial Multiplication but we decide
to promote the title into Fast Fourier Transform as it will be addressed heavily in this section.

Fast Fourier Transform (FFT) is a (fast) method to perform Discrete Fourier Transform
(DFT), a widely used transformation in (electrical) engineering and science to convert a
signal from time to frequency domain. However, in competitive programming, FFT and its
inverse are commonly used to multiply two (large) polynomials.

The Problem

Given two polynomials of degree n, A(x) and B(x), your task is to compute its multiplication,
A(x) · B(x). For example, given these two polynomials of degree n = 2.

A(x) = 1 + 3x+ 5x2

B(x) = 4� 2x+ x2

Then,

A(x) · B(x) = 4 + 10x+ 15x2 � 7x3 + 5x4

If n is small enough, then the following straightforward O(n2) code su�ces to compute the
multiplication.

for (int j = 0; j <= n; ++j)
for (int k = 0; k <= n; ++k)

res[j+k] += A[j] * B[k];

If both polynomials have a di↵erent degree, then simply append the polynomial with a lower
degree with one or more zeroes to meet the other polynomial’s degree. For example, consider
these two polynomials.

A(x) = 1 + 4x ! A(x) = 1 + 4x+ 0x2 + 0x3

B(x) = 3 + 2x2 + 5x3 ! B(x) = 3 + 0x+ 2x2 + 5x3

It does not change the polynomial but now they have the same “degree”19 so the above code
can be used.

In this section, we describe an algorithm to perform polynomial multiplication which
runs in O(n log n) time complexity with the FFT and its inverse.

Polynomial Representation

Before going in-depth with FFT, we start by noting several ways to represent a polynomial.

Coe�cient Representation

A coe�cient representation of a polynomial a0 + a1x + a2x2 + · · · + anxn is a vector of
coe�cients

(a0, a1, a2, . . . , an)

19We slightly abused the terminology. The definition of a polynomial degree is the highest power of its
terms with non-zero coe�cient. Appending zeroes to a polynomial does not increase its degree.

508



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

For example,

A(x) = 1 + 3x+ 5x2 ! (1, 3, 5)

B(x) = 4� 2x+ x2 ! (4,�2, 1)

Evaluating the value of a polynomial for a certain x in this representation can be done
e�ciently in O(n), e.g., with Horner’s method20. However, performing polynomial multi-
plication (strictly) in this representation might require the previous O(n2) code. Generally,
problems involving polynomials present the polynomials in this representation.

Point-Value Representation

A point-value representation (or point representation) of a polynomial of degree n, A(x), is
a set of (at least) n+ 1 point-value pairs

{(x0, y0), (x1, y1), (x2, y2), . . . , (xn, yn)}

such that all xj are distinct and yj = A(xj) for all j.
Note that we may have more (but no fewer) than n + 1 point-value pairs to represent a

polynomial of degree n.21 For example, these point-value representations correspond to the
same polynomial 1 + 3x+ 5x2 of degree n = 2.

{(1, 9), (2, 27), (3, 55)}
{(1, 9), (2, 27), (3, 55), (4, 93)}
{(1, 9), (3, 55), (4, 93), (5, 141)}
{(2, 27), (3, 55), (5, 141), (7, 267), (10, 531)}

Some articles/books also refer to this representation as a sample representation because it
provides us with su�cient sample points (xj, yj) which can be used to reconstruct the original
polynomial, e.g., with Lagrange’s interpolation formula.

To multiply two polynomials in a point-value representation, we need:

1. Both polynomials to be represented by the same domain (xj 2 X for all j).

2. There are at least 2n+ 1 distinct points in the point-value set.

The first requirement is given; what we want to compute is A(xj) · B(xj) for some xj. The
second requirement raises from the fact that multiplying two polynomials of degree n will
result in a polynomial of degree 2n, thus, 2n + 1 point-value pairs are needed to represent
the result.

Consider the previous example, A(x) = 1+3x+5x2 and B(x) = 4�2x+x2. Let xj 2 X
be {0, 1, 2, 3, 4}.22

xj 0 1 2 3 4
A(xj) 1 9 27 55 93
B(xj) 4 3 4 7 12

A(xj) · B(xj) 4 27 108 385 1116

20Observe that a0 + a1x1 + a2x2 + · · ·+ anxn = a0 + x(a1 + x(a2 + · · ·+ x(an�1 + xan)))).
21Find out more about this on polynomial interpolation and the fundamental theory of algebra.
22These can be any number as long as they are distinct. Also, as the polynomial degree is 2, then we need

the size of X to be at least 2 ⇤ 2 + 1 = 5.

509



9.11. FAST FOURIER TRANSFORM c� Steven, Felix, Suhendry

Thus, the resulting polynomial is

{(0, 4), (1, 27), (2, 108), (3, 385), (4, 1116)}

which corresponds to the polynomial 4 + 10x+ 15x2 � 7x3 + 5x4.
As we can see, given the point-value representation of two polynomials (which satisfies

the requirements), we can directly compute their multiplication in O(n) time, i.e., simply
multiply A(xj) and B(xj) for each xj.

The Big Idea

First, let’s put some details on our problem. Given two polynomials of degree n in a
coe�cient representation, A(x) and B(x), compute its multiplication, A(x) · B(x).

Recall from the previous discussion, we know that multiplying two polynomials directly
in a coe�cient representation requires O(n2) time complexity. However, we also know that
polynomial multiplication in a point-value representation can be done in O(n), and we are
going to exploit this.

The following is the big idea of the fast polynomial multiplication with three steps which
is also illustrated in Figure 9.11:

(1) Convert the given polynomials into a point-value representation.

(2) Do the polynomial multiplication in a point-value representation.

(3) Convert the result back to the coe�cient representation.

Figure 9.11: Fast polynomial multiplication: The big idea

We know step (2) can be done in O(n), but how about step (1) and (3)? A näıve approach
for step (1) would be evaluating the polynomial for an xj to get yj (i.e., a point-value pair
(xj, yj)); perform this for 2n + 1 di↵erent xj and we obtain the point-value representation
of the polynomial. However, evaluating a polynomial for an x is O(n), causing the overall
time complexity to get 2n+ 1 point-value pairs to be O(n2).

Fortunately, FFT algorithm can perform step (1) in O(n log n), and step (3) can be done
by inverse FFT, also in O(n log n), causing the overall time-complexity to do the polynomial
multiplication with the above steps to be O(n log n).

Fast Fourier Transform

Fast Fourier Transform is a divide and conquer algorithm to compute a Discrete Fourier
Transform of a series (or an ordered set of polynomial coe�cients). To understand FFT and

510



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

DFT, one also needs to know about complex numbers and Euler’s formula (or trigonometry)
in its relation with the nth root of unity.

As we are dealing with complex numbers, we should put this note before we continue to
avoid any confusion caused by i.

The notation of i in this (entire) section refers to
an imaginary unit of a complex number (e.g., 5 + 2i),

and does not refer to any variable or index.

Divide and Conquer (D&C) Algorithm

We start by describing a D&C algorithm to evaluate a polynomial A(x) for a given x.
Although we can use Horner’s method just to evaluate a polynomial, we need this D&C
algorithm for FFT later.

Let A(x) = (a0, a1, a2, . . . , an) be a polynomial function (in a coe�cient representation).
A0(x) is a polynomial whose coe�cients are the coe�cient of A(x) at the even terms, i.e.,
A0(x) = (a0, a2, a4, a6, . . . ), and A1(x) is a polynomial whose coe�cients are the coe�cient
of A(x) at the odd terms, i.e., A1(x) = (a1, a3, a5, a7, . . . ).23 Both A0(x) and A1(x) have
half the degree of A(x).

A(x) = (a0, a1, a2, a3, . . . , an)! a0 + a1x
1 + a2x

2 + a3x
3 + · · ·+ anx

n

A0(x) = (a0, a2, a4, a6, . . . ) ! a0 + a2x
1 + a4x

2 + a6x
3 + . . .

A1(x) = (a1, a3, a5, a7, . . . ) ! a1 + a3x
1 + a5x

2 + a7x
3 + . . .

Observe that A(x) can be computed with the following formula.24

A(x) = A0(x
2) + x · A1(x

2)

With this, we have a D&C algorithm to evaluate a polynomial.
For the following example, we slightly abuse the notation: Let A(a0,a1,...,an)(x) be a poly-

nomial (a0, a1, . . . , an), i.e., the polynomial coe�cients are given as the subscript of A.
Consider the following example. Let A(3,0,2,5)(x) be the polynomial function, and we want

to evaluate for x = 2. Separate the even and odd terms’ coe�cients and evaluate on x2, i.e.,
A(3,2)(x2) and A(0,5)(x2). To evaluate A(3,2)(x2), recursively separate its even and odd terms’
coe�cients and evaluate them on (x2)2, i.e., A(3)(x4) and A(2)(x4). Similarly, to evaluate
A(0,5)(x2), recursively separate its even and odd terms’ coe�cients and evaluate them on
(x2)2, i.e., A(0)(x4) and A(5)(x4).

A(3)(2
4) = 3 A(2)(2

4) = 2 A(0)(2
4) = 0 A(5)(2

4) = 5

A(3,2)(2
2) = A(3)(2

4) + 22 · A(2)(2
4) = 3 + 22 · 2 = 11

A(0,5)(2
2) = A(0)(2

4) + 22 · A(5)(2
4) = 0 + 22 · 5 = 20

A(3,0,2,5)(2) = A(3,2)(2
2) + 2 · A(0,5)(2

2) = 11 + 2 · 20 = 51

Finally, we obtain A(2) = 51 with the D&C algorithm. We can confirm this by directly
evaluating A(2) = 3 + 0 · 2 + 2 · 22 + 5 · 23 which results in 51.

This algorithm runs in O(n log n) time complexity just to evaluate for one x, worse than

23Notice that a2 is the coe�cient for x1 in A0(x), a5 is the coe�cient for x2 in A1(x), and so on.
24They are A0(x2) and A1(x2), not A0(x) and A1(x). The readers are also encouraged to verify whether

the formula is correct.

511



9.11. FAST FOURIER TRANSFORM c� Steven, Felix, Suhendry

the Horner’s method which runs in O(n). If we want to evaluate for all x 2 X one-by-one
where |X| = 2n+ 1, then we’ll need O(n2 log n) with this D&C algorithm. We can evaluate
for all x 2 X all-at-once25, but it still requires O(n2).26 Turns out with a clever choice of
x 2 X, the D&C algorithm can evaluate for n values just in O(n log n) as we will see soon.

nth Roots of Unity

To evaluate A(x) with the D&C algorithm, we first recurse and evaluate A0(x2), A1(x2),
and combine the result into A(x). If we want to evaluate for all x 2 X all-at-once, then the
algorithm will recurse and evaluate for x2 8x 2 X on the second recursion level, x4 8x 2 X on
the third recursion level, and so on. The size of X never decreases, and this is a big problem.
However, we can actually choose any 2n + 1 values of x as long as they are distinct! They
don’t have to be 0, 1, 2, . . . , 2n. They don’t even have to be a real number!

What will happen if X = {1,�1}? On the second recursion level, what the D&C
algorithm will compute for is {12, (�1)2} which is only {1}. We can compute both A(1) and
A(�1) just by computing A0(1) and A1(1) as they share the same x2.

A(1) = A0(1) + 1 · A1(1)

A(�1) = A0(1)� 1 · A1(1)

We can go further. What will happen if X = {1,�1, i,�i}? On the second recursion
level, the D&C algorithm will compute for {12, (�1)2, i2, (�i)2} which reduces to {1,�1}.
On the third recursion level, it will compute for {12, (�1)2} which reduces to only {1}.

So, if we need to compute for |X| = 2n + 1 distinct values of x (and we can choose any
x we want), then we need to find X such that it has a nice collapsing property; in other
words, at the next recursion level, |X| is reduced by half, and at the last recursion level X
collapses to {1}. We can achieve this by using the |X|th roots of unity27. Also, to have a
nice halving, we need to ensure |X| is a power of 2; simply append X (or in this case, the
polynomial coe�cients) with zeroes until it becomes a power of 2. This collapsing X will
significantly reduce the running time of the previous (all-at-once) D&C algorithm.

The nth roots of unity are n distinct numbers such that if raised to the power of n, all
numbers will collapse to 1. For example, the 2nd roots of unity are {1,�1}. The 4th roots of
unity are {1,�1, i,�i}. The 8th roots of unity are {±1,±i,±(12

p
2+ 1

2

p
2i),±(12

p
2� 1

2

p
2i)}.

Of course, there are the 3rd, 5th, 6th, . . . roots of unity as well, but here we only concern
ourselves with n as a power of 2. The nth roots of unity are also the points in a complex
plane whose distance to the origin is exactly 1. See Figure 9.12 for an illustration of the 8th

roots of unity.

The nth roots of unity can be found with the following formula.

ei2⇡k/n

where e is the Euler’s number (2.7182818..) and k = 0, 1, . . . , n� 1. Observe that if we raise
the formula to the nth power, we will obtain 1 regardless of k. (ei2⇡k/n)n = ei2⇡k = (ei2⇡)k = 1
(Note: ei2⇡ = 1). The part 2⇡k/n is actually the degree (in radian) of the kth point as
illustrated in Figure 9.12.

25Modify the D&C algorithm to also accept the set x 2 X which we want to evaluate.
26Hint: Draw and analyze the recursion tree.
27The term “unity” is a synonym to 1 (one).

512



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Figure 9.12: The 8th roots of unity.

To get rid of e and the need to compute the power, we can use Euler’s formula.28,29

ei✓ = cos ✓ + i sin ✓

With ✓ = 2⇡k/n, the formula becomes

ei2⇡k/n = cos (2⇡k/n) + i sin (2⇡k/n)

Therefore, for set X to have a nice collapsing property, we simply need to assign x 2 X
to be ei2⇡k/n or cos (2⇡k/n) + i sin (2⇡k/n) where k = 0, 1, . . . , n � 1. The evaluation of a
polynomial at the roots of unity is also known as the Discrete Fourier Transform (DFT).

FFT, a Recursive Algorithm

Now, we are ready to put everything into an algorithm. To simplify some notations, let

wk
n = ei2⇡k/n

i.e., wk
n is an nth root of unity.

The main structure of the algorithm is, of course, a D&C algorithm. The function FFT()
have one parameter: A[], a vector (or array) containing the polynomial coe�cients. The
result of FFT(A) is a vector F[] of complex numbers of the the same size as A[] where
each element is an evaluated value of the polynomial A(x) at an nth root of unity, i.e.,
F[k]= A(wk

n).
30

There is no need to pass around the set X to be evaluated as we can generate them
on-the-fly; they are simply the nth roots of unity. To generate x 2 X for a recursion call,
simply use the Euler’s formula.

x = cos (2⇡k/n) + i sin (2⇡k/n) 8 k = 0, 1, . . . , n� 1

The function FFT(A) recurses and calls FFT(A0) and FFT(A1) where A0[] and A1[] are
the separated even and odd terms’ coe�cients of A[]. It then combine the results from
FFT(A0) and FFT(A1), namely F0[] and F1[], respectively.

28Understand the formula by consulting Figure 9.12 with basic trigonometry.
29If ✓ = ⇡, then Euler’s formula will become what regarded as the most beautiful equation in mathematics,

the Euler’s identity: ei⇡ = cos⇡ + i sin⇡ = �1 + 0i = �1 or simply ei⇡ + 1 = 0.
30In the implementation later, we will use vector A[] to store the result for F[] as well in order to reduce

memory usage and to gain faster computation.

513



9.11. FAST FOURIER TRANSFORM c� Steven, Felix, Suhendry

Let n be the size of A[] in a recursion call, and supposed F0[] and F1[] for that recursion
call are already computed.

F0[k] = A0(w
k
n/2) 8 k = 0, 1, . . . , n/2� 1

F1[k] = A1(w
k
n/2) 8 k = 0, 1, . . . , n/2� 1

Our goal is to compute F[].

F[k] = A(wk
n) 8 k = 0, 1, . . . , n� 1

We can do this by using the previous D&C formula, A(x) = A0(x2) + x · A1(x2).

To simplify the explanation, let’s define the range for k to be 0, 1, . . . , n/2�1 so that the
range for the first half of F[] is simply k while the range for the second half is n/2 + k.31

The first half looks simple as we can directly use the D&C formula. It turns out that the
second half is easy as well due to the property of nth roots of unity as we will see later.

The first half of F[] is as follows. We start with the D&C formula.

F[k] = A(wk
n) = A0((w

k
n)

2) + wk
n · A1((w

k
n)

2)

= A0(w
2k
n ) + wk

n · A1(w
2k
n ) 8 k = 0, 1, . . . , n/2� 1

Notice that w2k
n is equal to wk

n/2.

w2k
n = ei2⇡(2k)/n = ei2⇡k/(n/2) = wk

n/2

Therefore,

F0[k] = A0(w
k
n/2)= A0(w

2k
n )

F1[k] = A1(w
k
n/2)= A1(w

2k
n )

Then, we can compute the first half of F[] by using F0[] and F1[].

F[k] = F0[k]+ wk
n · F1[k] 8 k = 0, 1, . . . , n/2� 1

The second half of F[] is as follows. Similar to the first half, we also start with the D&C
formula, but this time, we further break down the exponents.

F[n/2 + k] = A(wn/2+k
n ) = A0((w

n/2+k
n )2) + wn/2+k

n · A1((w
n/2+k
n )2)

= A0(w
n+2k
n ) + wn/2+k

n · A1(w
n+2k
n )

= A0(w
n
nw

2k
n ) + wn/2

n wk
n · A1(w

n
nw

2k
n ) 8 k = 0, 1, . . . , n/2� 1

We know that wn
n = ei2⇡ = 1 and wn/2

n = ei⇡ = �1.

F[n/2 + k] = A(wn/2+k
n ) = A0(1 · w2k

n ) + (�1) · wk
n · A1(1 · w2k

n )

= A0(w
2k
n )� wk

n · A1(w
2k
n ) 8 k = 0, 1, . . . , n/2� 1

31Also, observe that both F0[] and F1[] have a size of only n/2.

514



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Previously, we have shown thatA0(w2k
n ) andA1(w2k

n ) are simply F0[k] and F1[k]. Therefore,
the formula to compute the second half of F[] is as follows.

F[n/2 + k] = F0[k]� wk
n · F1[k] 8 k = 0, 1, . . . , n/2� 1

If we reflect on these formulas to compute F[], we actually compute both A(x) and A(�x)
with a recursive call of A0(x2) and A1(x2) each with a half of the size of A’s coe�cients.
That is, we solve two values, x (= wk

n) for the first half and �x (= �wk
n) for the second

half32, with only one value, x2 (= w2k
n ); just what we wanted by using the nth roots of unity.

Implementation. We can simplify the implementation by using A[] to also store the
evaluated values F[]. Thus, the FFT() function does not return anything, instead it directly
modifies the vector A[] (into F[]). In order to do this, A[] needs to be a vector of complex
numbers.

The std::complex class in C++ and complex() module in Python can be used to
deal with complex numbers. Java (JDK), unfortunately, does not have any built-in class for
complex numbers that we aware of so you might need to implement it by yourself. You might
also want to refresh yourself with some basic arithmetic operations on complex numbers (we
only need addition/subtraction and multiplication).

The following is one implementation of FFT in C++.

typedef complex<double> cd;
const double PI = acos(-1.0);

void FFT(vector<cd> &A) {
int n = A.size();
if ( n == 1 ) return;

vector<cd> A0(n/2), A1(n/2); // divide
for ( int k = 0; 2 * k < n; ++k ) {

A0[k] = A[2*k];
A1[k] = A[2*k+1];

}

FFT(A0); // conquer
FFT(A1);

for ( int k = 0; 2 * k < n; ++k ) { // combine
cd x = cd(cos(2*PI*k/n), sin(2*PI*k/n));
A[k] = A0[k] + x * A1[k];
A[k+n/2] = A0[k] - x * A1[k];

}
}

The divide and combine part each runs in O(n) while the conquer part halves the input
size, hence, the recurrence relation is T (n) = 2 · T (n/2) + O(n). Therefore, by master
theorem, the above implementation runs in O(n log n).

To call FFT(), you can use the following code. Note that this code only shows how to
call FFT() and not to be used directly for fast polynomial multiplication.

32The root of unity for the second half of F[], wn/2+k
n , is equal to �wk

n as has been shown previously

515



9.11. FAST FOURIER TRANSFORM c� Steven, Felix, Suhendry

// contains the polynomial coefficients
// polynomial.size() should be a power of 2
vi polynomial;

// convert vector<int> into vector<complex<double>>
vector<cd> A(polynomial.begin(), polynomial.end());

// call FFT with A as a vector of complex numbers
FFT(A);

for ( auto &p : A )
printf("%lf + i %lf\n", p.real(), p.imag());

FFT, an in-place algorithm

The previous FFT implementation can be improved by modifying the recursive structure
into an iterative one, thus, removing the additional overhead of function calls which also
translates to faster running time.

In FFT, the sequence (a0, a1, a2, a3, a4, a5, a6, a7) will be separated into two sequences:
(a0, a2, a4, a6) and (a1, a3, a5, a7), i.e., separating the even and odd terms. All the even terms
have 0 and all the odd terms have 1 as their least significant bit. Thus, performing the
operations on even terms first and then the odd terms (recursively) is as if we prioritize
the operations on the number with a lower least significant bit. This actually is equal to
performing the operations in a bit-reversal order.

Normal order Bit-reversal order
Decimal Binary Decimal Binary

0 0000 0 0000
1 0001 8 1000
2 0010 4 0100
3 0011 12 1100
4 0100 2 0010
5 0101 10 1010
6 0110 6 0110
7 0111 14 1110
8 1000 1 0001
9 1001 9 1001
10 1010 5 0101
11 1011 13 1101
12 1100 3 0011
13 1101 11 1011
14 1110 7 0111
15 1111 15 1111

To sort (0, 1, 2, 3, . . . ) in a bit-reversal order, we need to check each j, compare it with its
reverseBit(j), and swap accordingly. Then, to perform FFT (in place), we simply need
to sort the sequence into its reversal-bit order, and then perform the D&C process from the
shortest length, i.e., 2, 4, 8, 16, . . . .

The following is one implementation of an in-place FFT in C++.

516



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

typedef complex<double> cd;
const double PI = acos(-1.0);

int reverseBit(int x, int m) {
int ret = 0;
for ( int k = 0; k < m; ++k )

if ( x & (1 << k) ) ret |= 1 << (m-k-1);
return ret;

}

void InPlaceFFT(vector<cd> &A) {
int m = 0;
while ( m < A.size() ) m <<= 1; // m need to be a power of 2

for ( int k = 0; k < A.size(); ++k )
if ( k < reverseBit(k, m) )

swap(A[k], A[reverseBit(k, m)]);

for ( int n = 2; n <= A.size(); n <<= 1 ) {
for ( int k = 0; 2 * k < n; ++k ) {

cd x = cd(cos(2*PI*k/n), sin(2*PI*k/n));
A[k] = A0[k] + x * A1[k];
A[k+n/2] = A0[k] - x * A1[k];

}
}

}

If A.size() is already a power of 2, then we can simply assign m = A.size().

Inverse Fast Fourier Transform

DFT transforms polynomial coe�cients into its evaluations at the roots of unity33, and
FFT is a fast algorithm to compute it. To do a fast polynomial multiplication, we also
need to perform the inverse DFT (IDFT) in order to convert the polynomial from a
point-value representation back into a coe�cient representation. Fortunately, IDFT can be
computed easily with FFT with some additional steps. Thus, we can use the previous FFT
implementation to perform IDFT, or in this case, the inverse FFT (IFFT).

To simplify some notations, we will reuse the previous wk
n notation; however, this time,

we remove the subscripted n and write it as wk to ease the reading.

wk = ei2⇡k/n

The evaluation of a polynomial A(x) on x = wk is as follows.

A(wk) = a0(w
k)0 + a1(w

k)1 + a2(w
k)2 + . . .+ an�1(w

k)n�1

= a0w
0k + a1w

1k + a2w
2k + . . .+ an�1w

(n�1)k

33In engineering term, DFT transforms a series from a time domain to a frequency domain.

517



9.11. FAST FOURIER TRANSFORM c� Steven, Felix, Suhendry

To perform DFT, we evaluate the polynomial for all k = 0, 1, 2, . . . , n � 1. We can also
represent the whole DFT operations with matrix multiplication.

0

BBBBB@

w0 w0 w0 . . . w0

w0 w1 w2 . . . wn�1

w0 w2 w4 . . . w2(n�1)

...
...

...
. . .

...
wn�1 w2(n�1) w3(n�1) . . . w(n�1)(n�1)

1

CCCCCA

0

BBBBB@

a0
a1
a2
...

an�1

1

CCCCCA
=

0

BBBBB@

y0
y1
y2
...

yn�1

1

CCCCCA

or simply
Wa = y

where W is the DFT matrix34, a is a vector of polynomial coe�cients, and y is the result
vector where yk = A(wk). In other words, to obtain y from a, we simply multiply a with
W . To recover a from y (the reversed operation), we need to multiply y with the inverse of
W (i.e., W�1).

a = W�1y

DFT matrix has a nice property because its elements are the roots of unity, hence, the
inverse can be found easily. The inverse DFT (IDFT) matrix has the following form.

W�1 =
1

n

0

BBBBB@

w0 w0 w0 . . . w0

w0 w�1 w�2 . . . w�(n�1)

w0 w�2 w�4 . . . w�2(n�1)

...
...

...
. . .

...
w0 w�(n�1) w�2(n�1) . . . w�(n�1)(n�1)

1

CCCCCA

We can verify this by multiplying W with W�1 to get an identity matrix I. Let S be
W ·W�1.

S =
1

n

0

BBBBB@

w0 w0 w0 . . . w0

w0 w1 w2 . . . wn�1

w0 w2 w4 . . . w2(n�1)

...
...

...
. . .

...
wn�1 w2(n�1) w3(n�1) . . . w(n�1)(n�1)

1

CCCCCA

0

BBBBB@

w0 w0 w0 . . . w0

w0 w�1 w�2 . . . w�(n�1)

w0 w�2 w�4 . . . w�2(n�1)

...
...

...
. . .

...
w0 w�(n�1) w�2(n�1) . . . w�(n�1)(n�1)

1

CCCCCA

We will show that S is an identity matrix I.35 The rth row and cth column of S is in the
following form (from a matrix multiplication).

Sr,c =
1

n
(w0rw0c + w1rw�1c + w2rw�2c + · · ·+ w(n�1)rw�(n�1)c)

=
1

n
(w0(r�c) + w1(r�c) + w2(r�c) + · · ·+ w(n�1)(r�c))

Let r � c = d. Then

Sr,c =
1

n
(w0d + w1d + w2d + · · ·+ w(n�1)d)

34Matrix of this type is also called a Vandermonde matrix.
35Note that we move the scalar 1

n to the front for an easier read. Moving around a scalar value does not
matter in matrix multiplication.

518



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

When d = 0 (at the principal digonal of the matrix), Sr,c reduces to:

Sr,c = Sk,k =
1

n
(w0 + w0 + w0 + · · ·+ w0)

=
1

n
(1 + 1 + 1 + · · ·+ 1)

= 1

What will happen when d 6= 0? First, notice that wk = wk mod n. This can be ex-
plained by observing that ei✓ lies at a circle whose distance to origin equals to 1 (Fig-
ure 9.12), thus, if k >= n (or ✓ >= 2⇡), then it simply wraps around. Also, notice
that hw0d, w1d, w2d, . . . , w(n�2)di are all of the (n/gcd(n, d))th roots of unity. For exam-
ple, let n = 4 and d = 3, then hw0 mod 4, w3 mod 4, w6 mod 4, w9 mod 4i = hw0, w3, w2, w1i =
hei2⇡0/4, ei2⇡3/4, ei2⇡2/4, ei2⇡1/4i are all the 4th roots of unity. Another example, let n = 4 and
d = 2, then hw0 mod 4, w2 mod 4, w4 mod 4, w6 mod 4i = hw0, w2, w0, w2i; removing duplicates,
hw0, w2i = hei2⇡0/4, ei2⇡2/4i = hei2⇡0/2, ei2⇡1/2i are all the 2th roots of unity. Here is an in-
teresting fact: The sum of all nth roots of unity is 0. There are many ways to prove this
claim, but we can get the intuition from Figure 9.12 and notice that the “center of mass” of
all nth roots of unity is at the origin.

We have concluded that all elements in the principal diagonal of S are 1 while the other
remaining elements are 0, thus, S is an identity matrix and the given W�1 is indeed the
inverse of a DFT matrix.

Computing IDFT

Observe that W�1 has a very similar structure to W with two di↵erences, the negative sign
on the exponents and the scale down factor, 1

n . First, let’s work on w�k.

w�k = e�i2⇡k/n= cos (�2⇡k/n) + i sin (�2⇡k/n)

We also know about cosine and sine of a negative angle from basic trigonometry.

cos (�✓) = cos (✓)

sin (�✓) = � sin (✓)

Thus, e�i2⇡k/n is equal to the following formula.

e�i2⇡k/n = cos (�2⇡k/n) + i sin (�2⇡k/n)
= cos (2⇡k/n)� i sin (2⇡k/n)

We want a minimum change in the previous FFT implementation to find the IFFT (make
life easier!). It would be very nice if we can compute yj ·e�i2⇡k/n when doing IDFT without the
need to change the sign of ei2⇡k/n so we can simply use the previous FFT implementation.
Fortunately, we can do that with the help of complex conjugate operator for complex
numbers. The complex conjugate of a + bi is a � bi, i.e., the same real part and the same
imaginary magnitude but with an opposite sign.

Let r and s be two complex numbers, and z be a complex conjugate of a complex number
z. It is known that

r · s = r · s

519



9.11. FAST FOURIER TRANSFORM c� Steven, Felix, Suhendry

Using this knowledge, we can reduce the computation of yj · e�i✓ into the following.

yj · e�i✓ = yj · (cos ✓ � i sin ✓)

= yj · (cos ✓ � i sin ✓)

= yj · (cos ✓ + i sin ✓)

= yj · ei✓

Thus, we can use ei✓ or ei2⇡k/n instead of e�i2⇡k/n to compute IDFT, and they are already
used in the previous FFT implementation.

In summary, to perform IFFT, we simply need the following steps.

1. Perform complex conjugation on each element (i.e., flip the imaginary part)

2. Perform FFT on that sequence.

3. Perform complex conjugation on each element.

4. Scale down the sequence.

In C++, we can use std:conj() to perform complex conjugation, while in Python, we
can use conjugate() function on a complex number. Alternatively, we can simply implement
it directly from scratch as a complex conjugation operation is only flipping the imaginary
part’s sign of a complex number.

The following is one implementation of IFFT in C++.

void IFFT(vector<cd> &A) {
for ( auto &p : A ) p = conj(p); // complex conjugate

// a + bi -> a - bi

FFT(A);

for ( auto &p : A ) p = conj(p); // complex conjugate
// **not needed for our purpose**

for ( auto &p : A ) p /= A.size(); // scale down (1/n)
}

Note that the second complex conjugation (after FFT) is not needed if our goal is only to
perform fast polynomial multiplication on real/integer numbers where the input and output
do not have any imaginary part. We can see that this code runs in O(n log n).

Fast Polynomial Multiplication

We already have FFT and IFFT, now, we are ready to address the fast polynomial multiplica-
tion problem. As illustrated in Figure 9.11, performing a fast polynomial multiplication with
FFT involves three steps: (1) perform FFT on both polynomials, (2) do the multiplication,
(3) perform IFFT on the result.

A multiplication of a polynomial of degree n1 with a polynomial of degree n2 will result
in a polynomial of degree n = n1+n2, and to represent a polynomial of degree n with a point
value representation, we need at least n+ 1 point-value pairs. Also, recall that the previous
FFT implementation requires the sequence length to be a power of 2, thus, we might need

520



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

to append one or more zeroes at each polynomial such that the length is a power of 2 no
less than n1 +n2 +1. Because of this, we might want to resize the resulting polynomial into
its original degree, i.e., n1 + n2 + 1.

The following is one implementation of fast polynomial multiplication in C++.

vi multiply(vi p1, vi p2) {
int n = 1; // n needs to be a power of 2
while ( n < p1.size() + p2.size() - 1 )

n <<= 1;

vector<cd> A(p1.begin(), p1.end()); // prepare A and B for FFT calls
vector<cd> B(p2.begin(), p2.end());
A.resize(n);
B.resize(n);

FFT(A); // transform
FFT(B);

vector<cd> C(n); // perform the multiplication
for ( int k = 0; k < n; ++k )

C[k] = A[k] * B[k];

IFFT(C); // inverse transform

vi res; // prepare output
for ( auto &p : C )

res.push_back(round(p.real()));

res.resize(p1.size() + p2.size() - 1); // resize to original degree

return res;
}

Observe that p1.size() is n1 + 1 and p2.size() is n2 + 1 because a polynomial degree is
the number of coe�cients (including all non-trailing zeroes) minus 1. Thus, the notation
p1.size() + p2.size() - 1 is the same as n1 + n2 + 1.

Precision and Rounding Error

In the previous implementation of FFT(), we used complex<double> to represent a complex
number where both of its real and imaginary part are stored in a double (double-precision
floating-point) data type. In most problems, this is enough because a double data type has
a precision up to about 15 digits. However, if the problem or your solution causes a larger
number to pop up in the polynomial multiplication result, then you might need to refrain
from using double and consider using long double instead, i.e., complex<long double>.

Convolution

The coe�cient representation of a polynomial can also be regarded as a series or sequence.
Performing a convolution of two finite series is the same as performing polynomial mul-
tiplication on those two sequences by treating each sequence as a polynomial. Sometimes

521



9.11. FAST FOURIER TRANSFORM c� Steven, Felix, Suhendry

it is easier for us to think about the problem we faced in terms of convolution instead of
polynomial multiplication as usually there is no (explicit) polynomial in the problem.

Usually convolution is denoted by the operator ⇤. For example, a convolution of two
series, f and g, is denoted by f ⇤ g. A multiple self-convolution can also be denoted as
f ⇤ f ⇤ . . . f| {z }

m

= f ⇤m.

The sth element of f ⇤ g is defined as follows.

(f ⇤ g)s =
X

j+k=s

fj · gk

which basically is the sum of all multiplications between fj and gk where j + k = s. This
value is equal to the sth term of the result of multiplying f and g as polynomials.

Applications

There are many applications for FFT in competitive programming and most of them don’t
seem to have anything to do with multiplying polynomials at first glance.

All Possible Sums

Given two arrays of non-negative integers, A and B, calculate how many ways to get a sum
of y = Aj +Bk for all possible values of y.

We can solve this by creating two vectors, f and g, where fj denotes how many elements
in A which value is j, and gk denotes how many elements in B which value is k. Note that
as f and g are the frequency vector of A and B, their size might not be the same as A and
B. The convolution, f ⇤ g, gives us the number of ways y can be formed as a sum of an
element in A and an element in B for all possible value of y.

For example, let A = {1, 1, 1, 3, 3, 4} and B = {1, 1, 2, 3, 3}. In A, there are 3 elements
whose value are 1 (f1 = 3), 2 elements whose value are 3 (f3 = 2), and there is 1 element
whose value is 4 (f4 = 1). Thus, f = (0, 3, 0, 2, 1); similarly, g = (0, 2, 1, 2).

The convolution of f and g is f ⇤g = (0, 0, 6, 3, 10, 4, 5, 2) where each element corresponds
to how many ways to get a sum of y from A and B. For example, there are 10 ways to get a
sum of 4, (f ⇤g)4 = 10. There are 3 methods to get 4 by summing two non-negative integers,
i.e., 1 + 3, 2 + 2, and 3 + 1.

• There are 6 ways to choose (j, k) such that Aj = 1 and Bk = 3.

• There are 0 ways to choose (j, k) such that Aj = 2 and Bk = 2.

• There are 4 ways to choose (j, k) such that Aj = 3 and Bk = 1.

In total, there are 6+ 0+4 = 10 ways to get 4 by summing an element of A and an element
of B in this example.

All Dot Products

Given two array of integers, A and B (without loss of generality, assume |A| � |B|), deter-
mine the dot product36 of B with a contiguous subsequence of A for all possible contiguous
subsequence of A of the same length with B.

36The dot or scalar product of (a0, a1, . . . , an�1) and (b0, b1, . . . , bn�1) is a0b0 + a1b1 + · · ·+ an�1bn�1.

522



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

For example, let A = {5, 7, 2, 1, 3, 6} and B = {2, 1, 3, 4}. There are three contiguous
subsequences of A (of length |B| = 4) that we must calculate for each of its dot product
with B.

A: 5 7 2 1 3 6 5 7 2 1 3 6 5 7 2 1 3 6
| | | | | | | | | | | |

B: 2 1 3 4 2 1 3 4 2 1 3 4

Their dot products are as follows.

• 5 · 2 + 7 · 1 + 2 · 3 + 1 · 4 = 27

• 7 · 2 + 2 · 1 + 1 · 3 + 3 · 4 = 31

• 2 · 2 + 1 · 1 + 3 · 3 + 6 · 4 = 38

Let f be equal to A and g be equal to the reversed of B. Then the output for this problem
can be obtained in the convolution of f and g. In the above example, f = (5, 7, 2, 1, 3, 6),
g = (4, 3, 1, 2), and f ⇤ g = (20, 43, 34,27,31,38, 23, 12, 12). Our desired results are in the
“center” of f ⇤ g (the bolded text).

Additionally, the other numbers in f ⇤ g correspond to the dot product of a su�x/prefix
of A with B if we extend our problem definition by appending zeroes at the front and at the
end of A.

A: 0 0 0 5 7 2 1 3 6 0 0 5 7 2 1 3 6 0 5 7 2 1 3 6
| | | | | | | | | | | |

B: 2 1 3 4 2 1 3 4 2 1 3 4

A: 5 7 2 1 3 6 0 5 7 2 1 3 6 0 0 5 7 2 1 3 6 0 0 0
| | | | | | | | | | | |

B: 2 1 3 4 2 1 3 4 2 1 3 4

Why does convoluting f and g (of reversed B) give us this result? We can get the
answer to this question by observing the convolution formula, or simply pay attention to
what happened when we multiply two polynomials. For example, consider the case when we
multiply (a, b, c, d, e) and (z, y, x) (i.e., (x, y, z) in reversed order).

a b c d e

z y x⇥

ax bx cx dx ex

ay by cy dy ey

az bz cz dz ez

The result is a polynomial

(az, ay + bz, ax+ by + cz, bx+ cy + dz, cx+ dy + ez, dx+ ey, ex)

where each element is a dot product of a contiguous subsequence of (a, b, c, d, e) and (x, y, z)
as described in the problem.

Another variation of this problem is where A is a circular sequence. In such a case, we
only need to append A with itself and solve the problem with the method we have just
discussed.

Note that this technique of convoluting a sequence with a reversed sequence often appears
as part of a solution to many other problems, so, you might want to study this.

523



9.11. FAST FOURIER TRANSFORM c� Steven, Felix, Suhendry

Bitstring Alignment

Given two bitstrings, A and B, determine how many substrings of A of the same length
with B such that it satisfies the following condition: If Bk = 1 then A0

k = 1 (where A0 is a
substring of A which has the same length with B).

For example, let A = 11011110 and B = 1101. There are 2 substrings of A that are
aligned with B, i.e., A0..3 = 1101, and A3..6 = 1111.

A: 11011110 11011110
|| | || |

B: 1101 1101

Observe that the dot product of a satisfying alignment should be equal to the Hamming
weight37 of B. With this observation, we can solve this problem similar to the previous all
dot products problem. Let f be equal to A and g be equal to the reversed of B38. The
output to this problem is equal to the number of elements in f ⇤ g which are equal to the
Hamming weight of B.

Bitstring Matching

Given two bitstrings, A and B, determine how many times B appears in A as a substring.
This is an extension of the previous bitstring alignment problem. In this problem, we

should align both bit 0 and bit 1.
We can solve this problem by running the convolution for the previous bitstring alignment

problem twice, one for bit 1 and another for bit 0.39 Let the convolution for bit 1 be p and
the convolution for bit 0 be q. Then, the output to this problem is equal to the number of
elements in p+ q which are equal to the length of B.40

String Matching

Given two strings, A and B, determine how many times B appears in A as a substring.
This is a general version of the previous bitstring matching. Of course, we can solve this

by running the convolution for bitstring alignment problem as many times as the size of the
alphabets being used, one for each unique alphabet. Then, the result can be obtained by
counting the number of elements in the addition of all those convolution results which are
equal to the length of B. However, there is a better way.

Let f be the polynomial which corresponds to A where each element is in the form of
ei2⇡k/n. The variable k corresponds to Aj (e.g., a ! 0, b ! 1, c ! 2, . . . , z ! 25),
and n is the size of alphabets being used (e.g., 26). Similarly, let g be the polynomial which
corresponds to the reversed B where each element is in the form of e�i2⇡k/n (note the negative
exponent).

If we multiply ei2⇡p/n with e�i2⇡q/n (which equals ei2⇡(p�q)/n) when p = q, then we will
get e0 = 1 + 0i as the result. On the other hand, when p 6= q, we will get ei2⇡r/n where
r = p+ q 6= 0; this value is equal to an nth root of unity which is not 1 + 0i, or specifically,
a+ bi where a = [�1, 1) and b = [�1, 1] (refer to Figure 9.12). Observe that we can only get
a 1 in the real part of ei2⇡(p�q)/n only when p = q; otherwise, the real part is less than 1.

37A Hamming weight of a string is equal to the number of characters that are di↵erent from a zero-symbol
of the alphabet being used. In a case of bitstring, a Hamming weight equals to the number of bit 1.

38Conversions from numeric characters (‘0’ and ‘1’) into integers (0 and 1) might be needed.
39In the case of aligning bit 0, simply flip all bits (0$ 1).
40A polynomial addition of (a0, a1, . . . , an�1) and (b0, b1, . . . , bn�1) is (a0 + b0, a1 + b1, . . . , an�1 + bn�1).

524



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Therefore, the dot product of matching strings should be equal to the length of the string
(each element contributes 1 + 0i to the sum). Then, the output to this problem is equal to
the number of elements in f ⇤ g which are equal to the length of B.

This solution can be an alternative to other string matching algorithms such as the
Knuth-Morris-Pratt algorithm (Chapter 6.4.2) or the Rabin-Karp algorithm (Chapter 6.6).
Although this method has a (slightly) worse time-complexity, it might o↵er additional flex-
ibility as we will see in the next problem. Note that you might need to modify the previous
code for multiply() to accept and return a vector of complex numbers if you use this
method.

String Matching with Wildcard Characters

Given two strings, A and B, determine how many times B appears in A as a substring.
String B may contain zero or more wildcard characters that are represented by ‘?’. Each
wildcard character represents any single character. For example, ?c?c matches icpcec on
index 0 (icpc) and 2 (pcec).

The solution to this problem is similar to the previous string matching problem. However,
we need to set the coe�cient of g to be 0 whenever its corresponding character in (the
reversed) B is a wildcard character, i.e., we ignore such a character in the matching process.
The output to this problem is equal to the number of elements in f ⇤g which are equal to the
length of B without wildcard characters, e.g., ?c?c has a length of 2. Note that you might
want to consider only coe�cients of f ⇤g which correspond to a full-length string match, i.e.,
the “center” of f ⇤ g as in the previous discussion on all dot products problem; otherwise,
??x will have a match with xyyyz on index �2, or z?? will have a match with xyyyz on
index 4, which does not make any sense to this problem.

All Distances

Given a bitstring, A, determine how many ways to choose two positions in A, p and q, such
that Ap = Aq = 1 and q � p = k for any possible distance of k.

For example, let A = 10111. Note that a negative distance of k will have the same result
as its positive distance.

• |k| = 0! 4 ways (trivial).

• |k| = 1! 2 ways, i.e., 10111, and 10111.

• |k| = 2! 2 ways, , i.e., 10111 and 10111.

• |k| = 3! 1 way, i.e., 10111.

• |k| = 4! 1 way, i.e., 10111.

We can solve this problem by calculating the all dot products of A with itself A, however,
this time, we need all of them, including the “su�x/prefix” dot products (refer to the previous
discussion on all dot products problem). The very center element of the convolution f ⇤ g
corresponds to the number of ways such that k = 0, to the left of it is for negative k, and
to the right of it is for positive k, i.e., . . . ,�2,�1, 0, 1, 2, . . . . Note that f ⇤ g will always be
symmetric for an obvious reason. In the previous example, f ⇤ g = (1, 1, 2, 2, 4, 2, 2, 1, 1).

Why does all dot products of A with itself solve this problem? Observe that when we
do a dot product of a prefix/su�x of A with a su�x/prefix of A (of the same length), we
actually align each bit 1 with another bit 1 in A of a certain distance. The “shift” (length
of A minus the length of prefix/su�x A in consideration) corresponds to k in this problem.

525



9.11. FAST FOURIER TRANSFORM c� Steven, Felix, Suhendry

10111 10111 10111 10111 10111
| | | | || | |||

10111 10111 10111 10111 10111

10111 10111 10111 10111
|| | | | |

10111 10111 10111 10111

Example Problems

Kattis – A+B Problem (aplusb)

Given N integers A1..N where N  200 000 and Aj = [�50 000, 50 000], determine how many
tuple hp, q, ri are there such that p, q, r are pairwise distinct and Ap + Aq = Ar.

This is what an all possible sums problem is (as discussed previously) with some nasty
cases to be considered, i.e., A might be non-positive and p, q, and r should be pairwise
distinct.

Let f be the sequence containing the frequency of each element in A.
The first issue (non-positive integer) can be addressed by shifting all integers. The second

issue can be addressed by substracting 1 for each (f ⇤ f)2Aj , i.e., remove Aj +Aj from f ⇤ f .
One tricky case you should pay attention to is the zeroes in A. There are several ways to
address this, e.g., by removing all zeroes from A and treat them separately.

Live Archive 6808 – Best Position

Abridged problem statement: You are given a 2-dimensional array S of R ⇥ C characters
where Sr,c 2 {G, L} and R,C  500. There are B (B  5) queries where each query contains
a 2-dimensional array P of H ⇥ W where Ph,w 2 {G, L}, 1  H  R, and 1  W  C.
For each query, find an alignment of P on S such that the number of coinciding elements
is maximum. In other words, (j, k) such that the number of (h, w) where Ph,w = Sh+j,w+k

for 0  h < H and 0  w < W is maximized. Each alignment of P should be positioned
completely inside S, i.e., 0  j  R�H and 0  k  C �W .

First, notice that B is small ( 5), thus, there is (little to) no harm in solving each query
independently, i.e., simply treat each query as a new case.

This problem looks like a bitstring matching with wildcard characters problem; however,
instead of a (perfect) bitstring matching, we would like to find the best/maximum bitstring
matching.

Before that, we have to deal with the fact that this problem has a 2-dimensional bitstring.
We can simply “flatten” the 2-dimensional bitstring S into a 1-dimensional bitstring by
concatenating all rows of S. For example,

GGGGG

LLLLL ! GGGGGLLLLLGGGLL

GGGLL

On the other hand, for bitstring P , we need to “flatten” it while inserting wildcard characters
such that each row has the same length to C. For example, consider when C = 5.

GG ! GG??? ! GG???LL???

LL LL???

526



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

It does not matter where we insert the wildcard characters as long as they are on the same
column. For example, any one of the following is acceptable.

GG??? ?GG?? ??GG? ???GG

LL??? ?LL?? ??LL? ???LL

Then, all we need to do is to solve the bitstring matching problem for the flattened
S with the flattened (and adjusted) P while ignoring all of its wildcard characters. Our
desired answer corresponds to the highest number in the (added) convolution results. The
conversion to the coordinate (j, k) should be done accordingly.

Programming exercise related to Fast Fourier Transform:

1. Entry Level: Kattis - polymul2 * (basic polynomial multiplication problem that
needs an O(n log n) algorithm; also see Kattis - polymul1)

2. Kattis - aplusb * (count frequencies f of each integer with o↵set to deal with
negatives; use FFT to multiply f ⇥ f ; treat frequency of zeroes f [0] separately)

3. Kattis - figurinefigures * (for # of distinct weights, count frequencies f of each
figurine weight; convolute f with itself for 3 times to obtain f⇤4)

4. Kattis - golfbot * (count frequencies dist of each reachable distance in one shot;
convolute dist with itself; count distances reachable with one or two shots)

5. Kattis - moretriangles * (the coe�cient of xk is the number of is such that i2 = k
(mod n); convolution; inclusion-exclusion; combinatorics; be careful of overflow),

6. Kattis - tiles * (the low rating is misleading; modified sieve to count number of
divisors d of i; interpret d as polynomial pd; convolute pd with itself)

7. LA 6808 - Best Position

527



9.12. POLLARD’S RHO ALGORITHM c� Steven, Felix, Suhendry

9.12 Pollard’s rho Algorithm

In Section 5.3.3, we have seen the optimized trial division algorithm that can be used to find
the prime factors of integers up to ⇡ 9⇥1013 (see Exercise 5.3.3.1) in contest environment
(i.e., in ‘a few seconds’ instead of minutes/hours/days). Now, what if we are given a 64-
bit unsigned integer (i.e., up to ⇡ 1 ⇥ 1019) or even a Big Integer (beyond 64-bit unsigned
integer) to be factored in contest environment (within reasonable time limit)?

For faster integer factorization, one can use the Pollard’s rho algorithm [31, 4]. The key
idea of this algorithm is that two integers x and y are congruent modulo p (p is one of the
factors of n—the integer that we want to factor) with probability 0.5 after ‘a few (1.177

p
p)

integers’ having been randomly chosen.
The theoretical details of this algorithm is probably not that important for Competitive

Programming. Here, we give a Java implementation that uses isProbablePrime(certainty)
to handle special case if n is a (large) prime number or use the rho(n) randomized algorithm
routine to break a composite number n into its two factors and recursively process them.

import java.math.*;
import java.security.SecureRandom;

class Pollardsrho {
private static BigInteger TWO = BigInteger.valueOf(2);
private final static SecureRandom random = new SecureRandom();

private static BigInteger f(BigInteger x, BigInteger b, BigInteger n) {
return x.multiply(x).mod(n).add(b).mod(n); // x = (x^2 % n + b) % n

}

private static BigInteger rho(BigInteger n) {
if (n.mod(TWO).compareTo(BigInteger.ZERO) == 0) return TWO; // special
BigInteger b = new BigInteger(n.bitLength(), random); // rand for luck
BigInteger x = new BigInteger(n.bitLength(), random);
BigInteger y = x; // initially y = x
while (true) {

x = f(x, b, n); // x = f(x)
y = f(f(y, b, n), b, n); // y = f(f(y))
BigInteger d = x.subtract(y).gcd(n); // d = (x-y) % n
if (d.compareTo(BigInteger.ONE) != 0) // if d != 1, then d is

return d; // one of the divisor of n
}

}

public static void pollard_rho(BigInteger n) {
if (n.compareTo(BigInteger.ONE) == 0) return; // special case, n = 1
if (n.isProbablePrime(10)) { // if n is a prime

System.out.println(n); return; // its only factor is n
}
BigInteger d = rho(n); // n is a composite number
pollard_rho(d); // recursively check d
pollard_rho(n.divide(d)); // and n/d

}

528



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

public static void main(String[] args) {
BigInteger n = new BigInteger("124590589650069032140693"); // Big
pollard_rho(n); // factorize n to 7 x 124418296927 x 143054969437

}
}

Note that the runtime of Pollard’s rho algorithm increases with larger n. Its expected
runtime (when n is a composite number) is

p
a where a ⇥ b = n and a < b or in another

word, O(n
1
4 ). Using the given Java code that uses slow Big Integer library, we can factor up

to n  1024 in ⇡ one second but it will struggle beyond that. The fact that integer factoring
is a very di�cult task is still a key concept of modern cryptography.

Source code: ch9/Pollardsrho.java|ml

Programming exercises related to Pollard’s rho algorithm41:

1. Entry Level: UVa 11476 - Factoring Large ... * (basic integer factorization
problem that requires Pollard’s rho algorithm)

2. Kattis - atrivialpursuit * (Pollard’s rho is a subproblem of this problem)

41This algorithm is very rarely used in programming contest as optimized trial division is already suitable
for almost all number theory problems involving integer factorization.

529



9.13. CHINESE REMAINDER THEOREM c� Steven, Felix, Suhendry

9.13 Chinese Remainder Theorem

Chinese42 Remainder Theorem (CRT) is very useful in solving a congruence system of n
congruences, i.e., finding an integer given its remainders when divided by a set of integers.

Let m0,m1, . . . ,mn�1 be pairwise coprime43 integers and r0, r1, . . . , rn�1 be its corre-
sponding remainders (modulo mi) from an unknown integer x, i.e.,

x ⌘ r0 (mod m0)

x ⌘ r1 (mod m1)

. . .

x ⌘ rn�1 (mod mn�1)

Our job is to find such x. The CRT states that there is exactly one solution (for x) to such
congruence system modulo m, where m = m0m1 . . .mn�1.

The näıve Complete Search way to solve this is of course to simply test for x from 0 and
increment it one by one until x satisfies all the congruence equations. The complexity is
O(x · n) or O(m · n) since the answer can be no larger than m. In this section, we will learn
a better way to find such x.

The congruence system above can be rewritten as:

x ⌘ a0 ·m/m0 + a1 ·m/m1 + · · ·+ an�1 ·m/mn�1 (mod m)

for some unknown ai where

a0 ·m/m0 ⌘ r0 (mod m0)

a1 ·m/m1 ⌘ r1 (mod m1)

. . .

an�1 ·m/mn�1 ⌘ rn�1 (mod mn�1)

To understand the modified equation above, observe, for example, what will happen to the
remainder when x is divided by m0. Every term except the first one has m0 as its factor, e.g.,
the term a1·m/m1, or to be exact, a1·m0m2 . . .mn�1 hasm0 in it. Thus, the equation becomes
x ⌘ a0 ·m/m0+0+ · · ·+0 (mod m0) or simply x ⌘ a0 ·m/m0 (mod m0), which corresponds
to x ⌘ r0 (mod m0) in the given congruence system. Therefore, a0 ·m/m0 ⌘ r0 (mod m0).
Similarly, a1 ·m/m1 ⌘ r1 (mod m1), and so on.

Solving all ai for these equations will give us x. Observe that the value of ai only depends
on m, mi, and ri. Thus, the equations are independent of each other and can be solved one
by one. The value of ai can be obtained by taking the inverse of m/mi mod mi and multiply
it by ri.

ai ·m/mi ⌘ ri (mod mi)

ai ⌘ ri · (m/mi)
�1 (mod mi)

Notice that m/mi and mi are coprime, thus, (m/mi)�1 mod mi can be computed with
modular multiplicative inverse in O(logm) (see Chapter 5.3.10). The total complexity of
this approach is O(n · logm).

42This problem is believed to first appeared in a third-century Chinese book titled “Sun Zi Suanjing”.
43Two integers a and b are coprime to each other if their greatest common divisor is 1, i.e., the largest

positive integer that divides both a and b is 1.

530



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

// assuming mod, modInverse, and extEuclid have been defined earlier
int crt(vi r, vi m) { // m_t = m_0*m_1*...*m_{n-1}

int mt = accumulate(m.begin(), m.end(), 1, multiplies<>());
int x = 0;
for (int i = 0; i < (int)m.size(); ++i) {

int a = mod((ll)r[i] * modInverse(mt/m[i], m[i]), m[i]);
x = mod(x + (ll)a * (mt/m[i]), mt);

}
return x;

}

Kattis - heliocentric

Kattis - heliocentric can be written as a system of (only) two congruences:

x ⌘ 365� e (mod 365)

x ⌘ 687�m (mod 687)

Here, gcd(365, 687) = 1 so both are coprime. We have m = 365 ⇥ 687 = 250 755 and the
final answer is x (mod 250 755). Notice that 250 755 is small enough to just run a Complete
Search solution. However, to illustrate the computation of x using CRT as explained above,
let’s use the given sample test case e = 1 and m = 0 with answer 11 679.

x ⌘ 365� 1 (mod 365) ⌘ 364 (mod 365)

x ⌘ 687� 0 (mod 687) ⌘ 0 (mod 687)

which can be rewritten as:

x ⌘ a0 · 250 755/365 + a1 · 250 755/687 (mod 250 755)

x ⌘ a0 · 687 + a1 · 365 (mod 250 755)

where

a0 · 250 755/365 = a0 · 687 ⌘ 364 (mod 365)

a0 ⌘ 364 · 687�1 (mod 365)

a0 ⌘ 17 (mod 365)

a1 · 250 755/687 = a1 · 365 ⌘ 0 (mod 687)

a1 ⌘ 0 · 365�1 (mod 687)

a1 ⌘ 0 (mod 687)

so

x ⌘ 17 · 687 + 0 · 365 (mod 250 755)

x ⌘ 11 679 + 0 (mod 250 755)

x ⌘ 11 679 (mod 250 755)

and the answer is 11 679.

Source code: ch9/heliocentric.cpp|java|py|ml

531



9.13. CHINESE REMAINDER THEOREM c� Steven, Felix, Suhendry

When mi Are Not Pairwise Coprime

CRT states that we can uniquely determine a solution to a congruence system under the
condition that all the divisors (mi) are pairwise coprime. What if not all of its divisors are
pairwise coprime? Luckily, we can still solve the problem by reducing the congruence system
such that all the divisors become pairwise coprime again.

Let mi = pb11 p
b2
2 . . . pbkk be the prime decompositions of mi (pj is a prime number, see

Section 5.3.3). Then, according to CRT, the equation x ⌘ ri (mod mi) is equivalent to:

x ⌘ ri (mod pb11 )

x ⌘ ri (mod pb22 )

. . .

x ⌘ ri (mod pbkk )

With this equivalence relation, we can decompose an equation into its prime power moduli.
Perform this decomposition to all the given equations in the original congruence system to
obtain a set of new equations. For each prime p among the new equations, we only need to
consider the equation with the highest power in its modulus (i.e. pb where b is the highest)
because any information from the lower power modulo can be obtained from the higher
power modulo, e.g., if we know that x ⌘ 7 (mod 23), then we also know that x ⌘ 3 (mod 22)
and x ⌘ 1 (mod 21); on the other hand, the inverse relation may not hold: x ⌘ 1 (mod 21)
does not imply x ⌘ 7 (mod 23). Finally, we have the following new equations.

x ⌘ s1 (mod q1)

x ⌘ s2 (mod q2)

. . .

x ⌘ st (mod qk)

where qi is in the form of pbi . As now all the divisors are coprime, we can solve the new
congruence system with the previously discussed crt(r, m) function. For example:

x ⌘ 400 (mod 600)

x ⌘ 190 (mod 270)

x ⌘ 40 (mod 240)

Notice that the divisors are not pairwise coprime. First, let us decompose each divisor:
600 = 23 · 31 · 52, 270 = 21 · 33 · 51, and 240 = 24 · 31 · 51. Then, we expand all the equations:

x ⌘ 400 (mod 600) x ⌘ 190 (mod 270) x ⌘ 40 (mod 240)

# # #
400 ⌘ 0 (mod 23) 190 ⌘ 0 (mod 21) 40 ⌘ 8 (mod 24)

400 ⌘ 1 (mod 31) 190 ⌘ 1 (mod 33) 40 ⌘ 1 (mod 31)

400 ⌘ 0 (mod 52) 190 ⌘ 0 (mod 51) 40 ⌘ 0 (mod 51)

Next, for each prime, consider only the equation with the highest power.

x ⌘ 8 (mod 24) x ⌘ 1 (mod 33) x ⌘ 0 (mod 52)

Finally, solve this new congruence system with crt({8, 1, 0}, {16, 27, 25}) to get 1000.

532



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

When does the congruence system not have a solution?

The congruence system has a solution if and only if ri ⌘ rj (mod gcd(mi,mj)) for all pair
of i and j. Consider the following (subset of a) congruence system.

x ⌘ ri (mod mi)

x ⌘ rj (mod mj)

Rewrite the equations by moving ri and rj to the left-hand side.

x� ri ⌘ 0 (mod mi)

x� rj ⌘ 0 (mod mj)

The first equation implies that mi divides (x� ri) which also means that any divisor of mi

divides (x � ri) as well, including gcd(mi,mj). Similarly, the second equation implies that
mj divides (x� rj), thus, gcd(mi,mj), which is a divisor of mj, also divides (x� rj). Then,
we can rewrite the equations by replacing mi and mj with gcd(mi,mj).

x� ri ⌘ 0 (mod gcd(mi,mj))

x� rj ⌘ 0 (mod gcd(mi,mj))

We can combine those two equations.

x� ri ⌘ x� rj (mod gcd(mi,mj))

Finally,
ri ⌘ rj (mod gcd(mi,mj))

We can verify the previous example with this method.

x ⌘ 400 (mod 600) and x ⌘ 190 (mod 270) ! 400 ⌘ 190 (mod 30)

x ⌘ 400 (mod 600) and x ⌘ 40 (mod 240) ! 400 ⌘ 40 (mod 120)

x ⌘ 190 (mod 270) and x ⌘ 40 (mod 240) ! 190 ⌘ 40 (mod 30)

We can see that all pair of equations in this example satisfy ri ⌘ rj (mod gcd(mi,mj)),
thus, we can conclude that this congruence system should have a solution (which we have
shown to be 1000 previously).

When all the divisors are coprime (gcd(mi,mj) = 1), then ri ⌘ rj (mod 1) always holds,
which means a solution always exists in a pairwise coprime case.

Programming exercises related to Chinese Remainder Theorem:

1. Entry Level: UVa 00756 - Biorhythms * (CRT or brute force)

2. UVa 11754 - Code Feat *

3. Kattis - chineseremainder * (basic CRT; 2 linear congruences; Big Integer)

4. Kattis - generalchineseremainder * (general CRT; 2 linear congruences)

5. Kattis - granica * (CRT; GCD of all N di↵erences of 2 numbers)

6. Kattis - heliocentric * (CRT or brute force)

7. Kattis - remainderreminder * (a bit of brute force + sorting; generalized CRT)

533



9.14. LUCAS’ THEOREM c� Steven, Felix, Suhendry

9.14 Lucas’ Theorem

Lucas’s theorem states that for any prime number p, the following congruence of binomial
coe�cients holds:

✓
n

k

◆
⌘

mY

i=0

✓
ni

ki

◆
(mod p)

where ni and ki are the base p expansion of n and k respectively.

n =
mX

i=0

ni · pi k =
mX

i=0

ki · pi

Some examples where Lucas’ theorem can be useful:

• Compute the remainder of a binomial coe�cient
�
n
k

�
mod p where n and k can be large

(e.g., 1018) but p is quite small (e.g.,  106).

• Count how many k for any given n such that 0  k  n and
�
n
k

�
is an even number.

• Count how many n for any given k and x such that k  n  x and
�
n
k

�
is divisible by

a prime number p.

To see the Lucas’ theorem in action, let us consider the following example. Let n = 1 000,
k = 200, and p = 13. First, find the expansion of both n and k in base p.

1 000 = 5 · 132 + 11 · 131 + 12 · 130

200 = 1 · 132 + 2 · 131 + 5 · 130

Then, by Lucas’ theorem:
✓
1 000

200

◆
⌘

✓
5

1

◆✓
11

2

◆✓
12

5

◆
(mod 13)

Next, we can solve each binomial coe�cient independently as the numbers are quite small
(i.e. less than p):

✓
5

1

◆
⌘ 5 (mod 13)

✓
11

2

◆
⌘ 3 (mod 13)

✓
12

5

◆
⌘ 12 (mod 13)

Finally, simply put everything together to obtain the final result:
✓
1 000

200

◆
⌘ 5 · 3 · 12 (mod 13)

⌘ 11 (mod 13)

The base p expansion of both n and k can be computed in O(log n) and each has O(log n)
term. One common method to compute

�
ni

ki

�
mod p is by using modular multiplicative inverse

e.g., with Fermat’s little theorem or extended Euclidean algorithm44 (See Section 5.3.10 and
Section 5.4.2) which runs in O(ni log p). If we first precompute all the factorial terms from 0

44In most cases, Fermat’s little theorem is su�cient.

534



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

to p� 1, then
�
ni

ki

�
mod p can be found in O(log p) with an O(p) preprocessing.45 Therefore,

computing
�
n
k

�
mod p with Lucas theorem can be done in O(p+ log n log p).46

Here, we provide a reasonably fast recursive implementation based on Fermat’s little
theorem, now combined with Lucas’ theorem in the second line as outlined earlier:

ll C(ll n, ll k) {
if (n < k) return 0;
if (n >= MOD) return (C(n%MOD, k%MOD) * C(n/MOD, k/MOD)) % MOD;
return (((fact[n] * inv(fact[k]))%MOD) * inv(fact[n-k])) % MOD;

}

When a Binomial Coe�cient is Divisible by a Prime Number

Observe that when there is at least one i such that ni < ki in the expansion of n and k in
base p, then

�
n
k

�
⌘ 0 (mod p). This observation can be useful to solve a problem such as

counting how many k for any given n such that 0  k  n and
�
n
k

�
is divisible by a prime

number p.

Lucas’ Theorem for Square-Free Modulus

Lucas’ theorem only holds for prime modulus. In a composite modulus case where the
modulus is not divisible by any integer ps where p is a prime number and s � 2 (in other
words, the modulus is a square-free integer), then it can be solved with Lucas’ theorem
combined with the Chinese Remainder Theorem. In such cases, we need to break the modulus
into its prime factors (e.g., 30 = 2·3·5), solve them independently with each prime factor and
its power as the modulus (e.g., mod 2, mod 3, and mod 5), and finally, combine the results
altogether with Chinese Remainder Theorem (Section 9.13). This method will produce the
desired answer as the Chinese Remainder Theorem always has a unique solution when all the
moduli are coprime to each other. When the modulus is not square-free (i.e. any positive
integer), then a generalization of Lucas’ theorem for prime power[9] may be needed.

Programming exercises related to Lucas’ Theorem:

1. LA 6916 - Punching Robot * (use combinations (need Lucas’ theorem) to
solve for one robot; use the inclusion-exclusion principle for K robots)

2. Kattis - classicalcounting * (combinatorics; inclusion-exclusion; Chinese Remain-
der Theorem; Lucas’ Theorem)

45Note that both ni and ki are less than p.
46Alternatively, we can first precompute all the

�ni

ki

�
table for all ni and ki < p, e.g., with the recurrence

relation (Pascal’s triangle). Then, the overall time complexity becomes O(p2 + log n).

535



9.15. RARE FORMULAS OR THEOREMS c� Steven, Felix, Suhendry

9.15 Rare Formulas or Theorems

We have encountered a few rarely used formulas or theorems in programming contest prob-
lems before. Knowing them or having a team member who is a strong mathematician (who
is able to derive the same formula on the spot) will give you an unfair advantage over other
contestants if one of these rare formulas or theorems is used in the programming contest
that you join.

1. Cayley’s Formula: There are nn�2 spanning trees of a complete graph with n labeled
vertices. Example: UVa 10843 - Anne’s game.

2. Derangement: A permutation of the elements of a set such that none of the elements
appear in their original position. The number of derangements der(n) (also denoted
by !n) can be computed as follows: der(n) = (n� 1)⇥ (der(n� 1)+ der(n� 2)) where
der(0) = 1 and der(1) = 0. A basic problem involving derangement is UVa 12024 -
Hats (see Section 5.5).

3. Erdős-Gallai Theorem gives a necessary and su�cient condition for a finite sequence
of natural numbers to be the degree sequence of a simple graph. A sequence of non-
negative integers d1 � d2 � . . . � dn can be the degree sequence of a simple graph on
n vertices i↵

Pn
i=1 di is even and

Pk
i=1 di  k ⇥ (k � 1) +

Pn
i=k+1 min(di, k) holds for

1  k  n. Example: UVa 10720 - Graph Construction.

4. Euler’s Formula for Planar Graph47: V �E+F = 2, where F is the number of faces48

of the Planar Graph. Example: UVa 10178 - Count the Faces.

5. Moser’s Circle: Determine the number of pieces into which a circle is divided if n points
on its circumference are joined by chords with no three internally concurrent. Solution:
g(n) =n C4 +n C2 + 1. Example: UVa 10213 and 13108. Note that the first five values
of g(n) are 1, 2, 4, 8, 16, that interestingly “looks like powers of two” although it is
not as the next term is 31.

6. Pick’s Theorem49: Let i be the number of integer points in the polygon, A be the
area of the polygon, and b be the number of integer points on the boundary, then
A = i+ b

2 � 1. Example: UVa 10088 - Trees on My Island.

7. The number of spanning trees of a complete bipartite graph Kn,m is mn�1 ⇥ nm�1.
Example: UVa 11719 - Gridlands Airport.

8. Brahmagupta’s formula gives the area of a cyclic quadrilateral50 given the lengths
of the four sides: a, b, c, d as

p
(s� a)⇥ (s� b)⇥ (s� c)⇥ (s� d) where s is the

semiperimeter, defined as s = (a+ b+ c+ d)/2. This formula generalizes the Heron’s
formula discussed in Section 7.2.4. Example: Kattis - Janitor Troubles.

47Graph that can be drawn on 2D Euclidean space so that no two edges in the graph cross each other.
48When a Planar Graph is drawn without any crossing, any cycle that surrounds a region without any

edges reaching from the cycle into the region forms a face.
49Found by Georg Alexander Pick.
50A quadrilateral whose vertices all lie on a single circle (or can be inscribed in a circle).

536



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9. Stirling number of the second kind (or Stirling partition number) S(n, k) is the number
of ways to partition a set of n items into k non-empty subsets.

For example, there are 3 ways to partition set {a, b, c} with n = 3 items into 2 non-
empty subsets. They are: {({a, b}, {c}), ({a, c}, {b}), ({a}, {b, c})}.
For n > 0 and k > 0, S(n, k) has this recurrence relation: S(n, k) = k ⇤ S(n� 1, k) +
S(n� 1, k� 1) with base cases S(n, 1) = S(n, n) = 1 and S(n, 0) = S(0, k) = 0. Using
DP, this recurrence can be computed in O(nk).

10. Bell numbers is the number of possible partitions of a set, i.e., a grouping of the
set’s elements into non-empty subsets, in such a way that every element is included
in exactly one subset. Bell number can also be expressed as summation of Stirling
numbers of the second kind Bn =

Pn
k=0 S(n, k).

For example, the set {a, b, c} with n = 3 items has 3-rd Bell number = 5 di↵erent
partitions. They are:
1 S(3, 1) partition of 1 subset = {({a, b, c})},
3 S(3, 2) partitions of 2 subsets = {({a, b}, {c}), ({a, c}, {b}), ({a}, {b, c})} (as above),
1 S(3, 3) partition of 3 subsets = {({a}, {b}, {c})}.
Thus B3 = 1 + 3 + 1 = 5.

Exercise 9.15.1*: Study the following mathematical keywords: Padovan Sequence, Burn-
side’s Lemma.

Programming exercises related to rarely used Formulas or Theorems:

1. Entry Level: UVa 13108 - Juanma and ... * (Moser’s circle; the formula is
hard to derive; g(n) =n C4 +n C2 + 1)

2. UVa 01645 - Count * (LA 6368 - Chengdu12; number of rooted trees with n
vertices in which vertices at the same level have the same degree)

3. UVa 11719 - Gridlands Airports * (count the number of spanning trees in a
complete bipartite graph; use Java BigInteger)

4. UVa 12786 - Friendship Networks * (similar to UVa 10720 and UVa 11414;
Erdős-Gallai Theorem)

5. Kattis - houseofcards * (number of cards for certain height h is h⇥ (3⇥h+1)/2;
use Python to handle Big Integer)

6. Kattis - janitortroubles * (Brahmagupta’s formula)

7. Kattis - sjecista * (number of intersections of diagonals in a convex polygon)

Extra UVa: 01185, 10088, 10178, 10213, 10219, 10720, 10843, 11414, 12876,
12967.

Extra Kattis: birthdaycake.

Also see Section 5.4.4 for some Combinatorics problem that have rare formulas.

537



9.16. COMBINATORIAL GAME THEORY c� Steven, Felix, Suhendry

9.16 Combinatorial Game Theory

Once in a while, a problem related to combinatorial game theory might pop up in a contest. A
combinatorial game is a game in which all players have perfect information of the game such
that there is no chance of luck involved in the game; in other words, no hidden information.
This perfect information allows a combinatorial game to be completely determined and
analyzed mathematically51, hence, the name “combinatorial”.

A combinatorial game of two players in which both players have the same set of moves
is called an impartial game. Example of impartial games is Nim, which will be discussed
shortly. We can see that Chess and Go52 are combinatorial games but not impartial games
as each player can only move or place pieces of their own color.

Typical questions related to impartial game related problem usually involve finding who
will win given the state of the game, or finding a move to win such game. Generally, there
are 3 approaches which can be used to solve this kind of problem: pattern finding, DP, or
Nim-based approach. Pattern finding is a common technique: solve the problem for small
instances (e.g., with DP or backtracking), and then eyeball the result to find some pattern.
This method could work if the problem has an easy pattern to spot and such basic Game
Theory related problems have been discussed in Section 5.7. As for the Nim-based approach,
there is a nice and cool theorem called Sprague-Grundy Theorem which states that every
impartial game is equivalent to a nimber. Perhaps, understanding this theorem is a must for
students to be able to solve most of impartial game related problems.

Nim

Nim is the most well-known example of impartial game. This game is played by two players
on N piles each containing ai � 0 stones. Both players alternatingly remove any positive
number of stones from exactly one pile (of the player’s choice). The player who cannot make
any move (i.e., there are no stones left) loses. There is another variation called Misére Nim
in which the player who cannot make any move wins. Luckily, the solution for Misére Nim
only slightly di↵erent than the normal play.

The most important thing we should pay attention to when analyzing an impartial game
is the winning (W) and losing (L) positions. A game is in a winning position if and only
if there is at least one valid move from that position to a losing position (thus, make the
opponent takes a losing position). On the other hand, a game is in a losing position if
and only if all possible moves from that position are to winning positions. Some literatures
refer the winning position as N-position (win for the next player) and the losing position
as P-position (win for the previous player). Usually, it is stated in the problem statement
that “both players will play optimally”. It simply means that if a player have a strategy to
ensure his win from the game position, he will stick to the strategy and win the game.

How could we find the winning and losing positions in a Nim? One näıve way is by
working backward from the terminal position like the basic techniques discussed in Section
5.7, i.e., when there are no stones left, which is a losing position. However, this approach
requires ⌦(

Q
ai) time and memory53 complexity, which is exponential to the number of piles

(N). This certainly is not fast enough in a typical programming contest problem which often
involves a large number of piles and stones. Fortunately, there is an easy way to find the
winning and losing positions for a Nim, with a nim-sum.

51Of course, whether it is easy to analyze a combinatorial game, is a di↵erent issue.
52There are around 2 ⇥ 10170 legal positions in a standard Go board of 19 ⇥ 19, much more than the

estimated number of atoms in the observable universe (which is “only” 1078..1082)!
53In order to keep track all possible states of the game.

538



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Nim-sum

In order to know whether a position is winning or losing in a Nim, all we need to do is
compute the “exclusive or” (xor) value of all piles. This xor value is also known as the
nim-sum. If the nim-sum is non-zero, then it is a winning position; otherwise, it is a losing
position. The following code determines who will win in a Nim:

int getNimSum(vi pile) {
int nim = 0;
for (auto &p : pile)

nim ^= p;
return nim;

}

string whoWinNimGame(vi pile) {
return (getNimSum(pile) != 0) ? "First Player" : "Second Player";

}

For example, let A1..4 = {5, 11, 12, 7}. The nim-sum of A is 5 � 11 � 12 � 7 = 5. As this
number is non-zero, the first player will win the game (it is a winning position). Consider
another example where B1..3 = {9, 12, 5}. The nim-sum of B is 9� 12� 5 = 0. In this case,
as the nim-sum is zero, the first player will lose the game (it is a losing position). Thus, the
second player will win the game.

Why does nim-sum determine the state of a Nim? In the following analysis, let S be the
nim-sum of a game position and T be the nim-sum of the (immediate) next position.

Lemma 9.16.1. If the nim-sum is zero, then any move will cause the nim-sum to be non-
zero.

Proof. Let the kth pile be the chosen pile, thus, ak is the number of stones and bk is the
resulting number of stones (after the move has been made) in that pile. Note that ak > bk
(or ak 6= bk) as the player has to remove a positive number of stones. Then, the resulting
nim-sum T = S � ak � bk. Note that ak � bk 6= 0 if ak 6= bk. Thus, if S = 0, then T 6= 0
because ak 6= bk.

Lemma 9.16.2. If the nim-sum is non-zero, then there must be a move which cause the
nim-sum to be zero.

Proof. The following strategy will cause the nim-sum to be zero. Let d be the position of the
left-most non-zero bit of S (in binary representation). Find a pile k such that the dth bit of ak
is 1. Such pile must exist, otherwise, the dth bit of S will be 0. Remove stones from that pile
such that its number of stones becomes S�ak. As the dth bit of ak is non-zero, this will cause
S � ak < ak, thus it is a valid move. The resulting nim-sum T = S � ak � (S � ak) = 0.

In summary, to win a Nim, we have to make and maintain its nim-sum to be zero at all
time. If the first player could not do that, then the second player is able to do that and win
the game.

We can employ the above analysis to find the winning move (if it is a winning position).
The following code returns the pile in which the move should be performed and the number
of stones to be removed from that pile to win the game; otherwise, it returns h�1,�1i if it
is a losing position.

539



9.16. COMBINATORIAL GAME THEORY c� Steven, Felix, Suhendry

bool isOn(int bit, int k) { // is the k^th bit is 1?
return (bit & (1<<k)) ? true : false;

}

ii winningMove(vi pile) {
int nimsum = getNimSum(pile);
if (nimsum == 0) return {-1, -1}; // not winnable
int pos = -1, remove = -1;
int d = 0;
for (int i = 0; i < 31; ++i) // using signed 32-bit int

if (isOn(nimsum, i))
d = i;

for (int i = 0; (i < (int)pile.size()) && (pos == -1); ++i)
if (isOn(pile[i], d)) {

pos = i;
remove = pile[i] - (pile[i]^nimsum);

}
return {pos, remove};

}

Misère Nim

Misère Nim is a variation of Nim in which the loser in the normal Nim is the winner, i.e., the
player who cannot make any move wins, or consequently, the player who makes the last move
loses. At first, it seems Misère Nim is much harder to solve than a normal Nim. However,
it turns out that there is an easy strategy for Misère Nim.

While there are at least two piles with more than one stones, just play as if it is a normal
Nim. When the opponent moves such that there is exactly one pile left with more than one
stone (observe that this position has a non-zero nim-sum), remove the stones from that one
pile into zero or one such that the number of remaining piles with one stone left is odd.
This strategy guarantees a win whenever winning is possible.

To find the winning and losing positions, we should consider two separate cases: (1)
When there is a pile with more than one stones, (2) When all piles have no more than one
stone. In case (1), simply treat it as a normal Nim. In case (2), the first player wins if there
is an even number of piles with only one stone, thus, he can make it odd by removing one.
The following code determines who will win in a Misère Nim:

string whoWinMisereNimGame(vi pile) {
int n_more = 0, n_one = 0;
for (int i = 0; i < (int)pile.size(); ++i) {

if (pile[i] > 1) ++n_more;
if (pile[i] == 1) ++n_one;

}
if (n_more >= 1)

return whoWinNimGame(pile);
else

return (n_one%2 == 0) ? "First Player" : "Second Player";
}

540



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Bogus Nim

Bogus Nim is a variation of Nim where player, in addition to only removing stones, can also
add stones. There should be a rule to ensure the game terminates, e.g., each player can
only perform stone addition a finite number of time. The winner of bogus Nim can be easily
determined the same way as how we determine the winner of a normal Nim. In Bogus Nim,
if we have a winning position, simply treat it as a normal Nim. If the opponent has a losing
position and adds some stones, then simply remove the added stones in your move and you
will be back to your winning position again. Easy!

Sprague-Grundy Theorem

The Sprague-Grundy Theorem states that every impartial game is equivalent to a pile of a
certain size in Nim. In other words, every impartial game can be solved as Nim by finding
their corresponding game.

For example, consider a variation of Nim in which the player should remove at least half
of the stones in the pile he chose. Let us call this game as At-Least-Half Nim game This
game is not exactly the same as Nim as we cannot remove only, for example, 1 stone from
a pile with 10 stones (should remove at least d10/2e = 5 stones). However, we can convert
this game into its corresponding Nim, with Grundy Number.

First, observe that the number of stones in the piles which are not chosen by the player in
his move remains the same. Thus, the piles are independent to each other. In the following
explanation, the term “state” will be used interchangably to represent a pile.

Grundy Number

The Grundy Number (also known as nimber) of a state in the original game represents the
number of stones in a pile in its corresponding Nim. To learn about Grundy Number, first,
we should learn about mex operation.

The mex (minimum excludant) of a subset is the smallest value which does not belong
to the subset. In the context of Grundy Number, the set of values to be considered is non-
negative integers. For example, mex({0, 1, 3, 4, 6, 7}) = 2, and mex({3, 4, 5}) = 0. To get the
Grundy Number of a state, simply take the mex of all Grundy Numbers of its (immediate)
next states which can be reached by one valid move in the game. The Grundy Number of
the terminal state is zero as mex({}) = 0.

For example, consider the previous At-Least-Half Nim variation. A state with 0 stone
(terminal state) has a Grundy Number of g0 = 0. A state with 1 stone could reach a state
with 0 stone in one move, so, its Grundy Number is g1 = mex({g0}) = mex({0}) = 1.
Similarly, a state with 2 stones could reach a state with 0 or 1 stone in one move, so, its
Grundy Number is g2 = mex({g0, g1}) = mex({0, 1}) = 2. A state with 3 stones could reach
a state with 0 or 1 stone in one move, thus its Grundy Number is g3 = mex({g0, g1}) =
mex({0, 1}) = 2. Observe that 2 is not considered as the next state of 3 as we should remove
at least d3/2e = 2 stones. A state with 6 stones could reach a state with 0, 1, 2, or 3 stones
in one move, thus its Grundy Number is g6 = mex({g0, g1, g2, g3}) = mex({0, 1, 2, 2}) = 3.
If we continue this process, we will get G0..12 = (0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4), e.g., a state
with 10 stones in the original game corresponds to a pile with g10 = 4 stones in Nim. In
summary, to solve the original game, convert the game into its corresponding Nim with
Grundy Number, and then compute its nim-sum.

The following code determines who win in the At-Least-Half Nim game.

541



9.16. COMBINATORIAL GAME THEORY c� Steven, Felix, Suhendry

int getAtLeastHalfNimGrundy(int stone) {
if ( stone == 0 ) return 0;
set <int> used;
for ( int take = (stone+1)/2; take <= stone; ++take ) {

used.insert(getAtLeastHalfNimGrundy(stone-take));
}
int res = 0;
while ( used.count(res) ) {

res++;
}
return res;

}

string whoWinAtLeastHalfNimGame(vi pile) {
vi grundy(pile.size());
for ( int i = 0; i < pile.size(); ++i ) {

grundy[i] = getAtLeastHalfNimGrundy(pile[i]);
}
return getNimSum(grundy) != 0 ? "First Player" : "Second Player";

}

Observe that the above getAtLeastHalfNimGrundy() code has an exponential time com-
plexity. It is possible to reduce the time complexity into a polynomial54, e.g., with Dynamic
Programming (see Book 1).

Why does such game equal to Nim with its Grundy Number? Recall what we did to find
the Grundy Number, i.e., finding the smallest non negative integer x which is not among the
next states. Isn’t this x the same as a pile in Nim with x stones where we can remove some
stones to make the remaining stones in that pile becomes any number between 0 and x� 1?
How about the next states which is higher than the mex? For example, A = {0, 1, 2, 4, 6, 7}
in which the mex is 3. If the opponent moves to a state with a Grundy Number higher than
3, e.g., 4, 6, or 7, then we can simply revert back those move to 3 (recall Bogus Nim). We
can do that because a state with Grundy Number of 4, 5, or 7 should have a next state with
Grundy Number of 3 (by the definition of mex or Grundy Number).

Programming exercises related to Nim-based Combinatorial Game Theory:

1. Entry Level: UVa 10165 - Stone Game * (classic Nim game; application of
Sprague-Grundy theorem)

2. UVa 01566 - John * (Misére Nim)

3. UVa 10561 - Treblecross *

4. UVa 11311 - Exclusively Edible * (there are 4 heaps; Nim sum)

5. UVa 11534 - Say Goodbye to ... *

6. LA 5059 - Playing With Stones * (ICPC 2010 Regional Jakarta)

7. LA 6803 - Circle and Marbles * (ICPC 2014 Regional Kuala Lumpur)

54For this At-Least-Half Nim example, it is possible to obtain the grundy number in a logarithmic time
complexity. Hint: grundy(x) = log2(x) + 1.

542



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.17 Gaussian Elimination Algorithm

Problem Description

A linear equation is defined as an equation where the order of the unknowns (variables)
is linear (a constant or a product of a constant plus the first power of an unknown). For
example, equation X + Y = 2 is linear but equation X2 = 4 is not linear.

A system of linear equations is defined as a collection of n unknowns (variables) in
(usually) n linear equations, e.g., X + Y = 2 and 2X + 5Y = 6, where the solution is X =
11
3 , Y = 2

3 . Notice the di↵erence to the linear diophantine equation (see Section 5.3.10)
as the solution for a system of linear equations can be non-integers!

In rare occasions, we may find such system of linear equations in a programming contest
problem. Knowing the solution, especially its implementation, may come handy.

Solution(s)

To compute the solution of a system of linear equations, one can use techniques like the
Gaussian Elimination algorithm. This algorithm is more commonly found in Engineering
textbooks under the topic of ‘Numerical Methods’. Some Computer Science textbooks do
have some discussions about this algorithm, e.g., [8]. Here, we show this relatively simple
O(n3) algorithm using a C++ function below.

const int MAX_N = 3; // adjust as needed
struct AugmentedMatrix { double mat[MAX_N][MAX_N+1]; };
struct ColumnVector { double vec[MAX_N]; };

ColumnVector GaussianElimination(int N, AugmentedMatrix Aug) {
// input: N, Augmented Matrix Aug, output: Column vector X, the answer
for (int i = 0; i < N-1; ++i) { // forward elimination

int l = i;
for (int j = i+1; j < N; ++j) // row with max col value

if (fabs(Aug.mat[j][i]) > fabs(Aug.mat[l][i]))
l = j; // remember this row l

// swap this pivot row, reason: minimize floating point error
for (int k = i; k <= N; ++k)

swap(Aug.mat[i][k], Aug.mat[l][k]);
for (int j = i+1; j < N; ++j) // actual fwd elimination

for (int k = N; k >= i; --k)
Aug.mat[j][k] -= Aug.mat[i][k] * Aug.mat[j][i] / Aug.mat[i][i];

}
ColumnVector Ans; // back substitution phase
for (int j = N-1; j >= 0; --j) { // start from back

double t = 0.0;
for (int k = j+1; k < N; ++k)

t += Aug.mat[j][k] * Ans.vec[k];
Ans.vec[j] = (Aug.mat[j][N]-t) / Aug.mat[j][j]; // the answer is here

}
return Ans;

}

Source code: ch9/GaussianElimination.cpp| java| py

543



9.17. GAUSSIAN ELIMINATION ALGORITHM c� Steven, Felix, Suhendry

Sample Execution

In this subsection, we show the step-by-step working of ‘Gaussian Elimination’ algorithm
using the following example. Suppose we are given this system of linear equations:

X = 9 - Y - 2Z
2X + 4Y = 1 + 3Z
3X - 5Z = -6Y

First, we need to transform the system of linear equations into the basic form, i.e., we reorder
the unknowns (variables) in sorted order on the Left Hand Side. We now have:

1X + 1Y + 2Z = 9
2X + 4Y - 3Z = 1
3X + 6Y - 5Z = 0

Then, we re-write these linear equations as matrix multiplication: A⇥x = b. This technique
is also used in Section 5.8.4. We now have:

2

4
1 1 2
2 4 �3
3 6 �5

3

5⇥

2

4
X
Y
Z

3

5 =

2

4
9
1
0

3

5

Later, we will work with both matrix A (of size N ⇥N) and column vector b (of size N ⇥ 1).
So, we combine them into an N ⇥ (N + 1) ‘augmented matrix’ (the last column that has
three arrows is a comment to aid the explanation):

2

4
1 1 2 9 ! 1X + 1Y + 2Z = 9
2 4 �3 1 ! 2X + 4Y - 3Z = 1
3 6 �5 0 ! 3X + 6Y - 5Z = 0

3

5

Then, we pass this augmented matrix into Gaussian Elimination function above. The first
phase is the forward elimination phase. We pick the largest absolute value in column j = 0
from row i = 0 onwards, then swap that row with row i = 0. This (extra) step is just to
minimize floating point error. For this example, after swapping row 0 with row 2, we have:

2

4
3 6 �5 0 ! 3X + 6Y - 5Z = 0
2 4 �3 1 ! 2X + 4Y - 3Z = 1
1 1 2 9 ! 1X + 1Y + 2Z = 9

3

5

The main action done by Gaussian Elimination algorithm in this forward elimination phase
is to eliminate variable X (the first variable) from row i + 1 onwards. In this example,
we eliminate X from row 1 and row 2. Concentrate on the comment “the actual forward
elimination phase” inside the Gaussian Elimination code above. We now have:

2

4
3 6 �5 0 ! 3X + 6Y - 5Z = 0
0 0 0.33 1 ! 0X + 0Y + 0.33Z = 1
0 -1 3.67 9 ! 0X - 1Y + 3.67Z = 9

3

5

Then, we continue eliminating the next variable (now variable Y ). We pick the largest
absolute value in column j = 1 from row i = 1 onwards, then swap that row with row i = 1.
For this example, after swapping row 1 with row 2, we have the following augmented matrix
and it happens that variable Y is already eliminated from row 2:

544



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

2

4
row 0 3 6 �5 0 ! 3X + 6Y - 5Z = 0
row 1 0 �1 3.67 9 ! 0X - 1Y + 3.67Z = 9
row 2 0 0 0.33 1 ! 0X + 0Y + 0.33Z = 1

3

5

Once we have the lower triangular matrix of the augmented matrix all zeroes, we can start
the second phase: The back substitution phase. Concentrate on the last few lines in the
Gaussian Elimination code above. Notice that after eliminating variable X and Y , there is
only variable Z in row 2. We are now sure that Z = 1/0.33 = 3.

⇥
row 2 0 0 0.33 1 ! 0X + 0Y + 0.33Z = 1 ! Z = 1/0.33 = 3

⇤

Once we have Z = 3, we can process row 1.
We get Y = (9� 3.67 ⇤ 3)/� 1 = 2.

⇥
row 1 0 �1 3.67 9 ! 0X - 1Y + 3.67Z = 9 ! Y = (9 - 3.67 * 3) / -1 = 2

⇤

Finally, once we have Z = 3 and Y = 2, we can process row 0.
We get X = (0� 6 ⇤ 2 + 5 ⇤ 3)/3 = 1, done!

⇥
row 0 3 6 �5 0 ! 3X + 6Y - 5Z = 0! X = (0 - 6 * 2 + 5 * 3) / 3 = 1

⇤

Therefore, the solution for the given system of linear equations is X = 1, Y = 2, and Z = 3.

Programming Exercises related to Gaussian Elimination:

1. Entry Level: UVa 11319 - Stupid Sequence? * (solve the system of the first
7 linear equations; then use all 1500 equations for ‘smart sequence’ checks)

2. UVa 00684 - Integral Determinant * (modified Gaussian elimination to find
(integral) determinant of a square matrix)

3. Kattis - equations * (2 equations and 2 unknown; we do not need Gaussian
elimination; there are many corner cases)

4. Kattis - equationsolver * (basic Gaussian Elimination with two more checks: in-
consistent or multiple answers)

5. Kattis - seti * (n equations and n unknowns; but there are division under modulo,
so use Gaussian elimination with modular multiplicative inverse)

545



9.18. ART GALLERY PROBLEM c� Steven, Felix, Suhendry

9.18 Art Gallery Problem

Problem Description

The ‘Art Gallery’ Problem is a family of related visibility problems in computational geom-
etry. In this section, we discuss several variants. The common terms used in the variants
discussed below are the simple (not necessarily convex) polygon P to describe the art gallery;
a set of points S to describe the guards where each guard is represented by a point in P ; a
rule that a point A 2 S can guard another point B 2 P if and only if line segment AB is
contained in P ; and a question on whether all points in polygon P are guarded by S. Many
variants of this Art Gallery Problem are classified as NP-hard problems. In this book, we
focus on the ones that admit polynomial solutions.

1. Variant 1: Determine the upper bound of the smallest size of set S.

2. Variant 2: Determine if 9 a critical point C in polygon P and 9 another point D 2 P
such that if the guard is at position C, the guard cannot protect point D.

3. Variant 3: Determine if polygon P can be guarded with just one guard.

4. Variant 4: Determine the smallest size of set S if the guards can only be placed at the
vertices of polygon P and only the vertices need to be guarded.

Note that there are many more variants and at least one book55 has been written on it [29].

Solution(s)

1. The solution for variant 1 is a theoretical work of the Art Gallery theorem by Václav
Chvátal. He states that bn/3c guards are always su�cient and sometimes necessary
to guard a simple polygon with n vertices (proof omitted).

2. The solution for variant 2 involves testing if polygon P is concave (and thus has a
critical point). We can use the negation of isConvex function shown in Section 7.3.4.

3. The solution for variant 3 can be hard if one has not seen the solution before. We can
use the cutPolygon function discussed in Section 7.3.6. We cut polygon P with all
lines formed by the edges in P in counterclockwise fashion and retain the left side at
all times. If we still have a non-empty polygon at the end, one guard can be placed in
that non empty polygon which can protect the entire polygon P .

4. The solution for variant 4 involves the computation of Min-Vertex-Cover of the
‘visibility graph’ of polygon P . In general graphs, this is an NP-hard problem. Please
refer to Section 8.6 for discussion of this variant.

Programming exercises related to Art Gallery problem:

1. Entry Level: UVa 10078 - Art Gallery * (isConvex)

2. UVa 00588 - Video Surveillance * (cutPolygon)

3. UVa 01304 - Art Gallery * (LA 2512 - SouthEasternEurope02; cutPolygon
and area of polygon)

4. UVa 01571 - How I Mathematician ... * (LA 3617 - Yokohama06; cutPolygon)

55Free PDF version at http://cs.smith.edu/~orourke/books/ArtGalleryTheorems/art.html.

546



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.19 Closest Pair Problem

Problem Description

Given a set S of n points on a 2D plane, find two points with the closest Euclidean distance.

Solution(s)

Complete Search

A näıve solution computes the distances between all pairs of points and reports the minimum
one. However, this requires O(n2) time.

Divide and Conquer

We can use the following three steps D&C strategy to achieve O(n log n) time:

1. Divide: We sort the points in set S by their x-coordinates (if tie, by their y-coordinates).
Then, we divide set S into two sets of points S1 and S2 with a vertical line x = d such
that |S1| = |S2| or |S1| = |S2|+ 1, i.e., the number of points in each set is balanced.

2. Conquer: If we only have one point in S, we return 1.
If we only have two points in S, we return their Euclidean distance.

3. Combine: Let d1 and d2 be the smallest distance in S1 and S2, respectively. Let d3 be
the smallest distance between all pairs of points (p1, p2) where p1 is a point in S1 and
p2 is a point in S2. Then, the smallest distance is min(d1, d2, d3), i.e., the answer may
be in the smaller set of points S1 or in S2 or one point in S1 and the other point in S2,
crossing through line x = d.

The combine step, if done näıvely, will still run in O(n2). But this can be optimized. Let
d0 = min(d1, d2). For each point in the left of the dividing line x = d, a closer point in the
right of the dividing line can only lie within a rectangle with width d0 and height 2⇥d0. It can
be proven (proof omitted) that there can be only at most 6 such points in this rectangle. This
means that the combine step only require O(6n) operations and the overall time complexity
of this divide and conquer solution is T (n) = 2⇥ T (n/2) +O(n) which is O(n log n).

Exercise 9.19.1*: There is a simpler solution other than the classic Divide & Conquer
solution shown above. It uses sweep line algorithm. We ‘sweep’ the points in S from left
to right. Suppose the current best answer is d and we are now examining point i. The
potential new closest point from i, if any, must have a y-coordinate within d units of point i.
We check all these candidates and update d accordingly (which will be progressively smaller).
Implement this solution and analyze its time complexity!

Programming exercises related to Closest Pair problem:

1. Entry Level: UVa 10245 - The Closest Pair Problem * (classic)

2. UVa 11378 - Bey Battle * (also a closest pair problem)

3. Kattis - closestpair1 * (classic closest pair problem - the easier one)

4. Kattis - closestpair2 * (classic closest pair problem - the harder one; be careful
of precision errors)

547



9.20. A* AND IDA*: INFORMED SEARCH c� Steven, Felix, Suhendry

9.20 A* and IDA*: Informed Search

The Basics of A*

Figure 9.13: 15 Puzzle

The Complete Search algorithms that we have seen earlier in Chap-
ter 3+4 and the earlier subsections of this Section are ‘uninformed’,
i.e., all possible states reachable from the current state are equally
good. For some problems, we do have access to more information
(hence the name ‘informed search’) and we can use the clever A*
search that employs heuristics to ‘guide’ the search direction.

We illustrate this A* search using the well-known 15 Puzzle
problem. There are 15 slide-able tiles in the puzzle, each with a
number from 1 to 15 on it. These 15 tiles are packed into a 4 ⇥ 4
frame with one tile missing. The possible actions are to slide the
tile adjacent to the missing tile to the position of that missing tile. Alternative view is: “To
slide the blank tile rightwards, upwards, leftwards, or downwards”. The objective of this
puzzle is to arrange the tiles so that they look like Figure 9.13, the ‘goal’ state.

This seemingly small puzzle is a headache for various search algorithms due to its enor-
mous search space. We can represent a state of this puzzle by listing the numbers of the
tiles row by row, left to right into an array of 16 integers. For simplicity, we assign value 0
to the blank tile so the goal state is {1, 2, 3, . . . , 14, 15, 0}. Given a state, there can be up
to 4 reachable states depending on the position of the missing tile. There are 2/3/4 possible
actions if the missing tile is at the 4 corners/8 non-corner sides/4 middle cells, respectively.
This is a huge search space.

However, these states are not equally good. There is a nice heuristic for this problem
that can help guiding the search algorithm, which is the sum of the Manhattan56 distances
between each (non blank) tile in the current state and its location in the goal state. This
heuristic gives the lower bound of steps to reach the goal state. By combining the cost so
far (denoted by g(s)) and the heuristic value (denoted by h(s)) of a state s, we have a better
idea on where to move next. We illustrate this with a puzzle with starting state A below:

A =

2

664

1 2 3 4
5 6 7 8
9 10 11 0
13 14 15 12

3

775

B =

2

664

1 2 3 4
5 6 7 0
9 10 11 8
13 14 15 12

3

775C =

2

664

1 2 3 4
5 6 7 8
9 10 0 11
13 14 15 12

3

775D =

2

664

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 0

3

775

The cost of the starting state A is g(s) = 0, no move yet. There are three reachable states
{B,C,D} from this state A with g(B) = g(C) = g(D) = 1, i.e., one move. But these three
states are not equally good:

1. The heuristic value if we slide tile 0 upwards is h(B) = 2 as tile 8 and tile 12 are both
o↵ by 1. This causes g(B) + h(B) = 1 + 2 = 3.

2. The heuristic value if we slide tile 0 leftwards is h(C) = 2 as tile 11 and tile 12 are
both o↵ by 1. This causes g(C) + h(C) = 1 + 2 = 3.

3. But if we slide tile 0 downwards, we have h(D) = 0 as all tiles are in their correct
position. This causes g(D) + h(D) = 1 + 0 = 1, the lowest combination.

56The Manhattan distance between two points is the sum of the absolute di↵erences of their coordinates.

548



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

If we visit the states in ascending order of g(s)+ h(s) values, we will explore the states with
the smaller expected cost first, i.e., state D in this example—which is the goal state. This
is the essence of the A* search algorithm.

We usually implement this states ordering with the help of a priority queue—which makes
the implementation of A* search very similar to the implementation of Dijkstra’s algorithm
presented in Book 1. Note that if h(s) is set to 0 for all states, A* degenerates to Dijkstra’s
algorithm again.

As long as the heuristic function h(s) never overestimates the true distance to the goal
state (also known as admissible heuristic), this A* search algorithm is optimal. The
hardest part in solving search problems using A* search is in finding such a heuristic.

Limitations of A*

The problem with A* (and also BFS and Dijkstra’s algorithms when used on large State-
Space graphs) that uses (priority) queue is that the memory requirement can be very huge
when the goal state is far from the initial state. For some di�cult searching problem, we
may have to resort to the following related techniques.

Depth Limited Search

In Book 1, we have seen the recursive backtracking algorithm. The main problem with pure
backtracking is this: It may be trapped in an exploration of a very deep path that will not
lead to the solution before eventually backtracking after wasting precious runtime.

Depth Limited Search (DLS) places a limit on how deep a backtracking can go. DLS
stops going deeper when the depth of the search is longer than what we have defined. If the
limit happens to be equal to the depth of the shallowest goal state, then DLS is faster than
the general backtracking routine. However, if the limit is too small, then the goal state will
be unreachable. If the problem says that the goal state is ‘at most d steps away’ from the
initial state, then use DLS instead of general backtracking routine.

Iterative Deepening Search

If DLS is used wrongly, then the goal state will be unreachable although we have a solution.
DLS is usually not used alone, but as part of Iterative Deepening Search (IDS).

IDS calls DLS with increasing limit until the goal state is found. IDS is therefore com-
plete and optimal. IDS is a nice strategy that sidesteps the problematic issue of determin-
ing the best depth limit by trying all possible depth limits incrementally: First depth 0
(the initial state itself), then depth 1 (those reachable with just one step from the initial
state), then depth 2, and so on. By doing this, IDS essentially combines the benefits of
lightweight/memory friendly DFS and the ability of BFS that can visit neighboring states
layer by layer (see Graph Traversal Decision Table in Book 1).

Although IDS calls DLS many times, the time complexity is still O(bd) where b is the
branching factor and d is the depth of the shallowest goal state. Reason: O(b0 + (b0 + b1) +
(b0 + b1 + b2) + ...+ (b0 + b1 + b2 + ...+ bd))  O(c⇥ bd) = O(bd).

Iterative Deepening A* (IDA*)

To solve the 15-puzzle problem faster, we can use IDA* (Iterative Deepening A*) algorithm
which is essentially IDS with modified DLS. IDA* calls modified DLS to try all the neigh-
boring states in a fixed order (i.e., slide tile 0 rightwards, then upwards, then leftwards, then
finally downwards—in that order; we do not use a priority queue). This modified DLS is

549



9.20. A* AND IDA*: INFORMED SEARCH c� Steven, Felix, Suhendry

stopped not when it has exceeded the depth limit but when its g(s) + h(s) exceeds the best
known solution so far. IDA* expands the limit gradually until it hits the goal state.

The implementation of IDA* is not straightforward and we invite readers to scrutinize
the given source code in the supporting website.

Source code: ch9/UVa10181.cpp|java

Exercise 9.20.1*: One of the hardest parts in solving search problems using A* search is to
find the correct admissible heuristic and to compute them e�ciently as it has to be repeated
many times. List down admissible heuristics that are commonly used in di�cult searching
problems involving A* algorithm and show how to compute them e�ciently! One of them
is the Manhattan distance as shown in this section.

Exercise 9.20.2*: Solve UVa 11212 - Editing a Book that we have discussed in depth in
Section 8.2.2-8.2.3 with A* instead of bidirectional BFS! Hint: First, determine what is a
suitable heuristic for this problem.

Programming exercises related to A* or IDA*:

1. Entry Level: UVa 00652 - Eight * (classic sliding block 8-puzzle; IDA*)

2. UVa 00656 - Optimal Programs * (we can use IDDFS with pruning)

3. UVa 10181 - 15-Puzzle Problem * (similar with UVa 00652 but larger (now
15 instead of 8); we can use IDA*)

4. UVa 11163 - Jaguar King * (another puzzle game solvable with IDA*)

550



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.21 Pancake Sorting

Problem Description

Pancake Sorting is a classic57 Computer Science problem, but it is rarely used. This problem
can be described as follows: You are given a stack of N pancakes. The pancake at the bottom
and at the top of the stack has index 0 and index N-1, respectively. The size of a pancake is
given by the pancake’s diameter (an integer 2 [1..MAX D]). All pancakes in the stack have
di↵erent diameters. For example, a stack A of N = 5 pancakes: {3, 8, 7, 6, 10} can be
visualized as:

4 (top) 10
3 6
2 7
1 8
0 (bottom) 3

-----------------------
index A

Your task is to sort the stack in descending order—that is, the largest pancake is at the
bottom and the smallest pancake is at the top. However, to make the problem more real-life
like, sorting a stack of pancakes can only be done by a sequence of pancake ‘flips’, denoted by
function flip(i). A flip(i) move consists of inserting two spatulas between two pancakes
in a stack (one spatula below index i and the other one above index N-1) and then flipping
(reversing) the pancakes on the spatula (reversing the sub-stack [i..N-1]).

For example, stack A can be transformed to stack B via flip(0), i.e. inserting two
spatulas below index 0 and above index 4 then flipping the pancakes in between. Stack B
can be transformed to stack C via flip(3). Stack C can be transformed to stack D via
flip(1). And so on... Our target is to make the stack sorted in descending order, i.e. we
want the final stack to be like stack E.

4 (top) 10 \-- 3 \-- 8 \-- 6 3
3 6 8 /-- 3 7 ... 6
2 7 7 7 3 7
1 8 6 6 /-- 8 8
0 (bottom) 3 /-- 10 10 10 10
-------------------------------------------------------------
index A B C D ... E

To make the task more challenging, you have to compute the minimum number of flip(i)
operations that you need so that the stack of N pancakes is sorted in descending order.

You are given an integer T in the first line, and then T test cases, one in each line. Each
test case starts with an integer N , followed by N integers that describe the initial content
of the stack. You have to output one integer, the minimum number of flip(i) operations
to sort the stack.

Constraints: 1  T  100, 1  N  10, and N  MAX D  1 000 000.

57Bill Gates (Microsoft co-founder and former CEO) wrote only one research paper so far, and it is about
this pancake sorting [17].

551



9.21. PANCAKE SORTING c� Steven, Felix, Suhendry

Sample Test Cases

Sample Input

7
4 4 3 2 1
8 8 7 6 5 4 1 2 3
5 5 1 2 4 3
5 555555 111111 222222 444444 333333
8 1000000 999999 999998 999997 999996 999995 999994 999993
5 3 8 7 6 10
10 9 2 10 3 1 6 8 4 7 5

Sample Output

0
1
2
2
0
4
11

Explanation

• The first stack is already sorted in descending order.

• The second stack can be sorted with one call of flip(5).

• The third (and also the fourth) input stack can be sorted in descending order by calling
flip(3) then flip(1): 2 flips.

• The fifth input stack, although contains large integers, is already sorted in descending
order, so 0 flip is needed.

• The sixth input stack is actually the sample stack shown in the problem description.
This stack can be sorted in descending order using at minimum 4 flips, i.e.
Solution 1: flip(0), flip(1), flip(2), flip(1): 4 flips.
Solution 2: flip(1), flip(2), flip(1), flip(0): also 4 flips.

• The seventh stack with N = 10 is for you to test the runtime speed of your solution.

Solution(s)

First, we need to make an observation that the diameters of the pancake do not really matter.
We just need to write simple code to sort these (potentially huge) pancake diameters from
[1..1 Million] and relabel them to [0..N-1]. This way, we can describe any stack of pancakes
as simply a permutation of N integers.

If we just need to get the pancakes sorted, we can use a non optimal O(2⇥N�3) Greedy
algorithm: Flip the largest pancake to the top, then flip it to the bottom. Flip the second
largest pancake to the top, then flip it to the second from bottom. And so on. If we keep
doing this, we will be able to have a sorted pancake in O(2⇥N � 3) steps, regardless of the
initial state.

552



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

However, to get the minimum number of flip operations, we need to be able to model this
problem as a Shortest Paths problem on unweighted State-Space graph (see Section 8.2.2).
The vertex of this State-Space graph is a permutation of N pancakes. A vertex is connected
with unweighted edges to O(N � 1) other vertices via various flip operations (minus one
as flipping the topmost pancake does not change anything). We can then use BFS from
the starting permutation to find the shortest path to the target permutation (where the
permutation is sorted in descending order). There are up to V = O(N !) vertices and up to
E = O(N !⇥ (N � 1)) edges in this State-Space graph. Therefore, an O(V +E) BFS runs in
O(N ⇥N !) per test case or O(T ⇥N ⇥N !) for all test cases. Note that coding such BFS is
already a challenging task (see Book 1 and Section 8.2.2). But this solution is still too slow
for the largest test case.

A simple optimization is to run BFS from the target permutation (sorted descending)
to all other permutations only once, for all possible N in [1..10]. This solution has time
complexity of roughly O(10 ⇥ N ⇥ N ! + T ), much faster than before but still too slow for
typical programming contest settings.

A better solution is a more sophisticated search technique called ‘meet in the middle’
(bidirectional BFS) to bring down the search space to a manageable level (see Section 8.2.3).
First, we do some preliminary analysis (or we can also look at ‘Pancake Number’, https:
//oeis.org/A058986) to identify that for the largest test case when N = 10, we need at
most 11 flips to sort any input stack to the sorted one. Therefore, we precalculate BFS
from the target permutation to all other permutations for all N 2 [1..10], but stopping as
soon as we reach depth b112 c = 5. Then, for each test case, we run BFS from the starting
permutation again with maximum depth 5. If we encounter a common vertex with the
precalculated BFS from target permutation, we know that the answer is the distance from
starting permutation to this vertex plus the distance from target permutation to this vertex.
If we do not encounter a common vertex at all, we know that the answer should be the
maximum flips: 11. On the largest test case with N = 10 for all test cases, this solution has
time complexity of roughly O((10 + T )⇥ 105), which is now feasible.

Programming exercises related to Pancake Sorting:

1. Entry Level: UVa 00120 - Stacks Of Flapjacks * (greedy pancake sorting)

Others: The Pancake Sorting problem as described in this section.

553



9.22. EGG DROPPING PUZZLE c� Steven, Felix, Suhendry

9.22 Egg Dropping Puzzle

There is a building with N floors, and there are K eggs in which you want to test their
“strength”, i.e., you want to find the highest floor, h, such that the egg will not break if
dropped from that floor. The following assumptions are used in the problem.

• All eggs are identical.

• If an egg breaks when dropped from a certain floor, then it will break if dropped from
any floor above that; if it breaks when dropped from the 1st floor, then h = 0.

• If an egg does not break when dropped from a certain floor, then it will not break if
dropped from any floor below that; if it does not break when dropped from the highest
floor, N , then h = N .

• An egg which does not break from a drop can be reused for the next drop.

Your goal is to find the minimum number of drops required to find h under the worst-case
scenario58.

For example, let N = 6 and K = 2. We can drop the eggs one-by-one from the 1st floor,
2nd floor, 3rd floor, and so forth, and stop when the egg that we test breaks. This method
requires N = 6 drops at most (in this case, the worst-case is when h = N). However, this
method is not optimal as we only use 1 eggs while we have K = 2 eggs to break. A better
method would be to start by dropping at the 3rd floor. If it breaks, then we only have 2
remaining floors (i.e., 1st and 2nd) to test with one remaining egg; otherwise, we have 3
remaining floors (i.e., 4th, 5th, and 6th) to test with two eggs. This method only requires at
most 3 drops, and it is optimal for N = 6 and K = 2.

This puzzle is good for students to learn about various optimization techniques for Dy-
namic Programming, thus, we encourage students to read the whole section instead of just
skipping to the last most e�cient solution in this section.

Solution(s)

O(N3K) Basic Solution

The basic recurrence relation for this problem is pretty simple. Let f(l, r, k) be the minimum
number of drops required to find h under the worst-case scenario if we have k eggs and we
have not tested floor [l..r] yet. Let’s say that we test the ith floor where i 2 [l..r]. If the egg
breaks, then we need to test floor [l..i) with the remaining k � 1 eggs. If the egg does not
break, then we need to test floor (i..r] with k eggs. Among these two possible outcomes, we
only concern with the one that needs the most number of drops in the worst-case. Finally,
we want to find i that minimizes such a maximum number of required drops.

f(l, r, k) = min
i=l..r

{1 + max (f(l, i� 1, k � 1), f(i+ 1, r, k))}

The base case is f(l, r, 1) = r � l + 1 where there is only one egg remains and we need to
test all floors from l to r one-by-one causing the maximum number of drops required to be
r � l + 1. Also, f(l, r, k) = 0 if l > r as there is no floor to test.

The function call to solve our problem is f(1, N,K). Solve this recurrence relation with
Dynamic Programming and we will get an O(N3K) solution.

58In other words, find the minimum number of drops such that h is guaranteed to be found.

554



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

O(N2K) Solution (with a Key Observation)

We need one key observation for the first optimization. Notice that it does not matter
whether the floors that we need to test are [l..r] or [l + x .. r + x] for any x as they yield
the same answer! That is, the answer does not depend on which floors but on how many
floors that we need to test. Therefore, we can modify the previous recurrence relation by
substituting parameters l and r with only n, the number of floors to be tested.

f(n, k) = 1 + min
i=1..n

{max (f(i� 1, k � 1), f(n� i, k))}

This reduces our solution to O(N2K).

O(NK logN) Solution (Exploiting Monotonicity)

For the next optimization, observe that f(i � 1, k � 1) is monotonically increasing while
f(n� i, k) is monotonically decreasing as i increases from 1 to n. If we get the maximum of
these two functions on various i, then the output will be decreasing up to some i and then it
starts increasing. However, we cannot use ternary search as max (f(i� 1, k � 1), f(n� i, k))
is not strictly unimodal59. Fortunately, we can find i that causes f(i� 1, k� 1)� f(n� i, k)
to be zero (or almost zero) with binary search60. This is an O(NK logN) solution.

O(NK) Solution (Another Monotonicity)

Let opt(n, k) be the floor on which the first drop yield an optimal answer for f(n, k).

opt(n, k) = argmin
i=1..n

{max (f(i� 1, k � 1), f(n� i, k))}

Observe that when we compute for f(n+1, k), what di↵ers with f(n, k) is only the f(n�i, k)
part (which is substituted with f(n+1�i, k)) while the f(i�1, k�1) part remains the same.
Also, we know the fact that f(n+1� i, k) � f(n� i, k) as there is no way a higher building
needs a fewer number of drops. Thus, we can conclude that opt(n+ 1� i, k) � opt(n� i, k)
as illustrated in Figure 9.14.

Figure 9.14: opt(n, k) vs. opt(n+ 1, k)

With this fact, we can modify the iteration in our previous O(N2K) solution from i = [1..n]
into i = [opt(n � 1, k) .. n]. If we further combine this with the monotonicity fact in our
previous O(NK logN) solution, then it is enough to stop the iteration when we already

59There might be two di↵erent i that yield the same answer, violating the ternary search requirement.
60Observe that f(i� 1, k � 1)� f(n� i, k) is monotonically increasing.

555



9.22. EGG DROPPING PUZZLE c� Steven, Felix, Suhendry

found the optimal, i.e., when the next i to be tested yield no better answer. Then, the
total number of iterations to compute f(n, k) for all n is only O(N), causing the total time
complexity to be O(NK).

O(NK logN) Solution (Another Point of View)

Instead of solving the problem directly, consider this alternative version of the problem: How
tall is the tallest building in the Egg Dropping Puzzle that can be solved with k eggs and at
most d drops? Similarly, how many floors can be tested with k eggs and at most d drops?
If we can solve this, then we only need to binary search the output to get the answer for the
original problem.

Let’s say the first drop is at the xth floor. If the egg breaks, then we need to test the floors
below x with d� 1 more drops and k� 1 remaining eggs. If the egg does not break, then we
need to test the floors above x with d � 1 more drops and k eggs. Then, the total number
of floors that can be tested with d drops and k eggs can be expressed with the following
recurrence relation.

f(d, k) = f(d� 1, k � 1) + 1 + f(d� 1, k)

This solution has an O(DK) time complexity for the alternative version of the Egg Dropping
Puzzle. If this approach is used (with a binary search) to answer the original Egg Drop-
ping Puzzle, then the time complexity is O(NK logN). However, this bound is quite loose
(i.e., faster than what it looks like) as the number of required drops decreases rapidly with
additional eggs.

O(K logN) Solution (with Binomial Coe�cient)

Consider the following auxiliary (helper) function61.

g(d, k) = f(d, k + 1)� f(d, k)

First, let’s expand g(d, k) using the previous recurrence relation for f(d, k).

g(d, k) = f(d, k + 1)� f(d, k)

= [f(d� 1, k) + 1 + f(d� 1, k + 1)]� [f(d� 1, k � 1) + 1 + f(d� 1, k)]

= f(d� 1, k) + f(d� 1, k + 1)� f(d� 1, k � 1)� f(d� 1, k)

Rearrange the terms and we can simplify the formula.

g(d, k) = [f(d� 1, k)� f(d� 1, k � 1)] + [f(d� 1, k + 1)� f(d� 1, k)]

= g(d� 1, k � 1) + g(d� 1, k)

Notice that this result for g(d, k) is very similar to the formula for a binomial coe�cient
(“n-choose-k”), i.e.,

�
n
k

�
=

�
n�1
k�1

�
+
�
n�1
k

�
. However, before we jump into the conclusion, let’s

first analyze the base cases. The base cases for g(d, k) are as follows.

• g(0, k) = 0

• g(d, 0) = f(d, 1)� f(d, 0) = d� 0 = d which equals to
�
d
1

�

• Additionally, g(d, d) = f(d, d+ 1)� f(d, d) = d� d = 0 which equals to
�

d
d+1

�

61You may, but don’t need to make a sense of what the function means; it’s there only to help us.

556



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Therefore, we can conclude that

g(d, k) =

✓
d

k + 1

◆
if d > 0

Now, let’s rewrite f(d, k) with a telescoping sum62.

f(d, k) = f(d, k)� f(d, k � 1) + f(d, k � 1)� f(d, k � 2) + · · ·� f(d, 0) + f(d, 0)

= [f(d, k)� f(d, k � 1)] + [f(d, k � 1)� f(d, k � 2)] + . . . [f(d, 1)� f(d, 0)] + f(d, 0)

= g(d, k � 1) + g(d, k � 2) + · · ·+ g(d, 0) + f(d, 0)

We know that f(d, 0) = 0, thus

f(d, k) = g(d, k � 1) + g(d, k � 2) + · · ·+ g(d, 0)

We also know that g(d, k) =
�

d
k+1

�
from the previous analysis, thus

f(d, k) =

✓
d

k

◆
+

✓
d

k � 1

◆
+ · · ·+

✓
d

1

◆

f(d, k) =
X

i=1..k

✓
d

i

◆

We can compute the binomial coe�cient
�
d
i

�
for all i = 1..K altogether in O(K) with another

formula for binomial coe�cient,
�
n
k

�
= n!

k!(n�k)! . Therefore, the time complexity to compute

f(d, k) is O(K).
If we use this approach to solve the original Egg Dropping Puzzle, then the time complex-

ity becomes (K logN) as we need to Binary Search the Answer. However, notice that the
formula for f(d, k) grows exponentially, thus, a careless implementation of binary search
or f(d, k) might cause an overflow or runtime-error in C/C++ or Java. Alternatively, you
might also consider a linear search, i.e., iterate the answer one-by-one from 1 until you find
d that satisfies f(d,K) � N , but beware of corner cases such as N = 109 and K = 1.

If we reflect on the formula to compute f(d, k) above, it looks like there is a one-to-one
mapping between h and a bitstring of length D which has a population count of no more
than K (i.e., the number of bit 1 is no more than K). In fact, there is! For example, 00101
(0 means the egg does not break, 1 means the egg breaks) corresponds to the h = 10th floor
in an Egg Dropping Puzzle with N = 15 floors building and K = 2 eggs. The drops are at
{5, 9, 12, 10, 11} floor with the underlines correspond to the floor in which the egg breaks. It
might be interesting to further analyze the relation, but we left it for your exercise.

Programming exercise related to Egg Dropping Puzzle:

1. UVa 10934 - Dropping water balloons * (Egg dropping puzzle; interesting
DP; try all possible answers)

2. Kattis - batteries * (Egg dropping puzzle with just 2 batteries; special case)

3. Kattis - powereggs * (Egg dropping puzzle; similar to UVa 10934)

62A telescoping sum is a sum in which pairs of consecutive terms are canceling each other.

557



9.23. DYNAMIC PROGRAMMING OPTIMIZATION c� Steven, Felix, Suhendry

9.23 Dynamic Programming Optimization

In this section, we will discuss several optimization techniques for dynamic programming.

Convex Hull Technique

The first DP optimization technique we will discuss is the convex hull technique. Despite the
name, this technique has nothing to do with the convex hull finding algorithm we learned in
computational geometry (Chapter 7.3.7). However, a basic understanding of geometry (not
computational geometry) might help.

Consider the following DP formula:

dp(i) = min
j<i

{dp(j) + g(i) ⇤ h(j)}

The state size is O(N) while each state requires an O(N) iterations to compute it, thus,
the total time complexity to näıvely compute this DP formula is O(N2). We will see how to
compute this DP formula faster when a certain condition is satisfied.

First, let us change the variable names into something familiar. Let dp(i) be y, g(i) be
x, h(j) be mj, and dp(j) be cj.

y = min
j<i

{cj + x ·mj}

Notice that y = m · x + c is a line equation. Thus, the above DP formula (what we do
when we compute dp(i)) basically searches for the minimum y for the given x among a set of
line equations y = mj · x+ cj. The left figure of Figure 9.15 shows an example of three lines
(L1, L2, L3). Observe that the minimum y of any given x among these lines will always be
in a convex shape (that is how this technique got its name).

In this example, there are three ranges separated by X1 and X2. The first range is
[�1,X1] which corresponds to L1, i.e., if x is in this range, then L1 will give the minimum
y. The second range is [X1,X2] which corresponds to L2, and the third range is [X2,1]
which corresponds to L3. If we have these ranges, then to find the range in which a given x
falls into can be done in O(logN) with a binary search. However, getting the ranges might
not be an easy task as näıvely it still needs O(N) to compute. In the following subsection,
we will see how to get the ranges (or the important lines) by exploiting a certain condition.

Figure 9.15: The bolded line is the convex line which gives the minimum y for a given x.
L1: y = 3

2x+ 3, L2: y = 3
4x+ 4, L3: 1

4x+ 8, L4: y = 1
20x+ 8.

558



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Optimization: O(N logN) solution when h(k) � h(k + 1)

First, notice that dp(i) will be computed one-by-one for i = 1 . . . N . Each time a dp(i) is
computed, a line y = h(i) ·x+dp(i) is added to our set of lines which will be used to compute
dp(i) for any subsequent i.

If h(k) � h(k + 1), then we can maintain the ranges in amortized O(1). Note that
h(k) � h(k + 1) implies that the lines are given in a non-increasing order of gradient. In
such a case, we can update the ranges with a new line by discarding “unimportant lines”
from the back of the ranges.

Consider the right figure of Figure 9.15 with an additional line L4. This L4 is checked
with L3 (the last line in existing ranges) and can be determined that L3 is not important,
which means L3 will never again give the minimum y for any x. L4 then is checked against
L2 (the next last line in existing ranges), and it is determined in this example that L2 is still
important, thus, the new ranges consist of L1, L2, and L4.

How to check whether the last line in the ranges is unimportant? Easy. Let LA, LB,
and LC be the second last line in the existing ranges, the last line in the existing ranges,
and the new line to be added, respectively. LB is not important if the intersection point
between LB and LC lies to the left of the intersection point between LA and LB. Note
that we only need the x component of the intersection point. By working on the equation
m1 · x+ c1 = m2 · x+ c2, i.e., both lines intersect at a point (x, y), we can get the equation
for x, which is x = c2�c1

m1�m2
.

In total, there are N lines to be added into the set of important lines (one line for each
i when we evaluate dp(i)). When we add a new line, we remove any lines which are not
important anymore. However, a line can only be removed at most once, thus, the total line
removal will not be larger than the number of lines itself, which is N . Then, the total time
complexity to evaluate all N lines will be O(N). Therefore, this method of maintaining the
ranges (set of important lines) has a time complexity of amortized O(1) per line.

The following code shows an implementation of addLine(m,c). The struct tline con-
tains m, c, and p. Both m and c correspond to a line equation y = m · x+ c, while p is (the x
component of) the intersection point between the line and the previous line in the set. If L
is the first line, then we can set L.p to be �1 (a negative of a very large number). This also
implies that the very first line will never be removed from the set. Also, note that lines
stores all the important lines in a non-increasing order of the gradients.

struct tline { int m, c; double p; };
vector <tline> lines;

double getX(int m1, int c1, int m2, int c2) {
return (double)(c1 - c2)/(m2 - m1);

}

void addLine(int m, int c) {
double p = -INF;
while (!lines.empty()) {

p = getX(m, c, lines.back().m, lines.back().c);
if (p < lines.back().p-EPS) lines.pop_back();
else break;

}
lines.push_back((tline){m, c, p});

}

559



9.23. DYNAMIC PROGRAMMING OPTIMIZATION c� Steven, Felix, Suhendry

To get the minimum y for a given x, we can do a binary search as mentioned previously.
The following code63 shows one implementation of such a binary search.

int getBestY(int x) {
int k = 0;
int L = 0, R = lines.size() - 1;
while (L <= R) {

int mid = (L+R) >> 1;
if (lines[mid].p <= x+EPS)

k = mid, L = mid+1;
else

R = mid-1;
}
return lines[k].m*x + lines[k].b;

}

In the main function, we only need to do something like the following code and the overall
time complexity is O(N logN).

int ans = 0;
for (int i = 1; i <= N; ++i) {

if (i > 1) ans = getBestY(g[i]);
addLine(h[i], ans);

}
cout << ans << "\n";

Optimization: O(N) solution when h(k) � h(k + 1) and g(k)  g(k + 1)

If we have another additional condition where g(k)  g(k + 1), then the part where we
search for the minimum y for a given x (which was done by a binary search) can be done
in amortized O(1) by exploiting the previous range which gives the minimum y. Observe
that if g(k) (the x to be queried) is non-decreasing, then the range’s index which gives the
minimum y will also be non-decreasing unless pushed back by a new line.

We can maintain a pointer to the last used range and check how far can we move the
pointer to the right each time we want to find the minimum y for a given x. As we can
only move the pointer at most the total number of lines, then the total time complexity
to find the minimum y for all x is O(N). Therefore, the time complexity to find the
minimum y for a given x with this method is amortized O(1). The following code64 shows
the implementation. Replace getBestY(x) with getBestYFaster(x) in the main function
and the total time complexity will be reduced to O(N).

int getBestYFaster(int x) {
static int k = 0;
k = min(k, (int)lines.size()-1);
while (k+1 < (int)lines.size() && lines[k+1].p <= x+EPS ) ++k;
return lines[k].m*x + lines[k].c;

}

63Observe that m * x in this code might cause integer overflow for some constraints. You might want to
adjust the data type accordingly.

64Take a note on the static keyword; alternatively, you can declare variable k globally.

560



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Divide and Conquer Optimization

Consider the following DP formula:

dp(i, j) = min
kj

{dp(i� 1, k) + cost(k, j)}

where i = 1..N and j = 1..M . The näıve method to compute one state of dp(i, j) is by a
simple iteration for k = 1..j, thus, this method has an O(M) time complexity. As there are
O(NM) states to be computed, the total time complexity for this solution will be O(NM2).

In this section, we will discuss a technique (namely, divide and conquer) to speed up the
computation for the above DP formula when a certain condition is satisfied.

Optimization: O(NM logM) solution when opt(i, j)  opt(i, j + 1)

Let opt(i, j) be the index k which gives dp(i, j) in the previous DP formula the optimal (or,
in this case, the minimum) value, or formally

opt(i, j) = argmin
kj

{dp(i� 1, k) + cost(k, j)}

We will focus on problems which satisfy the following row monotonicity condition:

opt(i, j)  opt(i, j + 1)

Supposed we know an opt(i, j) for some i and j, with the row monoticity condition, we
can infer that all dp(i, a) where a < j will have their optimal indexes k, i.e., opt(i, a), to be
no larger than opt(i, j); similarly, all dp(i, b) where j < b will have their optimal indexes k,
i.e., opt(i, b), to be no smaller than opt(i, j). For now, let us just assume the problem has
such a property.

With this knowledge, we can design a divide and conquer algorithm (see Book 1) to
compute dp(i, ⇤) all at once; in other words, for the whole ith row in the DP table. We start by
computing dp(i,M/2) and obtaining opt(i,M/2) by checking for k = 1..M , the whole range.
Then, we compute dp(i,M/4) and obtaining opt(i,M/4) by checking for k = 1..opt(i,M/2),
i.e., we know that the optimal k for dp(i,M/4) will not be larger than opt(i,M/2). Similarly,
we also compute dp(i, 3M/4) and obtaining opt(i, 3M/4) by checking for k = opt(i,M/2)..N ,
i.e., we know that the optimal k for dp(i, 3M/4) will not be smaller than opt(i,M/2).
Perform these steps recursively until dp(i, j) are computed for all j = 1..M .

The following divideConquer() function computes dp(i, j) for all j = 1..M .

void divideConquer(int i, int L, int R, int optL, int optR) {
if (L > R) return;
int j = (L+R) >> 1;
for (int k = optL; k <= optR; ++k) {

int value = dp[i-1][k] + cost(k, j);
if (dp[i][j] < value) {

dp[i][j] = value;
opt = k;

}
}
divideConquer(i, L, j-1, optL, opt);
divideConquer(i, j+1, R, opt, optR);

}

561



9.23. DYNAMIC PROGRAMMING OPTIMIZATION c� Steven, Felix, Suhendry

The variables L and R correspond to the range for j to be computed; in other words,
dp(i, L..R). For each call with a range [L, R], only one j is computed iteratively, which is
for j = L+R

2 . The range, [L, R], then is divided into two halves, [L, L+R
2 � 1] and [L+R

2 + 1, R],
and each of them is solved recursively until the range is invalid. This, of course, will cause the
recursion depth to be O(logM) as we halve the range at each level. On the other hand, the
total number of iterations for k is O(M) for all function calls on the same recursion level.
Therefore, this function has a time complexity of O(M logM). This is a major improvement
from the näıve method which requires O(M2) to compute dp(i, j) for all j = 1..M .

To solve the original problem (i.e., dp(N,M)), we only need to iteratively call the function
divideConquer() for i = 1..N . We need to set the initial range to be 1..M both for L..R
and optL..optR. As this is a bottom-up DP style, we also need to specify the base cases at
the beginning. The following code implements this idea.

for (int j = 1; j <= M; ++j)
dp[0][j] = baseCase(j);

for (int i = 1; i <= N; ++i)
divideConquer(i, 1, M, 1, M);

ans = dp[N][M];

As there are O(N) iterations in the main loop while one call of divideConquer() requires
O(M logM), the total time complexity for this solution is O(NM logM).

When does opt(i, j)  opt(i, j + 1)?

The challenging part of this divide and conquer optimization technique is to figure out
whether the cost function, cost(k, j), causes the opt(i, j) in the DP formula to satisfy the
row monotonicity property as previously mentioned.

The opt(i, j) in the DP formula has a row monotonicity condition (thus, the divide and
conquer optimization can be used) if the cost function satisfies the quadrangle inequality.
A cost function, c(k, j), satisfies the quadrangle inequality if and only if

cost(a, c) + cost(b, d)  cost(a, d) + cost(b, c)

for all a < b < c < d. This quadrangle inequality also appears in another DP optimization
technique, the Knuth’s optimization, which will be discussed in the next section.

Example of a cost function satisfying quadrangle inequality

Let A[1..M] be an array of integers, and cost(k, j) where k  j be the inversion counts65

of A[k..j]. Given an integer N , your task is to split A[1..M] into N continuous subarrays
such that the sum of inversion counts on all subarrays is minimum. We will directly show
that this cost function satisfies quadrangle inequality.

Let f(p, q, r, s) where p  q and r  s be the number of tuple hi, ji such that p  i  q,
r  j  s, i < j, and A[i] > B[j], i.e., the number of inversions of hi, ji where i is in the
range of p..q and j is in the range of r..s. Then, cost(p, r) = cost(p, q) + f(p, r, q + 1, r) for
any q satisfying p  q  r. Also notice that f(p, q, r, s) = f(p, t � 1, r, s) + f(t, q, r, s) for
any t satisfying p < t  q.

65Inversion counts of A[1..M] is the number of tuple hi, ji such that i < j and A[i] > B[j].

562



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Now, let us verify the quadrangle inequality property of the cost function. Let a < b <
c < d and

cost(a, c) + cost(b, d)  cost(a, d) + cost(b, c)

Substitute cost(b, d) with cost(b, c) + f(b, d, c + 1, d); note that b < c < d. Also, substitute
cost(a, d) with cost(a, c) + f(a, d, c+ 1, d); note that a < c < d.

cost(a, c) + cost(b, c) + f(b, d, c+ 1, d)  cost(a, c) + f(a, d, c+ 1, d) + cost(b, c)

f(b, d, c+ 1, d)  f(a, d, c+ 1, d)

Substitute f(a, d, c+ 1, d) with f(a, b� 1, c+ 1, d) + f(b, d, c+ 1, d); note that a < b < d.

f(b, d, c+ 1, d)  f(a, b� 1, c+ 1, d) + f(b, d, c+ 1, d)

0  f(a, b� 1, c+ 1, d)

As f(a, b� 1, c+ 1, d) is a number inversion, then it should be non-negative. Following the
equations backward66 shows that the cost function satisfies quadrangle inequality.

Note that it is often unnecessary to formally prove such property during a contest where
time is precious and your code is only judged based on the test data. However, you might
want to spend some time to prove such property during practice or learning to develop your
intuition.

Knuth’s Optimization

Knuth’s optimization technique for dynamic programming is the result of Donald Knuth’s
work[22] on the optimal binary search tree problem. Later, Yao[38, 39, 2] generalizes this
technique for other problems with the quadrangle inequality (also often mentioned as Knuth-
Yao’s quadrangle inequality).

Consider the following DP formula:

dp(i, j) = min
i<k<j

{dp(i, k) + dp(k, j)}+ cost(i, j)

where i = 1..N and j = 1..N . As you can see from the formula, computing one state of
dp(i, j) näıvely requires an O(N) iterations, and there are O(N2) states to be computed.
Therefore, the total time complexity for the näıve method is O(N3). Here, we will discuss
how to speed up the DP computation with Knuth’s optimization when a certain condition
is satisfied.

Optimization: O(N2) solution when opt(i, j � 1)  opt(i, j)  opt(i+ 1, j)

Similar to the previous opt(i, j) function when we discuss the divide and conquer optimiza-
tion (previous section), here, opt(i, j) also refers to the index k which gives dp(i, j) its
optimal value.

opt(i, j) = argmin
i<k<j

{dp(i, k) + dp(k, j)}

66To directly prove something, we start from statements that are true and show that the resulting
conclusion is true. In this case, you can start from the last statement which is known to be true,
0  f(a, b� 1, c+ 1, d), works backward, and conclude that the quadrangle inequality is satisfied.

563



9.23. DYNAMIC PROGRAMMING OPTIMIZATION c� Steven, Felix, Suhendry

Likewise, let us assume, for now, that the problem satisfies the following monotonicity con-
dition:

opt(i, j � 1)  opt(i, j)  opt(i+ 1, j)

If we know that opt(i, j) satisfies the monotonicity condition, then the speed-up is almost
obvious. The following code implements the Knuth’s optimization for dynamic programming.

int dpKnuth(int i, int j) {
if (i == j) return 0;
if (memo[i][j] != -1) return memo[i][j];
memo[i][j] = inf;
for (int k = opt[i][j-1]; k <= opt[i+1][j]; ++i) {

int tcost = dpKnuth(i, k) + dpKnuth(k, j) + cost(i, j);
if (tcost < memo[i][j]) {

memo[i][j] = tcost;
opt[i][j] = k;

}
}
return memo[i][j];

}

Notice that k only interates from opt[i][j-1] until opt[i+1][j] as opposed to the normal
i+1 until j-1. Whenever we found a better result, we also store the k which produces that
result in opt[i][j].

Why does Knuth’s optimization reduce the asymptotic time complexity?

Knuth’s optimization “only” prunes the iterations from i . . . j into opt(i, j�1) . . . opt(i+1, j),
but why does this optimization reduce the asymptotic time complexity from O(N3) into
O(N2)?

Let SL be the number of iterations to compute all dp(i, j) where j � i = L; in other
words, L is the “length” of dp(i, j). In Figure 9.16 we can see that all dp(i, j) which have
the same length lie on the same diagonal.

Figure 9.16: The shaded cells are having the same length of j � i = 3.

Now, let us see what happened to SL.

SL =
X

i=0...N�L�1

opt(i+ 1, i+ L+ 1)� opt(i, i+ L) + 1

564



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Take the constant out.

SL = N � L+
X

i=0...N�L�1

opt(i+ 1, i+ L+ 1)� opt(i, i+ L)

The previous summation is in the form of (b � a) + (c � b) + (d � c) + · · · + (z � y) which
can be reduced to (z � a).

SL = N � L+ opt(N � L,N � 1)� opt(0, L)

Recall that opt(i, j) is the index k that gives dp(i, j) its optimal value, thus, opt(i, j) will
vary between 0 and N � 1. Therefore, the di↵erence between two opt() will be no larger
than N . Also, note that L comes from j � i, thus, it is bounded by N .

SL  N � L+N

SL = O(N)

Therefore, computing dp(i, j) for all i and j such that j � i = L requires an O(N) time
complexity. As there are only O(N) di↵erent L, the overall time complexity to compute
dp(i, j) for all i and j is O(N2).

When does opt(i, j � 1)  opt(i, j)  opt(i+ 1, j)?

Knuth’s optimization can be used if the cost function, cost(i, j), causes opt(i, j) in the
DP formula to satisfy the monotonicity property. For the opt(i, j) to have a monotonicity
property, it is su�cient if the cost(i, j) satisfies the quadrangle inequality, i.e.,

cost(a, c) + cost(b, d)  cost(a, d) + cost(b, c)

for all a < b < c < d. This condition is also known as the Knuth-Yao’s quadrangle
inequality[2].

Programming exercises related to DP Optimization:

1. UVa 10003 - Cutting Sticks *

2. UVa 10304 - Optimal Binary ... * (classical DP; requires 1D range sum and
Knuth-Yao speed up to get O(n2) solution)

3. Kattis - coveredwalkway *

4. Kattis - money *

565



9.24. PUSH-RELABEL ALGORITHM c� Steven, Felix, Suhendry

9.24 Push-Relabel Algorithm

Push-Relabel is an alternative Max Flow algorithm on top of the Ford-Fulkerson based
algorithms, i.e., O(V E2) Edmonds-Karp algorithm (see Section 8.4.3) or O(V 2E) Dinic’s
algorithm (see Section 8.4.4). Recall that Ford-Fulkerson based Max Flow algorithms work
by iteratively sending legal flows via augmenting paths that connect the source vertex s to
the sink vertex t until we cannot find any more such augmenting path.

Push-Relabel, invented by Goldberg and Tarjan [18], is an out-of-the-box Max Flow
algorithm that doesn’t follow that idea. Instead, a Push-Relabel algorithm:

1. Initially push as much flow as possible from the source vertex s.
Such a flow is an upper bound of the max flow value in the given flow graph but may
not be feasible (i.e., possibly illegal), so we call it as ‘pre-flow’.

2. While 9 a vertex with unbalanced flow, i.e., flow in > flow out:

(a) Calculate excess flow in that vertex (flow in - flow out).

(b) Push some excess flow on an edge in residual graph R.
Eventual excess that does not form the final max flow will return to s.

Notice that at all times throughout the execution of Push-Relabel algorithm, it maintains
an invariant that there is no s! t path in R. This Push-Relabel algorithm thus starts from
possibly illegal flows and it iteratively make the flows legal. As soon as the flows are legal
(there is no more vertex with unbalanced flow), then we have the max flow.

Definitions

pre-flow: Assignment flow f(u, v) � 0 to every edge (u, v) 2 E such that:

1. 8(u, v) 2 E, f(u, v)  c(u, v)
That is, we always satisfy the capacity constraints.

2. 8u 2 V � t,
P

z f(z, u) �
P

w f(u, w)
That is, flow-in is � flow-out.
This � constraint is di↵erent from the == constraint for a legal flow

excess(u) =
P

z f(z, u)�
P

w f(u, w), abbreviated67 as x(u).

height(u) or h(u) for every vertex u 2 V .

If 8u 2 V � {s, t}, we have x(u) = 0, we say the pre-flow is feasible and that is our goal:
push flow (that initially arrives from the source vertex s) around until all x(u) = 0. To avoid
the unwanted cyclic situation where two (or more) vertices pushing the excess flow in cycles,
Push-Relabel adds an additional rule so that it can only push a flow from a higher vertex to
a lower vertex (i.e., if h(u) > h(v), then u can push excess flow to v if need be).

Basic Push-Relabel Algorithm

A basic Push-Relabel algorithm receives the same input as with other Max Flow algorithms
discussed in Section 8.4, namely: a flow graph G = (V,E) with n vertices and m edges with
capacities c associated to each edge plus two special vertices: s and t. A basic Push-Relabel
algorithm then run the following pseudo-code:

67The excess value of vertex u is written as e(u) in other books/references but e and E are too similar in
our opinion, hence we write it as x(u).

566



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

1. 8u 2 V, h(u) = 0 // heights start at 0.

2. h(s) = n // except that s starts from a high place, at height n = |V |.
3. 8u 2 V : (s, u) 2 E, then f(s, u) = c(s, u) // the pre-flow push out of s

4. while f is not feasible // i.e., 9u such that x(u) > 0

5. let r(u, v) = c(u, v)� f(u, v) + f(v, u) // the residual graph R

6. if 9u 2 V � {s, t} and v 2 V where x(u) > 0 and r(u, v) > 0 and h(u) > h(v),
then

// if u has excess, (u, v) has capacity left, and u is higher than v (can push)

7. b = min(x(u), r(u, v)) // the bottleneck capacity

8. f(u, v) = f(u, v) + b // push b unit of flow from u to v

9. else, choose v : x(v) > 0 // choose any vertex v with excess

10. h(v) = h(v) + 1 // raise height of vertex v by 1 to facilitate future push

As its name implies, this Push-Relabel algorithm has two core operations: Push and Re-
label. Line 7-8 are the push operations. There are two possible sub-scenarios in line 7:

1. b = r(u, v), so edge (u, v) in the residual graph R is at capacity after this saturating
push; after a saturating push, vertex u may still have excess flow (thus, may still be
unbalanced).

2. b < r(u, v) but b = x(u), i.e., all the excess flow of vertex u is pushed out by this
non-saturating push and vertex u becomes balanced (vertex v becomes unbalanced
unless v == t).

Line 9-10 are the relabel68 operations where the Push-Relabel algorithm cannot execute any
push operation (on line 7-8). Thus, the Push-Relabel algorithm takes any vertex with excess
flow and just raise its height by +1 to facilitate future push operation.

A Sample Execution of Basic Push-Relabel Algorithm

It is easier to explain this Basic Push-Relabel algorithm with an example. Suppose we have
the initial flow graph as in Figure 9.17—left (with n = 5 vertices and m = 7 directed edges
with its initial capacities), then after executing line 1-2 of the pseudo-code, the height of
all vertices except h(s) = n = 5 is 0. Then in Figure 9.17—right, we execute line 3 of the
pseudo-code, the pre-push from s = 0 to vertex 1 and 2, making both of them have excess
(unbalanced).

Figure 9.17: Left: The Initial Flow Graph; Right: Pre-flow Push from s

68The name ‘relabel’ of this raising-the-height-of-a-vertex operation is historical.

567



9.24. PUSH-RELABEL ALGORITHM c� Steven, Felix, Suhendry

In Figure 9.18—left, we have two vertices that are unbalanced. We can keep track of these
unbalanced vertices using a queue69, e.g., Unbalanced = {1, 2}. We pop out the front most
unbalanced vertex 1 and see if we can push anything out of vertex 1. However, vertex 1
cannot push the excess flow to vertex 2, to sink vertex t = 4, or to return the excess back to
source vertex s = 0 as h(1) = 0, as short as all its three neighbors. Thus we have no choice
but to raise the height of vertex 1 by 1 and re-insert vertex 1 to the back 70 of the queue. In
Figure 9.18—right, we have similar situation with vertex 2.

Figure 9.18: Left: Relabel Vertex 1; Right: Relabel Vertex 2

In Figure 9.19—left, we have Unbalanced = {1, 2} and we process vertex 1 again . At
this point of time, we can push all x(1) = 5 to sink vertex t = 4 as the capacity of edge
(1, 4) = 6 is higher than x(1) = 5 and h(1) = 1 is higher than h(4) = 0. This is called a
non-saturating push and makes vertex 1 balanced again. In Figure 9.19—right, we only
have Unbalanced = {2} and we process vertex 2 again. At this point of time, we can push all
x(2) = 4 to its neighboring vertex 3 as the capacity of edge (2, 3) = 5 is more than x(2) = 4
and h(2) = 1 is higher than h(3) = 0. This is another non-saturating push. But notice
that since vertex 3 is not a sink vertex t, it will now become unbalanced, i.e., x(3) = 4.

Figure 9.19: Left: Non-saturating Push 1! 4; Right: Non-saturating Push 2! 3

In Figure 9.20—left, we have to relabel the only unbalanced vertex 3 at this point of time
so that h(3) = 1. In Figure 9.20—right, we still process this unbalanced vertex 3. This time
we can push some x(3) = 4 to its neighboring sink vertex t = 4 as h(3) = 1 is higher than
h(4) = 0. However, as the capacity of edge (3, 4) = 2 is less than x(3) = 4, we can then only
able to send b = 2 excess unit to vertex 4. This is called a saturating push. A saturating
push rarely make the excess of the origin vertex balanced. At this point of time, vertex 3
still have excess, but reduced to x(3) = 2.

69There are several ways to do this, we can also use a stack for example.
70There are better variant of Push-Relabel algorithm that doesn’t do this.

568



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Figure 9.20: Left: Relabel Vertex 3; Right: Saturating Push 3! 4

In Figure 9.21—left, we have to again relabel the only unbalanced vertex 3 at this point of
time so that h(3) = 2. In Figure 9.21—right, we can do another non-saturating push 3! 1.
This makes vertex 3 balanced but vertex 1 becomes unbalanced again.

Figure 9.21: Left: Relabel Vertex 3; Right: Non-saturating Push 3! 1

In Figure 9.22—left, we are able to send a saturating push from vertex 1 to sink vertex t = 4
that reduces excess of x(1) = 1. In Figure 9.22—right, we highlight a situation experienced
by this basic Push-Relabel algorithm where it will continuously push the last 1 unit excess
around cycle 1 ! 2 ! 3 around, relabeling the 3 vertices gradually71 until one of them is
higher than the source vertex (that has h(0) = 5) and then return the unused 1 unit back
to source vertex s = 0.

Figure 9.22: Left: Saturating Push 1! 4; Right: Return 1 Unit of Excess to s

71This is clearly not the best way to implement Push-Relabel and several variants have been designed to
improve this aspect.

569



9.24. PUSH-RELABEL ALGORITHM c� Steven, Felix, Suhendry

Time Complexity of Basic Push-Relabel Algorithm

The analysis of this basic Push-Relabel algorithm is a bit involved. For the purpose of
Competitive Programming, we just say that the maximum numbers of relabels, saturating
pushes, and non-saturating pushes, without any fancy optimization, are bounded byO(V 2E).
Thus, the time complexity of basic Push-Relabel algorithm is O(V 2E), on par with the
current fastest Ford-Fulkerson based method discussed in Section 8.4: Dinic’s algorithm.

Push-Relabel Algorithm in Competitive Programming

However, Push-Relabel can be implemented to run in a tighter time complexity of O(V 3)
using the ‘Relabel-to-Front’ strategy and more clever relabeling that doesn’t always increase
a vertex height by only +1. This O(V 3) time complexity is better than O(V 2E) Dinic’s
algorithm on a dense flow graph where E = O(V 2). However, on the other hand, Push-
Relabel processes the flows di↵erently compared to the Ford-Fulkerson based Max Flow
algorithms and thus cannot take advantage if the Max Flow problem has small Max Flow
f ⇤ value (see Exercise 8.4.6.1).

Remarks: All Max Flow problems that we have seen in this book can still be solved with
the O(V 2E) Dinic’s algorithm that has been discussed in Section 8.4 as most flow graph
are not the worst case one. Therefore, the faster Push-Relabel algorithm is currently for
theoretical interest only.

Exercise 9.24.1*: We omit the implementation details of basic Push-Relabel algorithm
and only mention the name of ‘Relabel-to-Front’ strategy. Explore the various possible
implementations of this Push-Relabel variant and try to solve https://open.kattis.com/
problems/conveyorbelts (need a big flow graph) with as fast runtime as possible.

Profile of Algorithm Inventor

Andrew Vladislav Goldberg (born 1960) is an American computer scientist who is best
known for his work on the maximum flow problem, especially the co-invention of the Push-
Relabel max flow algorithm with Robert Endre Tarjan.

570



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.25 Min Cost (Max) Flow

Problem Description

The Min Cost Flow problem is the problem of finding the cheapest possible way of sending
a certain amount of (not necessarily the max) flow through a flow network. In this problem,
every edge has two attributes: the flow capacity through this edge and the unit cost for
sending one unit flow through this edge. Some problem authors choose to simplify this
problem by setting the edge capacity to a constant integer and only vary the edge costs.

Figure 9.23: An Example of Min Cost Max Flow (MCMF) Problem (UVa 10594 [28])

Figure 9.23—left shows a (modified) instance of UVa 10594. Here, each edge has a uniform
capacity of 10 units and a unit cost as shown in the edge label. We want to send 20 units
of flow from A to D (note that the max flow of this flow graph is 30 units) which can be
satisfied by either one of these three ways, but with di↵erent total cost:

1. 10 units of flow A! D with cost 1⇥ 10 = 10 (Figure 9.23—middle); plus another 10
units of flow A! B ! D with cost (3 + 4)⇥ 10 = 70 (Figure 9.23—right). The total
cost is 10 + 70 = 80, and this is the minimum compared with two other ways below.

2. 10 units of flow A ! D with cost 10 plus another 10 units of flow A ! C ! D with
cost (3 + 5)⇥ 10 = 80. The total cost is 10 + 80 = 90.

3. A! B ! D with cost 70 (Figure 9.23—right) plus another 10 units of flow A! C !
D with cost 80. The total cost is 70 + 80 = 150.

Solution(s)

The Min Cost (Max) Flow, or in short MCMF, can be solved by replacing the O(E) BFS (to
find the shortest—in terms of number of hops—augmenting path) in Edmonds-Karp/Dinic’s
algorithm with the O(kE) Bellman-Ford-Moore algorithm (to find the shortest/cheapest—
in terms of the path cost—augmenting path). We need a shortest path algorithm that can
handle negative edge weights as such negative edge weights may appear when we cancel a
certain flow along a backward edge (as we have to subtract the cost taken by this augmenting
path as canceling flow means that we do not want to use that edge). An example in Figure
9.24 will show the presence of such negative edge weight.

The need to use a slower but more general shortest path algorithm like Bellman-Ford-
Moore algorithm slows down the MCMF implementation to around O(V 2E2) but this is
usually compensated by the problem authors of most MCMF problems by having smaller
input graph constraints.

Source code: ch9/mcmf.cpp|java|py

571



9.25. MIN COST (MAX) FLOW c� Steven, Felix, Suhendry

Weighted MCBM

In Figure 9.24, we show one test case of UVa 10746 - Crime Wave - The Sequel. This is a
weighted MCBM problem on a complete bipartite graph Kn,m. We can reduce this problem
into an MCMF problem as follows: we add edges from source s to vertices of the left set with
capacity 1 and cost 0. We also add edges from vertices of the right set to the sink t also with
capacity 1 and cost 0. The directed edges from the left set to the right set have capacity 1
and costs according to the problem description. After having this weighted flow graph, we
can run any MCMF algorithm to get the required answer: Flow 1 = 0 ! 2 ! 4 ! 8 with
cost 5, Flow 2 = 0 ! 1 ! 4 ! 2 (cancel flow 2-4; notice that there is a �5 edge weight
here) ! 6 ! 8 with cost 15, and Flow 3 = 0 ! 3 ! 5 ! 8 with cost 20. The minimum
total cost is 5 + (10-5+10) + 20 = 40.

Figure 9.24: A Sample Test Case of UVa 10746: 3 Matchings with Min Cost = 40

However, we can also use the more specialized and faster (O(V 3)) Kuhn-Munkres algorithm
to solve this Weighted MCBM problem (see Section 9.27).

Programming exercises related to Min Cost (Max) Flow:

1. Entry Level: UVa 10594 - Data Flow * (basic min cost max flow problem)

2. UVa 10806 - Dijkstra, Dijkstra * (send 2 edge-disjoint flows with min cost)

3. UVa 11301 - Great Wall of China * (modeling; vertex capacity; MCMF)

4. UVa 12821 - Double Shortest Paths * (similar to UVa 10806)

5. Kattis - catering * (LA 7152 - WorldFinals Marrakech15; MCMF modeling)

6. Kattis - mincostmaxflow * (very basic MCMF problem; good starting point)

7. Kattis - ragingriver * (MCMF; unit capacity and unit cost)

Extra Kattis: tourist, jobpostings.

Also see Kuhn-Munkres (Hungarian) algorithm (Section 9.27)

572



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.26 Hopcroft-Karp Algorithm

In Section 8.5.3, we mentioned Hopcroft-Karp algorithm [19] as another algorithm that can
be used to solve the unweighted Maximum Cardinality Bipartite Matching (MCBM) problem
on top of the Max Flow based solutions (which takes longer to code) and the Augmenting
Path based solutions (which is the preferred method) as discussed in Special Graph section
in Book 1.

Worst Case Bipartite Graph

In our opinion, the main reason for using the longer-to-code Hopcroft-Karp algorithm in-
stead of the simpler-and-shorter-to-code Augmenting Path algorithm (direct application of
Berge’s lemma) to solve the Unweighted MCBM is its better theoretical worst case time com-
plexity. Hopcroft-Karp algorithm runs in O(

p
V E) which is (much) faster than the O(V E)

Augmenting Path algorithm on medium-sized (V ⇡ 1500) bipartite (and dense) graphs.
An extreme example is a Complete Bipartite GraphKn,m with V = n+m and E = n⇥m.

On such bipartite graphs, the Augmenting Path algorithm has a worst case time complexity
of O((n+m)⇥ n⇥m). If m = n, we have an O(n3) solution—only OK for n  250.

Similarities with Dinic’s Algorithm

The main issue with the O(V E) Augmenting Path algorithm is that it may explore the
longer augmenting paths first (as it is essentially a ‘modified DFS’). This is not e�cient. By
exploring the shorter augmenting paths first, Hopcroft and Karp proved that their algorithm
will only run in O(

p
V ) iterations [19]. In each iteration, Hopcroft-Karp algorithm executes

an O(E) BFS from all the free vertices on the left set and finds augmenting paths of increasing
lengths (starting from length 1: a free edge, length 3: a free edge, a matched edge, and a free
edge again, length 5, length 7, and so on...). Then, it calls another O(E) DFS to augment
those augmenting paths (Hopcroft-Karp algorithm can increase more than one matching in
one algorithm iteration). Therefore, the overall time complexity of Hopcroft-Karp algorithm
is O(

p
V E).

Those who are familiar with Dinic’s Max Flow algorithm (see Section 8.4.4) will notice
that running Dinic’s algorithm on bipartite flow graph is essentially this Hopcroft-Karp
algorithm with the same O(

p
V E) time complexity.

For the extreme example on Complete Bipartite Graph Kn,m shown above, the Hopcroft-
Karp (or Dinic’s) algorithm has a worst case time complexity of O(

p
(n+m)⇥ n⇥m). If

m = n, we have an O(n
5
2 ) solution which is OK for n  1500. Therefore, if the problem

author is ‘nasty enough’ to set n ⇡ 1500 and a relatively dense bipartite graph for an
Unweighted MCBM problem, using Hopcroft-Karp (or Dinic’s) is theoretically safer than
the standard Augmenting Path algorithm.

Comparison with Augmenting Path Algorithm++

However, if we have done a randomized greedy pre-processing step before running the normal
Augmenting Path algorithm (which we dub as the Augmenting Path Algorithm++ algorithm
mentioned in Section 8.5.3), there will only be up to k subsequent calls of normal Augmenting
Path algorithm (where k is significantly less than V , empirically shown to be not more thanp
V , and it is quite challenging to create a custom Bipartite Graph so that the randomized

greedy pre-processing step is not very e↵ective, see Exercise 8.5.3.2*) to obtain the final
answer even if the input is a relatively dense and large bipartite graph. This implies that
Hopcroft-Karp algorithm does not need to be included in ICPC (25-pages) team notebook.

573



9.27. KUHN-MUNKRES ALGORITHM c� Steven, Felix, Suhendry

9.27 Kuhn-Munkres Algorithm

In Section 8.5.4, we have noted that programming contest problems involving weighted Max
Cardinality Bipartite Matching (MCBM) on medium-sized72 Bipartite graphs are extremely
rare (but not as rare as MCM problems on medium-sized non-bipartite graphs in Section
9.28). But when such a problem does appear in a problem set, it can be one of the hardest,
especially if the team does not have the implementation of Kuhn-Munkres (or Hungarian73)
algorithm (see the original paper [23, 27]) or a fast Min Cost Max Flow (MCMF) algorithm
that can also solve this problem (see Section 9.25) in their ICPC team notebook (this graph
matching variant is excluded from the IOI syllabus [15]).

To understand the Kuhn-Munkres algorithm, one needs to know Berge’s lemma that
is first discussed in Book 1 and revisited in Section 8.5.3: a matching M in graph G is
maximum if and only if there are no more augmenting paths in G. Earlier, we used this
lemma for unweighted Bipartite graphs in our Augmenting Path algorithm implementation
(a simple DFS modification) but this lemma can also be used for weighted Bipartite graphs
(the Kuhn-Munkres algorithm exploit this).

Input Pre-Processing and Equality Subgraph

Kuhn-Munkres algorithm can be explained as a graph algorithm74: Given a weighted bi-
partite graph G(X, Y,E) where X/Y are the vertices on the left/right set, respectively,
find Max75 Weighted and Perfect Bipartite Matching. Thus, if the input is an incom-
plete weighted bipartite graph (see Figure 9.25—left), we add dummy missing vertices (if
|X| 6= |Y |) and/or missing edges with large negative values (if |E| < |X|⇥ |Y |, see 3 added
edges: (0, 3), (1, 5), and (2, 4) with dummy weight -1 in Figure 9.25—middle) so that we have
a complete weighted bipartite graph K|X|,|Y | that is guaranteed to have a perfect bipartite
matching. The edges are all directed from X to Y .

Figure 9.25: L: Initial Graph; M: Complete Weighted Bipartite Graph; R: Equality Subgraph

Instead of “directly” finding a maximum perfect matching, Kuhn-Munkres algorithm finds
a perfect matching in an evolving equality subgraph, and the matching cost is guaranteed
to be maximum when it finds one. An equality subgraph of a complete bipartite graph
G contains all the vertices in G and a subset of its edges. Each vertex, u, has a value
(also called label), l(u). An edge (u, v) is visible in an equality subgraph if and only if
l(u) + l(v) = w(u, v) where w(u, v) is the weight of edge (u, v). Initially, l(u) where u 2 X
equals to highest weight among u’s outgoing edges, while l(v) = 0 where v 2 Y as there
is no outgoing edges from v. See Figure 9.25—right where we have only 3 visible edges:
edge (0, 4)/(1, 4)/(2, 3) with weight 8/4/4, respectively. Kuhn-Munkres theorem says that if

72Weighted MBCM problem on small bipartite graphs (V  20) can be solved using DP with bitmask.
73Harold William Kuhn and James Raymond Munkres named their (joint) algorithm based on the work

of two other Hungarian mathematicians: Denes Konig and Jenö Egerváry.
74Or as a matrix-based algorithm to solve an assignment problem
75We can easily modify this to find Min Weighted Perfect Bipartite Matching by negating all edge weights.

574



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

there is a perfect matching in the current equality subgraph, then this perfect matching is
also a maximum-weight matching. Let’s see if we can find a perfect matching in this current
equality subgraph.

Next, the Kuhn-Munkres algorithm performs similar steps as with the Augmenting Path
algorithm for finding MCBM: applying Berge’s lemma but on the current equality graph. It
notices that vertex 0 is a free vertex, follows free edge (0, 4) with weight 8, and arrives at
another free vertex 4—an augmenting path of length 1 edge. After flipping the edge status,
we match vertex 0 and 4 with the current total cost of 8 (see Figure 9.26—left).

But Kuhn-Munkres algorithm will encounter an issue in the next iteration: free vertex
1 ! free edge (1, 4) ! matched edge (4, 0), and stuck there as there is no more edge to
explore (see Figure 9.26—middle). Notice that vertex 0 is only connected with vertex 4 in
the current equality subgraph. We need to expand the equality subgraph.

Figure 9.26: L: 1st Augmenting Path; M: Stuck; R: Relabel the Equality Subgraph

Updating the Labels (Expanding the Equality Subgraph)

Now, it is time to relabel some vertices so that we maintain all edges currently visible in the
equality subgraph (so all currently matched edges are preserved) and add at least one (but
can be more) edge(s) into the equality subgraph. However, we need to do so by decrementing
the total weight of the edges as minimally as possible. Here are the steps required:

Let S 2 X and T 2 Y where S/T contains vertices in X/Y along the current partial
augmenting path, respectively. In Figure 9.26—middle, the partial augmenting path is:
1! 4! 0, so S = {0, 1} and T = {4}. Now let � be the minimum ‘decrease’ of matching
quality l(u) + l(v)� w(u, v) over all possible edges u 2 S and v /2 T (this is an O(V 2)). In
Figure 9.26—middle, we have these 4 possibilities (remember that edge (0, 3) and (1, 5) are
actually dummy edges that do not exist in the original input weighted bipartite graph):

l(0)+ l(3)�w(0, 3) = 8+0� (�1) = 9 (if we set w(0, 3) = �1, this value will be1);
l(0) + l(5)� w(0, 5) = 8 + 0� 6 = 2 (this is the minimum delta � = 2);
l(1) + l(3)� w(1, 3) = 4 + 0� 1 = 3; or
l(1)+ l(5)�w(1, 5) = 4+0� (�1) = 5 (if we set w(1, 5) = �1, this value will be1).

Now we improve the labels using the following rules (no change to the remaining vertices):
for u 2 S, l0(u) = l(u)�� (decrease)
for v 2 T , l0(v) = l(v) +� (increase)

This way, the new set of labels l0 that describe a new equality subgraph is a valid labeling that
maintains all edges in the previous equality subgraph, plus addition of at least one more new
edge. In this case, edge (0, 3) now visible in the equality subgraph. See Figure 9.26—right
where l(0)/l(1)/l(2) change to 6/2/4 and l(3)/l(4)/l(5) change to 0/2/0, respectively. See
that matched edge (0, 4) remains preserved as l(0)+l(4) = 6+2 = 8 from previously 8+0 = 8
(as with edge (1, 4)) and notice that edge (0, 5) is now visible as l(0) + l(5) = 6 + 0 = 6.

575



9.27. KUHN-MUNKRES ALGORITHM c� Steven, Felix, Suhendry

The Rest of the Algorithm and Remarks

Then, Kuhn-Munkres algorithm can proceed to find the second augmenting path 1 ! 4 !
0! 5 of length 3 edges and flip the status of these 3 edges (see Figure 9.27—left).

The third (trivial) augmenting path 2! 3 of length 1 edge is also immediately found in
the next iteration. We add edge (2, 3) to the matching (see Figure 9.27—middle).

Now we have a perfect matching of size V/2 = 6/2 = 3: edge (0, 5)/(1, 4)/(2, 3) with
weight 6/4/4, respectively, totalling 6+4+4 = 14. By Kuhn-Munkres theorem, this perfect
matching has the maximum total weight as the equality subgraphs have guided the algorithm
to favor edges with higher weights first (see Figure 9.27—right).

In summary, Kuhn-Munkres algorithm starts with an initial equality subgraph (that
initially consists of edges with highest edge weights), find (and eliminate) as many profitable
augmenting paths in the current equality subgraph first. When the algorithm is stuck
before finding a perfect bipartite matching (which we know exist as the transformed input
is a complete weighted bipartite graph — hence guaranteeing termination), we relabel the
vertices minimally to have a new (slightly bigger) equality subgraph and repeat the process
until we have a perfect bipartite matching (of maximum total weight).

Figure 9.27: L+M: 2nd+3rd Augmenting Paths; R: Max Weighted Perfect Matching

A good implementation of Kuhn-Munkres algorithm runs in O(V 3)—there can be up to V
iterations/augmenting paths found and at each iteration we can end up doing O(E) = O(V 2)
for finding an augmenting path or up to O(V 2) to find � and improving the labels. This
is much faster than Min Cost Max Flow (MCMF) algorithm discussed in Section 9.25. On
certain problems with the strict time limit or larger V (e.g., 1  V  450), we may have to
use the Kuhn-Munkres algorithm instead of the MCMF algorithm.

Programming exercises related to Kuhn-Munkres (Hungarian) Algorithm:

1. Entry Level: UVa 10746 - Crime Wave - The Sequel * (basic min weight

bipartite matching; small graph)

2. UVa 01045 - The Great Wall Game * (LA 3276 - WorldFinals Shanghai05;
try all configurations; weighted matching; pick the best; Kuhn-Munkres)

3. UVa 10888 - Warehouse * (BFS/SSSP; min weight bipartite matching)

4. UVa 11553 - Grid Game * (brute force; DP bitmask; or Hungarian)

5. Kattis - aqueducts * (build bipartite graph; weighted MCBM; Hungarian)

6. Kattis - cordonbleu * (interesting weighted MCBM modeling; N bottles to M
couriers+(N-1) restaurant clones; Hungarian)

7. Kattis - engaging * (LA 8437 - HoChiMinhCity17; Hungarian; print solution)

Extra Kattis: cheatingatwar.

576



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.28 Edmonds’ Matching Algorithm

In Section 8.5.4, we have noted that programming contest problems involving unweighted
Max Cardinality Matching (MCM) on medium-sized non-Bipartite graphs are extremely
rare. But when such a problem does appear in a problem set, it can be one of the hardest,
especially if the team does not have the implementation of Edmonds’ Matching algorithm
(see the original paper [12]) in their ICPC team notebook (this graph matching variant is
excluded from IOI syllabus [15]).

To understand Edmonds’ Matching algorithm, one needs to master Berge’s lemma that
is first discussed in Book 1 and revisited in Section 8.5.3+9.27: a matching M in graph G
is maximum if and only if there are no more augmenting paths in G. Earlier, we used this
lemma for Bipartite graphs in our Augmenting Path algorithm implementation (a simple
DFS modification) but this lemma is also applicable for general graphs.

A Sample Execution of Edmonds’ Matching Algorithm

Figure 9.28: Left: A Non-Bipartite Graph; Right: The Initial Matchings of Size 3

In this section, we give a high level tour of this rare algorithm. In Figure 9.28—left, we see a
non-Bipartite graph G because we have odd length cycles, e.g., 1�2�3�1 (there are others).
Our task is to find the MCM on this graph. In Section 8.5.3, we have shown a technique
called randomized greedy pre-processing to quickly eliminate many trivial augmenting paths
of length 1. This technique is also applicable for general graph. In Figure 9.28—right, we see
an example where vertex 0 is randomly paired with vertex 6 (13 chance among three possible
initial pairings of 0� 1, 0 � 6, or 0 � 7), then vertex 1 with vertex 2 (12 chance among two
remaining possible pairings of 1 � 2 or 1 � 3), and finally vertex 3 with the only available
vertex 5. This way, we initially get initial matching M of size 3: 0� 6, 1� 2, and 3� 5 and
are left with 2 more76 free vertices: {4, 7} that cannot be greedily matched at this point.

Figure 9.29: Left: An ‘Augmenting Cycle’ (Blossom); Right: Shrinking a Blossom G! G0

Now we ask the question on whether the current (initial) M of size 3 is already maximum?
Or in another, is there no more augmenting paths in the current G? In Figure 9.29—left,

76On some rare lucky cases, randomized greedy pre-processing can already find MCM upfront just by luck.

577



9.28. EDMONDS’ MATCHING ALGORITHM c� Steven, Felix, Suhendry

we see that the next free vertex 4 found an ‘augmenting path’: 4 ! 6 ! 0 ! 1 ! 2 ! 4.
But this ‘augmenting path’ is peculiar as it starts and ends at the same free vertex 4 and we
currently call it an ‘alternating cycle’. Trying to flip the edge status along this ‘alternating
cycle’ will cause an invalid matching as vertex 4 is used twice. We are stuck77.

It is harder to find augmenting path in such a non-Bipartite graph due to alternating
‘cycles’ called blossoms. In 1965, Jack Edmonds invented an idea of shrinking (and later
expanding) such blossoms to have an e�cient matching algorithm [12]. In Figure 9.29—
right, we shrink subgraph involving cycle 4 ! 6 ! 0 ! 1 ! 2 ! 4 in G into one super
vertex 40. The remaining vertices: 3, 5, and 7 are connected to this super vertex 40 due to
edges 7� 0, 3� 1 or 3� 2, and 5� 4, respectively. We call this transformed graph as G0.

Now we restart the process of finding augmenting path in this transformed graph. In
Figure 9.30—left, we see that the free (super) vertex 40 found an ‘augmenting cycle’ (blossom)
again78: 40 ! 3 ! 5 ! 40. Edmonds noticed that if we just apply the blossom shrinking
process again (recursively), we will eventually end in a base case: a transformed graph
without a blossom. In Figure 9.30—right, we shrink subgraph involving cycle 40 ! 3 !
5! 40 into another super vertex 400. The only remaining vertex 7 is connected to this super
vertex 400 due to edge 7� 40. We call this transformed graph as G00.

Figure 9.30: Left: Another Blossom; Right: Recursive Blossom Shrinking G0 ! G00

At this stage, we can find an augmenting path on G00 easily. In Figure 9.30—right, we have
free vertex 400 connected to another free vertex 7, a (trivial) augmenting path of length 1
on this transformed graph. So we now know that according to Berge’s lemma, the current
matching M of size 3 is not yet the maximum as we found an augmenting path (in G00).

Figure 9.31: Left: A Trivial Matching in G00; Right: Expanding Blossom 400, G00 ! G0

In Figure 9.31—left, we flip the edge status, so now we have another matching 400 � 7. But
notice that super vertex 400 does not exist in the original graph G as we found it in G00. So
we will ‘undo’ the shrinking process by re-expanding the blossom. First, we reverse from G00

77For the purpose of this discussion, we assume that our graph traversal algorithm explores edge 0 ! 1
first (with lower vertex number), leading to this ‘augmenting cycle’ issue instead of edge 0! 7 that will lead
us to the proper ‘augmenting path’ that we need to find.

78Again, we assume that our graph traversal algorithm explores edge 40 ! 3 (with lower vertex number)
first, leading to another ‘augmenting cycle’ issue instead of edge 40 ! 7.

578



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

back to G0. In Figure 9.31—right, we see two matchings: 40 � 7 (but super vertex 40 does
not exist in G) and 3� 5 (from G). We are not done yet.

Second, we reverse from G0 back to G. In Figure 9.32—left, we see that the actual
augmenting path 40 � 7 in G0 expanded79 to augmenting path 4! 6! 0! 7 in G. That’s
it, by shrinking the blossoms (recursively), we manage to guide the algorithm to avoid getting
stuck in the wrong augmenting ‘cycle’ 4! 6! 0! 1! 2! 4 found earlier.

In Figure 9.32—right, we flip the edge status along 4 ! 6 ! 0 ! 7 to get one more
matching for a total of 4 matchings: 4� 6 and 0� 7, plus the two found earlier: 1� 2 and
3� 5. This is the MCM.

Figure 9.32: Left: Expanding Blossom 40, G0 ! G; Right: The MCM M of Size 4

To help readers understand this Edmonds’ Matching algorithm, we have added it in Visu-
Algo. Readers can draw any unweighted general (or even Bipartite) graph and run Edmonds’
Matching algorithm on it, with or without the initial randomized greedy pre-processing step:

Visualization: https://visualgo.net/en/matching

Edmonds’ Matching Algorithm in Programming Contests

Based on this high level explanations, you may have a feeling that this algorithm is a bit hard
to implement, as the underlying graph changes whenever we shrink or (re-)expand a Blossom.
Many top level ICPC contestants put an O(V 3) library code in their ICPC (25-pages) team
notebook so that they can solve80 unweighted MCM problem with V  200.

Fortunately, such a hard problem is very rare in programming contest. An unweighted (or
even weighted) MCM problem on small non-Bipartite graphs (V  20) can still be solved
using the simpler DP with bitmask (see Section 8.3.1), including the very first opening
problem UVa 10911 - Forming Quiz Teams in Chapter 1 of this book and the Chinese
Postman Problem in Section 9.29.

Programming exercises related to Edmonds’ Matching Algorithm:

1. UVa 11439 - Maximizing the ICPC * (BSTA (the minimum weight); use it
to reconstruct the graph; perfect matching on medium-sized general graph)

2. Kattis - debellatio * (interactive problem; uses Edmonds’ Matching algorithm)

79Notice that a blossom (augmenting cycle) will have odd length and it is going to be clear which subpath
inside the blossom is the correct augmenting path, i.e., for blossom 40 : 4 ! 6 ! 0 ! 1 ! 2 ! 4 in G0

that is matched to free vertex 7, we have two choices: path 4 ! 2 ! 1 ! 0 ! 7 (but this is not a valid
augmenting path as both edge 1 � 0 and 0 � 7 are free edges) and path 4 ! 6 ! 0 ! 7 (which is a valid
augmenting path that we are looking for).

80The O(V 3) code has a high constant factor due to graph modifications.

579



9.29. CHINESE POSTMAN PROBLEM c� Steven, Felix, Suhendry

9.29 Chinese Postman Problem

Problem Description

The Chinese Postman81/Route Inspection Problem is the problem of finding the (length of
the) shortest tour/circuit that visits every edge of a (connected) undirected weighted graph.

Solution(s)

On Eulerian Graph

If the input graph is Eulerian (see Special Graph section in Book 1), then the sum of the
edge weights along the Euler tour that covers all the edges in the Eulerian graph is clearly
the optimal solution for this problem. This is the easy case.

On General Graph

When the graph is non-Eulerian, e.g., see the graph in Figure 9.33, then this Chinese Postman
Problem is harder.

Figure 9.33: A Non-Eulerian Input Graph G, 4 Vertices Have Odd Degree

Notice that if we double all edges in a non-Eulerian graph G (that have some odd degree
vertices), we will transform G into an Eulerian multigraph82 (all vertices now have even
degree vertices). However, doing so will increase the total cost by a lot and may not be the
most optimal way. A quick observation should help us notice that to transform G to be an
Eulerian multigraph, we can just add edges that connect an odd degree vertex with another
odd degree vertex, skipping vertices that already have even degree. So, how many such odd
degree vertices are there in G?

Graph G must have an even number of vertices of odd degree (the Handshaking lemma
found by Euler himself). Let’s name the subset of vertices of G that have odd degree as O.
Let n be the size of O (n is an even integer). Now if we add an edge to connect a pair of
odd degree vertices: a and b (a, b 2 O), we will make both odd degree vertices a and b to
become even degree vertices. Because we want to minimize the cost of such edge addition,
the edge that we add must have cost equal to the shortest path between a and b in G. We
do this for all pairs of a, b 2 O, hence we have a complete weighted graph Kn.

At this point, Chinese Postman Problem reduces to minimum weight perfect matching
on a complete weighted graph Kn. As n is even and Kn is a complete graph, we will find a
perfect matching of size n

2 .

81The name is because it is first studied by the Chinese mathematician Mei-Ku Kuan in 1962.
82The transformed graph is no longer a simple graph.

580



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

A Sample Execution

In Figure 9.33, O = {2, 3, 4, 5}, n = 4, and K4 is as shown in Figure 9.34—left. Edge 2-4 in
K4 has weight 1 + 1 = 2 from path 2-1-4 (which is shorter than the weight of the original
direct edge 2-4), edge 2-5 in K4 has weight 1 + 1 + 1 = 3 from path 2-1-4-5, and edge
3-4 in K4 has weight 3+1 = 4 from path 3-5-4. The minimum weight perfect matching on
the K4 shown in Figure 9.34—left is to take edge 2-4 (with weight 2) and edge 3-5 (with
weight 3) with a total cost of 2 + 3 = 5.

The hardest part of solving the Chinese Postman Problem is this subproblem of finding
the minimum weight perfect matching on Kn which is not a bipartite graph (it is a complete
graph, thus classified as the weighted MCM problem). In Section 8.5.4, we remarked that
the weighted MCM problem is the hardest variant. However, if n is small (like in Kattis
- joggingtrails/UVa 10926 - Jogging Trails), this subproblem can be solved with DP with
bitmask technique shown in Section 8.3.1.

Figure 9.34: L: K4 Subgraph of G; R: The Now Eulerian Multigraph

Now after adding edge 2-4 and edge 3-5 to G, we are now back to the easy case of the
Chinese Postman Problem. However, notice that edge 2-4 in K4 is not the original edge
2-4 in Figure 9.33, but a virtual edge83 constructed by path 2-1-4 with weight 1 + 1 = 2.
Therefore, we actually add edges 2-1, 1-4, and 3-5 to get the now Eulerian multigraph as
shown in Figure 9.34—right.

Now, the Euler tour is simple in this now Eulerian multigraph. One such tour84 is:
1->2->4->1->2->3->6->5->3->5->4->1 with a total weight of 33.
This is the sum of all edge weights in the modified Eulerian graph G0, which is the sum of
all edge weights in G (it is 28 in Figure 9.33) plus the cost of the minimum weight perfect
matching in Kn (it is 5 in Figure 9.34—left).

Programming exercises related to Chinese Postman Problem:

1. Entry Level: Kattis - joggingtrails * (basic Chinese Postman Problem; also
available at UVa 10296 - Jogging Trails)

83Note that this virtual edge may pass through even degree vertices in G; but will not change the parity
of previously even degree vertices, e.g., vertex 1 is an even degree vertex; there is a new incoming edge 2-1

and a new outgoing edge 1-4, so the degree of vertex 1 remains even.
84We can use Hierholzer’s algorithm discussed in Book 1 if we need to print one such Euler tour.

581



9.30. CONSTRUCTIVE PROBLEM c� Steven, Felix, Suhendry

9.30 Constructive Problem

Some problems have solution(s) that can be (or must be) constructed step by step in a
much faster time complexity than solving the problem directly via other problem solving
paradigms. If the intended solution is only via construction, such a problem will be a
di↵erentiator on who is the most creative problem solver (or has such a person in their team
for a team-based contest). In this section, we will discuss a few examples.

Magic Square Construction (Odd Size)

A magic square is a 2D array of size n⇥n that contains integers from [1..n2] with ‘magic’
property: the sum of integers in each row, column, and diagonal is the same. For example,
for n = 5, we can have the following magic square below that has row sums, column sums,
and diagonal sums equals to 65.

2

66664

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

3

77775

Our task is to construct a magic square given its size n, assuming that n is odd.
If we do not know the solution, we may have to use the standard recursive backtracking

routine that try to place each integer 2 [1..n2] one by one. Such Complete Search solution
is awfully too slow for large n.

Fortunately, there is a construction strategy for magic square of odd size (this solution
does not work for even size square) called the ‘Siamese (De la Loubère) method/algorithm’.
We start from an empty 2D square array. Initially, we put integer 1 in the middle of the first
row. Then we move northeast, wrapping around as necessary. If the new cell is currently
empty, we add the next integer in that cell. If the cell has been occupied, we move one
row down and continue going northeast. The partial construction of this Siamese method is
shown in Figure 9.35. We reckon that deriving this strategy without prior exposure to this
problem is likely not straightforward (although not impossible if one stares at the structure
of several odd-sized Magic Squares long enough).

Figure 9.35: The Magic Square Construction Strategy for Odd n

There are other special cases for Magic Square construction of di↵erent sizes. It may be
unnecessary to learn all of them as most likely it will not appear in programming con-
test. However, we can imagine some contestants who know such Magic Square construction
strategies will have advantage in case such problem appears.

582



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

Kattis - exo�cio

Abridged problem description: Given a blank 2D grid of size R ⇥ C (1  R,C,R ⇥ C 
200 000), put walls85 between adjacent cells so that there is exactly only one way to travel
between any pair of cell in the grid (we cannot go through a wall), and minimize the maximum
unweighted shortest path between any pair of cell in the grid. Let’s see an example for R = 3
and C = 5 on the left side of the diagram below (notice that both R and C are odd).

BFS from R=3,C=5, AC | R=4,C=5, WA R=4,C=5, AC
s=(1, 2) | _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ | | | | | | | | | | | | |
3 2 1 2 3 | |_ _| | | | | | | | | |_ _ _ _|
2 1 0 1 2 --> | _ _ | | | _ _| | _ _|
3 2 1 2 3 |_|_ _ _|_| | |_|_|_ _ _| |_|_|_ _ _|

Trying all possible ways to put the walls via recursive backtracking will be awfully TLE.
Instead, we must notice that this sample and the requirements are very similar to something:
BFS spanning tree with the center of the grid as the source. In a tree, there is only one
way to go between any pair of vertices. BFS spanning tree in an unweighted graph is also
the shortest path spanning tree. Finally, the center of the grid is also the most appropriate
source vertex for this problem.

After we notice all these, we are left with implementation task of modifying the standard
BFS to actually put the walls (i.e., transform the grid with numbers shown on the leftmost
into the required answer) and then deal with corner cases, e.g., when R is even but C is odd
(see the right side of the diagram above). Fortunately this is the only corner case for this
BFS spanning tree construction idea.

N-Queens Construction

In Book 1 and in Section 8.2.1, we discussed (various) recursive backtracking solutions to
solve the N -Queens problem. Such solutions can count (or output) all possible N -Queens
solutions, but only for N  17. But what if we are asked to print out just one (any) valid
N -Queens solution given N (see Exercise 8.2.1.1*)? If 1  N  100 000, then there is no
way we can use any form of recursive backtracking with bitmask. The keyword is any valid
N -Queens solution. From our earlier discussions, we know that there are many86 possible
N -Queens solutions. So our strategy is to hope that there are some solutions that are ‘easy
to generate’. It turns out that there are :).

To find it, we need to start from small N . For N = 1, the solution is trivial, we just put
the only queen in the only cell. For N = 2 and N = 3, we notice that there is no solution
despite trying all 2! = 2 and 3! = 6 possibilities, respectively. The interesting part is when
we try N = 4 to N = 7. After drawing enough (there are ‘just’ 2/10/4/40 distinct solutions
for N = 4/5/6/7, respectively), you may spot this pattern shown in Figure 9.36. The speed
to be able to spot this interesting pattern di↵ers from one person to another. Can you do it
yourself before you read the next page?

85Please see the full problem description for the complex formatting rules. In this section, we only show
the main idea. Note that the surrounding R ⇥ C walls (with appropriate column spacings) are there by
default and thus not part of the problem.

86The standard chessboard of size 8⇥ 8 has 92 solutions.

583



9.30. CONSTRUCTIVE PROBLEM c� Steven, Felix, Suhendry

Figure 9.36: Stair-Step Pattern for Small N -Queens Instances

At this point, you may want to shout ‘Eureka’ and code a simple ‘stair-step’ construction
algorithm to solve this problem. Unfortunately, this pattern is not yet complete... If you
generate a ‘solution’ for N = 8 using this strategy, you will quickly notice that it is not a
valid solution. At this point, some contestants may give up thinking that their algorithm is
not good enough. Fortunately this problem only have three di↵erent subcases. As we have
found one subcase, we just have to find two more subcases to solve it fully, starting with a
way to generate an 8-Queens solution quickly.

Constructive Problem in Programming Contests

This problem type is very hard to teach. Perhaps, solving as many of related constructive
problems from the compiled list below can help. Many of these problems require advanced
pattern finding skills (from small test cases), harder than the level discussed in Section 5.2
plus guessing/heuristics skills. Many solutions are classified as Ad Hoc Greedy algorithm and
thus mostly are fast (linear time) solutions. More annoyingly, many constructive problems
have subcases and missing just one of them can still lead to a WA submission.

Exercise 9.30.1*: Finish the full solution of Kattis - exo�cio and identify the remaining
two subcases of N -Queens problem!

Programming exercises related to Constructive Problem:

1. Entry Level: Kattis - espressobucks * (easy brute force construction; small n⇥m;
not about Min-Vertex-Cover)

2. UVa 01266 - Magic Square * (LA 3478 - LatinAmerica05; basic)

3. UVa 10741 - Magic Cube * (similar idea as 2D version, but now in 3D)

4. Kattis - base2palindrome * (construct all possible base 2 palindromes; put into a
set to remove duplicates and maintain order; output the M -th one)

5. Kattis - exo�cio * (we can use BFS spanning tree from center of the grid; be
careful of corner cases)

6. Kattis - plowking * (greedy construction; reverse MST problem)

7. Kattis - poplava * (actually there is a rather simple construction algorithm to
achieve the required requirement)

Extra Kattis: cake, canvasline, cuchitunnels, harddrive, leftandright, matchsticks,
newfiber, ovalwatch.

584



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.31 Interactive Problem

A few modern, but currently very rare problems, involve writing code that interacts with the
judge. This requires modern online judge, e.g., custom graders for IOI Contest Management
System (CMS), custom problem setup at Kattis Online Judge, etc. Such a problem is
currently more frequently used in the IOI rather than the ICPC, but a few ICPCs have
started to use this problem style.

Kattis - guess

An example problem is Kattis - guess where the judge has a random number (integer) be-
tween [1..1000] and the contestant can only guess the number up to 10 times to get an
Accepted verdict. Each guess87 will be immediately replied by the judge as either ‘lower’,
‘higher’, or ‘correct’ and the contestant needs to use this information to refine their guess.
Those who are aware of Binary Search concept will immediately aware of the required
dlog2(1000)e = d9.9e = 10 interactions, no matter what is the judge’s random number.

Kattis - askmarilyn

In Section 5.5, we have discussed the Monty Hall Problem. Kattis - askmarilyn is the
interactive form of that problem. There are three doors (‘A’/‘B’/‘C’) and there is a bottle
behind one of the doors. We initially choose one of the three doors and Marilyn will show
what is behind one of the three doors. We play 1000 rounds and need to collect at least 600
bottles to win, no matter what strategy used by the judge. If Marilyn shows you a bottle (it
is possible in this variant), of course we have to take it (we get nothing if don’t). Otherwise,
we always switch to the third door (the one that is not our first choice and not shown to be
empty by Marilyn). This gives us 2

3 chance of getting a bottle (expected ⇡ 666 bottles in
total) than if we stick with our first choice. But our first choice should be randomized to
beat another counter strategy by the judge (who can strategically put the bottle behind our
first choice door, show another empty door, and we wrongly switch door later).

Interactive Problem in Programming Contests

Interactive problem opens up a new problem style and still at its infancy. We reckon that
this type of problem will increase in the near future. However, take note that the solution for
this kind of interactive problem is (much) harder to debug. Some interactive problems pro-
vide custom/mock grader that one can use to test the interactivity o✏ine (without wasting
submission with the real judge).

Programming exercises related to interactive problem:

1. Entry Level: Kattis - guess * (interactive problem; binary search)

2. Kattis - amazing * (run DFS and react based on the output of the program)

3. Kattis - askmarilyn * (the famous Monty hall problem in interactive format)

4. Kattis - blackout * (interactive game theory; block one row; mirror jury’s move)

5. Kattis - crusaders * (another nice interactive problem about binary search)

6. Kattis - debellatio * (interactive problem; uses Edmonds’ Matching algorithm)

7. Kattis - dragondropped * (interactive cycle finding problem; tight constraints)

87To facilitate interactivity, we should not bu↵er the output, i.e., all output must be immediately flushed.
To do this, we have to use cout << "\n" or cout.flush() in C++; avoid Bu↵ered Output but use
System.out.println or System.out.flush() in Java; stdout.flush() in Python.

585



9.32. LINEAR PROGRAMMING c� Steven, Felix, Suhendry

9.32 Linear Programming

Introduction

Linear Programming88 (or just Linear Program, both usually abbreviated as LP) is a general
and powerful technique for solving optimization problems where the objective function and
the constraints are linear. In practice, this is the standard approach for (approximately) solv-
ing many (NP-)hard optimization problems that appears frequently in real life (see Section
8.6). A typical LP consists of three components:

1. A list of (real-valued)89 variables x1, x2, . . . , xn.

2. An objective function f(x1, x2, . . . , xn) that you are trying to maximize or minimize.
The goal is to find the best values for the variables so as optimize this function.

3. A set of constraints that limits the feasible solution space.
Each of these constraints is specified as an inequality.

In a Linear Programming problem, both the objective function and the constraints are linear
functions of the variables. This is rarely applicable in Competitive Programming, but some
rare (and usually hard) problems have these properties.

For example, given two variables: A and B, an objective function f(A,B) = A + 6B,
three constraints: A  200; B  300; A + B  400, and two more typical additional non-
negative constraints, i.e., A � 0 and B � 0, find best values for A and B so that f(A,B) is
maximized. When we put all these together, we have the following LP:

max (A+ 6B) where:

A  200

B  300

A+B  400

A � 0

B � 0

On the left is the LP represented mathematically, specified in terms of an objective function
and a set of constraints as given. On the right is a picture representing the LP geometri-
cally/visually in 2D space, where the variable A is drawn as the x-axis and the variable B
is drawn as the y-axis.

The dashed lines here represent the constraints: A  200 (i.e., a vertical line), B  300
(i.e., a horizontal line), and A + B  400 (i.e., the diagonal line). The two non-negative
constraints A � 0 and B � 0 are represented by the y-axis and x-axis, respectively. Each
constraint defines a halfspace, i.e., it divides the universe of possible solutions in half. In 2D,
each constraint is a line. In higher dimensions, a constraint is defined by a hyperplane90.

Everything that is inside the five lines represents the feasible region, which is defined as
the values of A and B that satisfy all the constraints. In general, the feasible region is the
intersection of the halfspaces defined by the hyperplanes, and from this we conclude that
the feasible region is a convex polygon.

88As with ‘Dynamic Programming ’, the term ‘Programming’ in ‘Linear Programming ’ does not refer to a
computer program but more towards a plan for something.

89The Integer Linear Programming (ILP) version requires some (or all) of the variables to be integer. The
ILP version is NP-complete.

90It is (much) harder to visualize an LP on more than 3D. Most textbook examples are in 2D (2 variables).

586



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

The feasible region for a Linear Program with variables x1, x2, . . . , xn is the set of points
(x1, x2, . . . , xn) that satisfy all the constraints. Notice that the feasible region for a Linear
Program may be: (i) empty, (ii) a single point, or (iii) infinite.

For every point in the feasible region (also called as ‘simplex’), we can calculate the value
of the objective function: A + 6B. The goal is to find a point in the feasible region that
maximizes this objective function. For each value of c, we can draw the line for A+6B = c.
Our goal is to find the maximum value of c for which this line intersects the feasible region. In
the picture above, you can see that we have drawn in this line for three values of c: c = 300,
c = 1200, and c = 1900. The last line, where A + 6B = 1900 intersects the feasible region
at exactly one point: (100, 300). This point is the maximum value that can be achieved.

One obvious di�culty in solving LPs is that the feasible space may be infinite, and in
fact, there may be an infinite number of optimal solutions. Fortunately, this maximum is
always achieved at a vertex of the polygon defined by the constraints if the feasible region
is not empty. Notice that there may be other points (e.g., on an edge or a face) that also
maximize the objective, but there is always a vertex that is at least as good. Therefore, one
way to prove that your solution is optimal is to examine all the vertices of the polygon.

So, how many vertices can there be? In 2D, a vertex may occur wherever two (indepen-
dent) constraints intersect. In general, if there are n dimensions (i.e., there are n variables), a
vertex may occur wherever n (linearly independent) hyperplanes (i.e., constraints) intersect.
Recall that if you have n linearly independent equations and n variables, there is a single
solution—that solution defines a vertex. Of course, if the equations are not linearly indepen-
dent, you may get many solutions—in that case, there is no vertex. Or, alternatively, if the
intersection point is outside the feasible region, this too is not a vertex. So in a system with
m constraints and n variables, there are mCn = O(mn) vertices. This is an exponential time
O(mn) time algorithm for solving a Linear Program: enumerate each of the O(mn) vertices
of the polytope (a more general term than polygon in n-dimensional space), calculate the
value of the objective function for each point, and take the maximum.

Simplex Method

One of the earliest techniques for solving an LP—and still one of the fastest today—is the
Simplex method. It was invented by George Dantzig in 1947 and remains in use today. There
are many variants, but all take exponential time in the worst-case. However, in practice, for
almost every LP that anyone has ever generated, it is remarkably fast.

The basic idea behind the Simplex method is remarkably simple. Recall that if an LP is
feasible, its optimum is found at a vertex. Hence, the basic algorithm can be described as
follows, where the function f represents the objective function:

1. Find any (feasible) vertex v.

2. Examine all the neighboring vertices of v: v1, v2, . . . , vk.

3. Calculate f(v), f(v1), f(v2), . . . , f(vk).
If f(v) is the maximum (among its neighbors), then stop and return v.

4. Otherwise, choose91 one of the neighboring vertices vj where f(vj) > f(v). Let v = vj.

5. Go to step (2).

91This pseudo-code is vague: which neighboring vertex should we choose? This can lead to very di↵erent
performance. For 2D toy problem in this section, we do not have that many choices, but for n-dimensional
LPs, there are much larger number of neighboring vertices to choose among. The rule for choosing the
next vertex is known as the pivot rule and a large part of designing an e�cient Simplex implementation is
choosing the pivot rule. Even so, all known pivot rules take worst-case exponential time.

587



9.32. LINEAR PROGRAMMING c� Steven, Felix, Suhendry

A Sample Execution of Basic Simplex Method

As an example, consider running the Simplex Method on the given example at the beginning
of this section. In this case, it might start with the feasible vertex (0, 0).

In the first iteration, it would calculate f(0, 0) = 0. It would also look at the two neigh-
boring vertices, calculating that f(0, 300) = 1800 and f(200, 0) = 200. Having discovered
that (0, 0) is not optimal, it would choose one of the two neighbors. Assume, in this case,
that the algorithm chooses next to visit neighbor (200, 0)92.

In the second iteration, it would calculate93 f(200, 0) = 200. It would also look at the
two neighboring vertices, calculating that f(0, 0) = 0 and f(200, 200) = 1400. In this case,
there is only one neighboring vertex that is better, and it would move to (200, 200).

In the third iteration, it would calculate f(200, 200) = 1400. It would also look at the
two neighboring vertices, calculating that f(200, 0) = 200 and f(100, 300) = 1900. In this
case, there is only one neighboring vertex that is better, and it would move to (100, 300).

In the fourth iteration, it would calculate f(100, 300) = 1900. It would also look at the
two neighboring vertices, calculating that f(200, 200) = 1400 and f(0, 300) = 1800. After
discovering that (100, 300) is better than any of its neighbors, the algorithm would stop and
return (100, 300) as the optimal point.

Notice that along the way, the algorithm might calculate some points that were not
vertices. For example, in the second iteration, it might find the point (400, 0)—which is
not feasible. Clearly, a critical part of any good implementation is quickly calculating the
feasible neighboring vertices.

Linear Programming in Programming Contests

In Competitive Programming, many top level ICPC contestants will just put a ‘good enough’
working Simplex implementation in their ICPC (25-pages) team notebook. This way, in the
rare event that a LP-related (sub)problem appears (e.g., in ICPC World Finals 2016), they
will just focus on modeling the problem into ‘standard form’ LP and then use Simplex code
as a black-box 94 algorithm.

Programming exercises related to Linear Programming:

1. Kattis - cheeseifyouplease * (simple Linear Programming problem; use Simplex)

2. Kattis - maximumrent * (basic Linear Programming problem with integer output;
we can use simplex algorithm or another simpler solution)

3. Kattis - roadtimes * (ICPC World Finals 2016; uses Simplex as subroutine)

92Notice that it does not greedily choose the best local move at all times.
93Notice that we have computed this value before, so memoization can help avoid re-computation.
94Explore Chapter 29 of [7] if you are keen to explore more details.

588



CHAPTER 9. RARE TOPICS c� Steven, Felix, Suhendry

9.33 Gradient Descent

Kattis - pizza, starnotatree, and wheretolive are three related problems that can be solved
similarly. Without the loss of generality, we just discuss one of them.

Abridged problem description of Kattis - starnotatree: Given N points located at integer
coordinates (x, y) on a 2D grid 0  x, y  10 000, a cost function f(a, b) that computes the
sum of Euclidean distances between a special point located at (a, b) to all the N points, our
job is to find the best minimum value of f(a0, b0) if we put (a0, b0) optimally.

We have a few observations, perhaps after writing a quick implementation of f(a, b) and
testing a few heuristics positions of (a0, b0): (a0, b0) will not be outside the 2D grid (in fact,
it will not be on the left/top/right/bottom of the leftmost/topmost/rightmost/bottommost
among the N points, respectively), (a0, b0) should be at the ‘geometric center’ of all N points,
and (a0, b0) is unlikely to be at integer coordinates. For example, the values of f(a, b) for
a, b 2 [4000, 4400, 4800, 5200, 5600, 6000] using 100 randomly generated points are:

b | a-> 4000 4400 4800 5200 5600 6000
4000 | 375939.23 369653.83 367238.11 368883.46 373882.45 381633.23
4400 | 368723.46 362017.00 359166.11 360802.44 365488.31 373102.70
4800 | 364755.48 358135.10 355073.66 355907.62 360008.14 367446.82
5200 | 363878.62 357291.66[353883.46]354020.46 357695.81 364906.51
5600 | 366198.62 359252.08 355332.74 354886.86 358476.40 365462.21
6000 | 371694.02 364239.45 359798.72 359152.29 362388.15 369039.36

If we fully plot f(a, b) in a 3D space where a/b/f(a, b) is on x/z/y-axis with su�cient
granularity, we see that the search space is like a cup with unique lowest value f(a0, b0) at
the optimal (a0, b0). If this is on 2D space, we can use Ternary Search. But since we are on
3D space, we need to use other approach: a (simplified) Gradient Descent:

int dx[] = {0, 1, 0,-1}, dy[] = {-1, 0, 1, 0}; // N/E/S/W
ld cx = 5000.0, cy = 5000.0;
for (ld d = 5000.0; d > 1e-12; d *= 0.99) { // decreasing search range

for (int dir = 0; dir < 4; ++dir) { // 4 directions are enough
ld nx = cx+dx[dir]*d, ny = cy+dy[dir]*d;
if (f(nx, ny) < f(cx, cy)) // if a local DESCENT step

tie(cx, cy) = {nx, ny}; // a local move
} // for this example, the final (cx, cy) = (4989.97, 5230.79)

} // with final f(cx, cy) = 353490.894604066151

The full form of Gradient Descent is more complex than what you see above. The topic of
Local Search algorithms (for (NP-)hard Optimization Problems) is a huge Computer Science
topic and Gradient Descent algorithm is just one of its simplest form. But since the search
space has no local minima that can trap this simplistic Gradient Descent, then it is su�cient.
For a much harder challenge, you can try Kattis - tsp or Kattis - mwvc.

Programming exercises related to Gradient Descent Algorithm:

1. Kattis - pizza * (gradient descent)

2. Kattis - starnotatree * (gradient descent)

3. Kattis - wheretolive * (gradient descent)

589



9.34. CHAPTER NOTES c� Steven, Felix, Suhendry

9.34 Chapter Notes

The material about Push-Relabel algorithm and Linear Programming are originally from
A/P Seth Lewis Gilbert, School of Computing, National University of Singapore, adapted
for Competitive Programming context.

After writing so much in this book in the past ⇡ 10 years, we become more aware
that there are still many other Computer Science topics that we have not covered yet. We
close this chapter—and the current edition of this book, CP4—by listing down quite a good
number of topic keywords that are eventually not included yet due to our-own self-imposed
‘writing time limit’ of 19 July 2020.

There are many other exotic data structures that are rarely used in programming contests:
Fibonacci heap, van Emde Boas tree, Red-Black tree, Splay tree, skip list, Treap, Bloom
filter, interval tree, k-d tree, radix tree, range tree, etc.

There are many other mathematics problems and algorithms that can be added, e.g.,
Möbius function, more Number Theoretic problems, various numerical methods, etc.

In Section 6.4, Section 6.5, and Section 6.6, we have seen the KMP, Su�x Tree/Array,
and Rabin-Karp solutions for the classic String Matching problem. String Matching is a
well studied topic and other (specialized) algorithms exist for other (special) purposes, e.g.,
Aho-Corasick, Z-algorithm, and Boyer-Moore. There are other specialized String algorithms
like Manacher’s algorithm.

There are more (computational) geometry problems and algorithms that we have not
written, e.g., Rotating Calipers algorithm, Malfatti circles, Min Circle Cover problem.

The topic of Network Flow is much bigger than what we have written in Section 8.4 and
the several sections in this chapter. Other topics like the Circulation problem, the Closure
problem, Gomory-Hu tree, Stoer-Wagner min cut algorithm, and Suurballe’s algorithm can
be added.

We can add more detailed discussions on a few more algorithms in Section 8.5 (Graph
Matching), namely: Hall’s Marriage Theorem and Gale-Shapley algorithm for Stable Mar-
riage problem.

In Section 8.6, we have discussed a few NP-hard/complete problems, but there are more,
e.g., Max-Clique problem, Traveling-Purchaser-Problem, Shortest-Common-

Superstring, etc.
Finally, we list down many other potential topic keywords that can possibly be included

in the future editions of this book in alphabetical order, e.g., Burrows-Wheeler Transforma-
tion, Chu-Liu/Edmonds’ Algorithm, Hu↵man Coding, Min Diameter Spanning Tree, Min
Spanning Tree with one vertex with degree constraint, Nonogram, Triomino puzzle, etc.

Statistics 1st 2nd 3rd 4th
Number of Pages - - 58 110 (+90%)
Written Exercises - - 15 0+6* = 6 (-60%)
Programming Exercises - - 80 132 (+65%; ‘only’ 3.8% in Book)

590



Bibliography

[1] A.M. Andrew. Another E�cient Algorithm for Convex Hulls in Two Dimensions. Info.
Proc. Letters, 9:216–219, 1979.

[2] Wolfgang W. Bein, Mordecai J. Golin, Lawrence L. Larmore, and Yan Zhang. The
Knuth-Yao Quadrangle-Inequality Speedup is a Consequence of Total-Monotonicity.
ACM Transactions on Algorithms, 6 (1):17, 2009.

[3] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In LATIN
2000: Theoretical Informatics, 2000.

[4] Richard Peirce Brent. An Improved Monte Carlo Factorization Algorithm. BIT Nu-
merical Mathematics, 20 (2):176–184, 1980.

[5] Brilliant. Brilliant.
https://brilliant.org/.

[6] Yoeng-jin Chu and Tseng-hong Liu. On the Shortest Arborescence of a Directed Graph.
Science Sinica, 14:1396–1400, 1965.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli↵ Stein. Introduc-
tion to Algorithm. MIT Press, 3rd edition, 2009.

[8] Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani. Algorithms. McGraw
Hill, 2008.

[9] Kenneth S. Davis and William A. Webb. Lucas’ theorem for prime powers. European
Journal of Combinatorics, 11(3):229–233, 1990.

[10] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer, 2nd edition, 2000.

[11] Yefim Dinitz. Algorithm for solution of a problem of maximum flow in a network with
power estimation. Doklady Akademii nauk SSSR, 11:1277–1280, 1970.

[12] Jack Edmonds. Paths, trees, and flowers. Canadian Journal on Maths, 17:449–467,
1965.

[13] Jack Edmonds and Richard Manning Karp. Theoretical improvements in algorithmic
e�ciency for network flow problems. Journal of the ACM, 19 (2):248–264, 1972.

[14] Project Euler. Project Euler.
https://projecteuler.net/.

[15] Michal Forǐsek. IOI Syllabus.
https://people.ksp.sk/⇠misof/ioi-syllabus/ioi-syllabus.pdf.

591



BIBLIOGRAPHY c� Steven, Felix, Suhendry

[16] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co. New York, NY, USA, 1979.

[17] William Henry Gates and Christos Papadimitriou. Bounds for Sorting by Prefix Rever-
sal. Discrete Mathematics, 27:47–57, 1979.

[18] Andrew Vladislav Goldberg and Robert Endre Tarjan. A new approach to the maximum
flow problem. In Proceedings of the eighteenth annual ACM symposium on Theory of
computing, pages 136–146, 1986.

[19] John Edward Hopcroft and Richard Manning Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on Computing, 2 (4):225–231, 1973.

[20] Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi. Permuted Longest-Common-
Prefix Array. In CPM, LNCS 5577, pages 181–192, 2009.

[21] Richard Manning Karp, Raymond E. Miller, and Arnold L. Rosenberg. Rapid identi-
fication of repeated patterns in strings, trees and arrays. In Proceedings of the fourth
annual ACM Symposium on Theory of Computing, page 125, 1972.

[22] Donald Ervin Knuth. Optimum binary search trees. Acta Informatica, 1(1):14–25, 1971.

[23] Harold William Kuhn. The Hungarian Method for the assignment problem. Naval
Research Logistics Quarterly, 2:83–97, 1955.

[24] Glenn Manacher. A new linear-time ön-lineälgorithm for finding the smallest initial
palindrome of a string”. Journal of the ACM, 22 (3):346–351, 1975.

[25] Udi Manbers and Gene Myers. Su�x arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22 (5):935–948, 1993.

[26] Gary Lee Miller. Riemann’s Hypothesis and Tests for Primality. Journal of Computer
and System Sciences, 13 (3):300–317, 1976.

[27] James Munkres. Algorithms for the Assignment and Transportation Problems. Journal
of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[28] Formerly University of Valladolid (UVa) Online Judge. Online Judge.
https://onlinejudge.org.

[29] Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press,
1987.

[30] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, 2nd
edition, 1998.

[31] John M. Pollard. A Monte Carlo Method for Factorization. BIT Numerical Mathemat-
ics, 15 (3):331–334, 1975.

[32] Michael Oser Rabin. Probabilistic algorithm for testing primality. Journal of Number
Theory, 12 (1):128–138, 1980.

[33] Kenneth H. Rosen. Elementary Number Theory and its Applications. Addison Wesley
Longman, 4th edition, 2000.

592



BIBLIOGRAPHY c� Steven, Felix, Suhendry

[34] Wing-Kin Sung. Algorithms in Bioinformatics: A Practical Introduction. CRC Press
(Taylor & Francis Group), 1st edition, 2010.

[35] Esko Ukkonen. On-line construction of su�x trees. Algorithmica, 14 (3):249–260, 1995.

[36] Tom Verhoe↵. 20 Years of IOI Competition Tasks. Olympiads in Informatics, 3:149–166,
2009.

[37] Adrian Vladu and Cosmin Negruşeri. Su�x arrays - a programming contest approach.
In GInfo, 2005.

[38] F Frances Yao. E�cient dynamic programming using quadrangle inequalities. In Pro-
ceedings of the twelfth annual ACM Symposium on Theory of Computing, pages 429–435,
1980.

[39] F Frances Yao. Speed-up in dynamic programming. SIAM Journal on Algebraic Discrete
Methods, 3(4):532–540, 1982.

593



Index

0-1 Knapsack, see Knapsack
2-CNF-SAT (2-SAT), 455
2-SUM, 479
3-CNF-SAT (3-SAT), 455
3-SUM, 479
4-SUM, 479

A*, 548
Algorithm

Andrew’s Monotone Chain, 393
Augmenting Path, 437
Brent’s Cycle-Finding, 311
De la Loubère, 582
Dinic’s, 423
DPLL, 455
Dreyfus-Wagner, 458
Edmonds’ Matching, 439, 577
Edmonds-Karp, 422
Euclid’s, 288
Extended Euclidean, 292
Fast Fourier Transform, 508
Floyd’s Cycle-Finding, 309
Ford-Fulkerson, 420, 566
Graham’s Scan, 390
Held-Karp, 443
Hopcroft-Karp, 573
Hungarian, 439, 574
Karp-Miller-Rosenberg, 346
Knuth-Morris-Pratt, 333
Kuhn-Munkres, 439, 574
Manacher’s, 361
Miller-Rabin, 284
Needleman-Wunsch, 329
Pollard’s rho, 528
Prefix Doubling, 346
Push-Relabel, 566
Rabin-Karp, 357
Sieve of Eratosthenes, 283, 288
Simplex, 587
Smith-Waterman, 330
Strassen’s, 317
Winding Number, 387

Amortized Analysis, 348, 559

Anadrome, 361
Anagram, 359
Andrew’s Monotone Chain, 393
Andrew, A. M., 367
Area

Circle, 376
Polygon, 385
Rectangle, 381
Triangle, 378

Arithmetic Progression, 275
Art Gallery Problem/Theorem, 546
atan, see atan2
atan2, 390
Augmenting Path Algorithm, 437

Bézout Identity (Lemma), 292
Backtracking, 336

Bitmask, 402
Backus Naur Form, 326
Base Number, 274
Baseball Elimination Problem, 431
Bell Numbers, 460, 537
Berge’s Lemma, 437, 573, 574, 577
BFS, 405, 407, 422
Bidirectional Search, 407
Binary Search, 351
Binary Search the Answer, 465
Binet’s Formula, 298
Binet, Jacques P. M., 297
Binomial Coe�cients, 299
Bipartite Graph

Dominating-Set, 453
Max-Independent-Set, 449
Min-Path-Cover on DAG, 454
Min-Vertex-Cover, 449

Bipartite Matching, see MCBM, see MCBM
Birthday Paradox, 355
Bisection Method, 466
Bitmask, 402, 411
Bitonic-TSP, see TSP
Bitset, 283
Blossom, 439, 578
Bogus Nim, 541

594



INDEX c� Steven, Felix, Suhendry

Border of a String, 334
Brahmagupta’s Formula, 536
Brent’s Cycle-Finding Algorithm, 311
Brent, Richard P., 307, 528
Burnside’s Lemma, 537

C++11
regex, 326

C++17
gcd, 289
lcm, 289

Catalan Numbers, 300
Catalan, Eugène Charles, 297
Cayley’s Formula, 536
CCW Test, 373
Centroid, 503
Chinese Postman Problem, 580
Chinese Remainder Theorem, 530
Cipher, 326
Circles, 376
Closest Pair Problem, 547
Coin-Change, 442
Collatz’s Conjecture, 279
Collisions, 358
Combinatorial Game Theory, 538
Combinatorics, 298
Complete Bipartite Graph, 536, 573
Complete Graph, 580
Composite Numbers, 284
Computational Geometry, see Geometry
Conjecture

Collatz’s, 279
Goldbach’s, 294

Conjunctive Normal Form (CNF), 455
Constructive

Proof, 449
Constructive Problem, 582
Convex Hull, 390
Convex Hull Technique, 558
Coprime, 285, 287
Cross Product, 373
Cryptography, 326
Cut, see Min Cut
cutPolygon, 388, 546
Cycle-Finding, 308

D&C, 288, 316, 351, 511, 547, 561
DAG

Min-Path-Cover, 454
De Bruijn Sequence, 505
De la Loubère Method/Algorithm, 582

Decision Tree, 312
Decomposition, 465
Degree Sequence, 501, 536
Depth Limited Search, 336, 549
Deque, 483
Derangement, 305, 536
Digit DP, 331
Dinic’s Algorithm, 423
Dinitz, Yefim, 427
Diophantus of Alexandria, 292, 297
Divide and Conquer Optimization, 561
Divisibility Test, 297
Divisors

Number of, 286
Sum of, 286

Dominating-Set, 453
DP, 299, 329, 411, 485, 554

Bitmask, 411
Optimization, 558

DP on Tree, 448
DPLL Algorithm, 455
Dreyfus-Wagner Algorithm, 458

Edit Distance, 329
Edmonds’ Matching Algorithm, 439, 577
Edmonds, Jack R., 422, 427, 439, 578
Edmonds-Karp Algorithm, 422
Egerváry, Jenö, 440
Egg Dropping Puzzle, 554
Eratosthenes of Cyrene, 281, 283
Erdős-Gallai Theorem, 536
Euclid of Alexandria, 288, 367
Euclid’s Algorithm, 288
Euler’s Formula, 536
Euler’s Phi (Totient) Function, 287
Euler’s Theorem, 291
Euler, Leonhard, 281, 287
Eulerian Graph, 580
Eulerian Path/Tour, 499
Expected Value, 306
Extended Euclidean Algorithm, 292

Factorial, 289
Factors, see Prime Factors
Fast Fourier Transform, 508

All Distances, 525
All Dot Products, 522
All Possible Sums, 522
Bitstring Alignment, 524
Bitstring Matching, 524
String Matching, 524

595



INDEX c� Steven, Felix, Suhendry

String Matching with Wildcard, 525
Feasible Region, 586
Fermat’s little theorem, 291, 299, 535
Fermat, Pierre de, 303
Fermat-Torricelli Point, 380
Fibonacci Numbers, 298
Fibonacci, Leonardo, 297, 298
Floating Point Operations, 366
Flow, see Network Flow
Floyd’s Cycle-Finding Algorithm, 309
Ford Jr, Lester Randolph, 420
Ford-Fulkerson Method/Algorithm, 420, 566
Formula

Binet’s, 298
Brahmagupta’s, 536
Cayley’s, 536
Euler’s, 536
Haversine, 397
Legendre’s, 290
Shoelace, 385

Four Color Theorem, 459
Fulkerson, Delbert Ray, 420, 427
Functional Graph, 308
Fundamental Theorem of Arithmetic, 284

Game Theory
Basic, 312
Combinatorial, 538

Game Tree, see Decision Tree
Gaussian Elimination, 543
GCD, 277
Geometric Progression, 275
Geometry, 365
Goldbach’s Conjecture, 294
Goldbach, Christian, 297
Goldberg, Andrew Vladislav, 570
Golden Ratio, 298
Gradient Descent, 589
Graham’s Scan Algorithm, 390
Graham, Ronald Lewis, 367, 390
Graph Matching, 435, 574
Graph Modeling, 432, 450, 452
Graph-Coloring, 459
Great-Circle Distance, 397
Greatest Common Divisor, 288
Greedy Algorithm, 298
Grid, 276
Grundy Number, see Nimber

Halfspace, 586
Hall’s Marriage Theorem, 440

Hall, Philip, 440
Hamiltonian-Path/Tour, 445
Hamming Distance, 331
Handshaking Lemma, 580
Hashing, 355
Haversine Formula, 397
Heavy-Light Decomposition, 493
Held-Karp Algorithm, 443
Heron of Alexandria, 367
Heron’s Formula, 378
Hopcroft-Karp Algorithm, 573
Hungarian Algorithm, 439, 574
Hyperplane, 586

Identity Matrix, 315
Implication Graph, 455
Inclusion-Exclusion, 302
Independent Set, 447
insidePolygon, 387
Integer Operations, 366
Interactive Problem, 585
IOI 2008 - Type Printer, 354
IOI 2009 - Mecho, 473
IOI 2011 - Alphabets, 279
IOI 2011 - Hottest, 484
IOI 2011 - Ricehub, 484
IOI 2012 - Tourist Plan, 484
isConvex, 386, 546
Iterative Deepening A*, 549

Java BigInteger Class
Base Number Conversion, 275
GCD, 277
modPow, 317
Probabilistic Prime Testing, 284

Java String (Regular Expression), 326

König, Dénes, 440
Karp, Richard Manning, 422, 427
Karp-Miller-Rosenberg Algorithm, 346
Kattis - 2naire, 307
Kattis - 3dprinter, 280
Kattis - aaah, 328
Kattis - abstractart, 395
Kattis - ada *, 280
Kattis - airlinehub *, 397
Kattis - airports, 464
Kattis - aliennumbers *, 279
Kattis - aliens, 354
Kattis - allaboutthatbase *, 279
Kattis - alldi↵erentdirections *, 383

596



INDEX c� Steven, Felix, Suhendry

Kattis - alloys, 278
Kattis - almostperfect *, 295
Kattis - amazing *, 585
Kattis - amsterdamdistance *, 382
Kattis - amultiplicationgame, 314
Kattis - anagramcounting *, 304
Kattis - animal *, 358
Kattis - anothercandies *, 296
Kattis - anotherdice, 307
Kattis - antennaplacement, 464
Kattis - anthony *, 307
Kattis - anthonyanddiablo, 382
Kattis - anti11 *, 303
Kattis - apaxiaaans *, 327
Kattis - apaxianparent, 328
Kattis - aplusb *, 527
Kattis - appallingarchitecture, 278
Kattis - aqueducts *, 576
Kattis - arachnophobia, 473
Kattis - areal, 383
Kattis - areyoulistening, 474
Kattis - arithmetic *, 279
Kattis - arrivingontime *, 473
Kattis - artur, 475
Kattis - artwork *, 477
Kattis - asciifigurerotation *, 328
Kattis - askmarilyn *, 305, 585
Kattis - aspenavenue *, 418
Kattis - atrivialpursuit *, 529
Kattis - automatictrading *, 354
Kattis - averageseasy, 278
Kattis - averageshard *, 278
Kattis - avion, 337
Kattis - avoidingtheapocalypse *, 434
Kattis - babylonian, 279
Kattis - bachetsgame *, 314
Kattis - balanceddiet, 463
Kattis - ballbearings, 382
Kattis - base2palindrome *, 584
Kattis - basic, 279
Kattis - basicremains *, 275, 279
Kattis - batmanacci *, 303
Kattis - batteries *, 557
Kattis - bazen, 383
Kattis - beanbag *, 463
Kattis - beautifulprimes, 278
Kattis - beavergnaw *, 397
Kattis - beehives, 474
Kattis - beehouseperimeter *, 276, 280
Kattis - beeproblem *, 477

Kattis - bells, 409
Kattis - bestcompression, 280
Kattis - bicikli, 475
Kattis - biggest *, 382
Kattis - bigtruck, 410
Kattis - bilateral *, 464
Kattis - billiard *, 383
Kattis - bing *, 473
Kattis - birthdaycake, 537
Kattis - bishops *, 278
Kattis - blackout *, 585
Kattis - blockgame2 *, 314
Kattis - bobby *, 307
Kattis - boggle *, 337
Kattis - bond, 307
Kattis - bookcircle, 464
Kattis - borg, 475
Kattis - bottles *, 397
Kattis - boxes *, 500
Kattis - bribe, 307
Kattis - bridgeautomation, 418
Kattis - browniepoints *, 382
Kattis - budget, 434
Kattis - buggyrobot, 410
Kattis - buggyrobot2, 410
Kattis - bumped *, 410
Kattis - bundles, 418
Kattis - burrowswheeler, 354
Kattis - bus, 280
Kattis - busnumbers2 *, 473
Kattis - busplanning *, 463
Kattis - busticket *, 417, 418
Kattis - buzzwords *, 354
Kattis - cake, 584
Kattis - calculator *, 327
Kattis - candlebox *, 279
Kattis - candydistribution *, 297
Kattis - canvasline, 584
Kattis - capsules, 409
Kattis - cardboardcontainer *, 492
Kattis - cardhand, 477
Kattis - cargame, 337
Kattis - carpet, 473
Kattis - carpool *, 477
Kattis - catalan *, 304
Kattis - catalansquare *, 304
Kattis - catandmice *, 473
Kattis - catering *, 572
Kattis - catvsdog, 464
Kattis - celebritysplit, 463

597



INDEX c� Steven, Felix, Suhendry

Kattis - centsavings *, 476
Kattis - cetvrta *, 383
Kattis - chanukah, 278
Kattis - character *, 304
Kattis - charlesincharge *, 473
Kattis - cheatingatwar, 576
Kattis - checkingforcorrectness *, 320
Kattis - cheese, 397
Kattis - cheeseifyouplease *, 588
Kattis - chemistsvows, 332
Kattis - chesscompetition, 434
Kattis - chesstournament, 474
Kattis - chewbacca *, 500
Kattis - chineseremainder *, 533
Kattis - circular, 474
Kattis - citrusintern, 464
Kattis - city, 418
Kattis - classicalcounting *, 535
Kattis - clockconstruction, 474
Kattis - clockpictures *, 477
Kattis - closestpair1 *, 547
Kattis - closestpair2 *, 547
Kattis - cocoacoalition, 297
Kattis - coke *, 418
Kattis - cokolada *, 280
Kattis - collatz *, 279
Kattis - collidingtra�c *, 474
Kattis - coloring, 463
Kattis - committeeassignment *, 409
Kattis - companypicnic *, 418
Kattis - completingthesquare, 382
Kattis - congest, 434
Kattis - consecutivesums *, 296
Kattis - constrainedfreedomofchoice, 419
Kattis - contestscheduling, 476
Kattis - convex *, 395
Kattis - convexhull *, 395
Kattis - convexhull2, 395
Kattis - convexpolygonarea *, 395
Kattis - conveyorbelts, 434
Kattis - cookiecutter, 395
Kattis - cool1, 311
Kattis - copsandrobbers, 434
Kattis - cordonbleu *, 576
Kattis - correspondence, 409
Kattis - councilling, 434
Kattis - countcircuits *, 419
Kattis - countingclauses, 464
Kattis - countingtriangles, 382
Kattis - coveredwalkway *, 565

Kattis - cpu, 477
Kattis - crackerbarrel, 418
Kattis - crackingthecode *, 327
Kattis - cranes *, 474
Kattis - crne *, 278
Kattis - cropeasy *, 383
Kattis - cross, 464
Kattis - crowdcontrol *, 475
Kattis - crusaders *, 585
Kattis - crypto, 279
Kattis - cuchitunnels, 584
Kattis - cudak, 332
Kattis - cursethedarkness *, 382
Kattis - curvyblocks *, 280
Kattis - cuttingbrownies, 314
Kattis - cuttingcorners *, 395
Kattis - dailydivision, 474
Kattis - darkness, 434
Kattis - dartscores, 382
Kattis - dartscoring, 395
Kattis - dasblinkenlights, 295
Kattis - data *, 295
Kattis - deadend, 475
Kattis - deadfraction *, 281
Kattis - deathknight, 337
Kattis - debellatio *, 579, 585
Kattis - declaration, 332
Kattis - dejavu, 474
Kattis - delivering, 464
Kattis - destinationunknown *, 410
Kattis - detaileddi↵erences, 328
Kattis - dicebetting *, 307
Kattis - dicegame, 307
Kattis - dickandjane, 278
Kattis - dictionaryattack *, 474
Kattis - di↵erentdistances, 280
Kattis - digitdivision, 475
Kattis - digitsum, 332
Kattis - diplomacy, 475
Kattis - distinctivecharacter, 410
Kattis - divisible *, 297
Kattis - divisors *, 295
Kattis - doggopher *, 474
Kattis - doodling, 295
Kattis - doorman, 278
Kattis - doublets *, 474
Kattis - downfall, 474
Kattis - dragonball1, 476
Kattis - dragondropped *, 311, 585
Kattis - dunglish, 475

598



INDEX c� Steven, Felix, Suhendry

Kattis - dutyscheduler *, 434
Kattis - dvaput, 354
Kattis - dvoniz *, 476
Kattis - eastereggs, 464
Kattis - eatingeverything, 418
Kattis - eatingout, 278
Kattis - ecoins *, 409
Kattis - egypt *, 383
Kattis - eko, 476
Kattis - election *, 303
Kattis - emergency *, 475
Kattis - enemyterritory *, 473
Kattis - engaging *, 576
Kattis - enlarginghashtables *, 294
Kattis - enteringthetime, 410
Kattis - enviousexponents, 477
Kattis - equalsumseasy *, 463
Kattis - equations *, 545
Kattis - equationsolver *, 545
Kattis - equilibrium, 477
Kattis - espressobucks *, 584
Kattis - estimatingtheareaofacircle *, 382
Kattis - euclidsgame *, 314
Kattis - eulersnumber, 296
Kattis - europeantrip *, 464
Kattis - evilstraw *, 362
Kattis - exam *, 332
Kattis - exchangerates, 418
Kattis - exo�cio *, 584
Kattis - expandingrods, 473
Kattis - explosion, 307
Kattis - factovisors *, 296
Kattis - factstone *, 280
Kattis - fakescoreboard, 434
Kattis - farey *, 295
Kattis - favourable *, 419
Kattis - fencebowling, 473
Kattis - fiat *, 304
Kattis - fibonaccicycles *, 311
Kattis - fiftyshades, 337
Kattis - figurinefigures *, 527
Kattis - findinglines *, 474
Kattis - findpoly, 475
Kattis - fleaonachessboard, 280
Kattis - flipfive *, 409
Kattis - floodingfields, 434
Kattis - flowergarden *, 294
Kattis - flowers *, 397
Kattis - flowfree *, 463
Kattis - flowlayout, 383

Kattis - font *, 463
Kattis - forestforthetrees, 473
Kattis - fractalarea, 382
Kattis - fraction *, 281
Kattis - fractionallotion, 281
Kattis - freighttrain, 473
Kattis - frosting, 383
Kattis - frustratedqueue, 419
Kattis - fundamentalneighbors *, 296
Kattis - galactic, 474
Kattis - gcds, 473
Kattis - gears2 *, 475
Kattis - generalchineseremainder *, 533
Kattis - geneticsearch *, 337
Kattis - genius, 307
Kattis - gettingthrough *, 477
Kattis - globalwarming *, 476
Kattis - glyphrecognition, 477
Kattis - gmo, 477
Kattis - gnollhypothesis, 307
Kattis - goatrope, 382
Kattis - godzilla, 475
Kattis - goingdutch, 419
Kattis - goldbach2 *, 294
Kattis - golfbot *, 527
Kattis - goodcoalition *, 307
Kattis - goodmessages, 327
Kattis - granica *, 533
Kattis - grassseed, 383
Kattis - gravamen *, 473
Kattis - greatswercporto *, 409
Kattis - greedypolygons, 383
Kattis - gridgame, 473
Kattis - gridmst *, 475
Kattis - grille, 327
Kattis - guardianofdecency, 450, 464
Kattis - guess *, 585
Kattis - guessthenumbers *, 477
Kattis - haiku, 332
Kattis - hailstone, 279
Kattis - halfacookie, 382
Kattis - hangman, 337
Kattis - happyprime, 311
Kattis - harddrive, 584
Kattis - hashing *, 358
Kattis - heliocentric *, 531, 533
Kattis - help2, 328
Kattis - heritage *, 332
Kattis - herman, 382
Kattis - hidden *, 327

599



INDEX c� Steven, Felix, Suhendry

Kattis - hiddenwords, 337
Kattis - hidingchickens *, 419
Kattis - highscore2, 477
Kattis - hillnumbers *, 331, 332
Kattis - hittingtargets, 383
Kattis - hnumbers, 476
Kattis - holeynqueensbatman *, 409
Kattis - homework, 418
Kattis - honey *, 304
Kattis - honeyheist *, 280
Kattis - houseofcards *, 537
Kattis - howmanydigits, 296
Kattis - howmanyzeros *, 278
Kattis - humancannonball *, 474
Kattis - humancannonball2, 383
Kattis - hurricanedanger *, 382
Kattis - hydrasheads, 409
Kattis - ignore *, 279
Kattis - iks *, 296
Kattis - illiteracy, 409
Kattis - imagedecoding *, 328
Kattis - imperfectgps *, 382
Kattis - incognito *, 304
Kattis - industrialspy *, 475
Kattis - infiniteslides, 397
Kattis - inflagrantedelicto *, 332
Kattis - ingestion, 418
Kattis - insert, 303
Kattis - installingapps, 477
Kattis - integerdivision *, 304
Kattis - interestingintegers, 303
Kattis - inversefactorial *, 296
Kattis - irepeatmyself *, 328
Kattis - ironcoal, 464
Kattis - irrationaldivision, 314
Kattis - itcanbearranged, 464
Kattis - itsasecret *, 327
Kattis - ivana, 314
Kattis - jabuke, 395
Kattis - jabuke2, 410
Kattis - jackpot *, 295
Kattis - jailbreak *, 464
Kattis - janitortroubles *, 537
Kattis - jobpostings, 572
Kattis - joggers, 464
Kattis - joggingtrails *, 581
Kattis - johnsstack, 418
Kattis - jointattack, 281
Kattis - joylessgame, 314
Kattis - jughard, 297

Kattis - jumpingmonkey, 410
Kattis - jumpingyoshi, 410
Kattis - jupiter *, 434
Kattis - juryjeopardy *, 328
Kattis - justpassingthrough *, 410
Kattis - kaleidoscopicpalindromes *, 362
Kattis - keyboard *, 410
Kattis - kinarow *, 337
Kattis - kitchen, 410
Kattis - kitchencombinatorics, 304
Kattis - kleptography, 327
Kattis - kletva, 474
Kattis - knightsearch *, 337
Kattis - knightsfen, 409
Kattis - kolone, 328
Kattis - kornislav, 383
Kattis - ladder, 383
Kattis - landscaping, 434
Kattis - largesttriangle, 395
Kattis - leftandright, 584
Kattis - lemonadetrade, 280
Kattis - lifeforms, 354
Kattis - limbo1, 278
Kattis - limbo2, 278
Kattis - lindenmayorsystem *, 327
Kattis - linearrecurrence, 320
Kattis - linije *, 314
Kattis - listgame, 295
Kattis - ljutnja, 477
Kattis - lockedtreasure *, 303
Kattis - logo, 382
Kattis - logo2 *, 382
Kattis - loorolls, 278
Kattis - lostinthewoods *, 307
Kattis - lostisclosetolose, 474
Kattis - low, 473
Kattis - loworderzeros *, 296
Kattis - ls, 332
Kattis - mafija, 464
Kattis - magical3, 297
Kattis - magicallights *, 474
Kattis - mailbox, 418
Kattis - makingpalindromes *, 362
Kattis - mandelbrot, 382
Kattis - mapcolouring, 463
Kattis - maptiles2 *, 280
Kattis - marchofpenguins, 434
Kattis - mario, 474
Kattis - matchsticks, 584
Kattis - mathworksheet, 328

600



INDEX c� Steven, Felix, Suhendry

Kattis - matrix *, 281
Kattis - maxflow, 434
Kattis - maximumrent *, 588
Kattis - mazemovement *, 434
Kattis - megainversions *, 475
Kattis - meowfactor *, 297
Kattis - mincostmaxflow *, 572
Kattis - mincut, 434
Kattis - minibattleship, 409
Kattis - mixedbasearithmetic *, 279
Kattis - mixedfractions *, 281
Kattis - mobilization, 477
Kattis - modulararithmetic *, 297
Kattis - modulo, 296
Kattis - modulodatastructures *, 489, 492
Kattis - money *, 565
Kattis - monumentmaker, 327
Kattis - moretriangles *, 527
Kattis - mortgage *, 278
Kattis - mountainbiking *, 383
Kattis - movingday, 397
Kattis - mububa, 418
Kattis - multigram *, 362
Kattis - mwvc *, 451
Kattis - names *, 362
Kattis - namethatpermutation *, 296
Kattis - narrowartgallery *, 419
Kattis - neighborhoodwatch *, 278
Kattis - neutralground, 434
Kattis - newfiber, 584
Kattis - nimionese, 328
Kattis - nine *, 278
Kattis - nizovi *, 328
Kattis - nonprimefactors *, 295
Kattis - ntnuorienteering, 476
Kattis - numbersetseasy, 474
Kattis - numbersetshard, 474
Kattis - oddbinom *, 303
Kattis - odds *, 307
Kattis - o�cespace *, 383
Kattis - oktalni *, 279
Kattis - olderbrother, 296
Kattis - ones *, 296
Kattis - ontrack *, 475
Kattis - openpitmining, 434
Kattis - orchard, 307
Kattis - orderlyclass, 328
Kattis - ornaments *, 382
Kattis - ostgotska, 337
Kattis - otherside, 278

Kattis - otpor *, 327
Kattis - ovalwatch, 584
Kattis - ozljeda, 476
Kattis - pachinkoprobability *, 419
Kattis - palindromesubstring *, 362
Kattis - pandachess *, 332
Kattis - parket, 296
Kattis - parsinghex, 279
Kattis - particlecollision, 474
Kattis - partygame, 311
Kattis - pascal *, 294
Kattis - password, 307
Kattis - pathtracing, 328
Kattis - pauleigon, 278
Kattis - pebblesolitaire, 409
Kattis - pebblesolitaire2 *, 419
Kattis - peggamefortwo, 314
Kattis - peragrams *, 362
Kattis - perfectpowers, 296
Kattis - perica, 303
Kattis - periodicstrings *, 328
Kattis - permutationencryption, 327
Kattis - permutedarithmeticsequence *, 279
Kattis - persistent, 296
Kattis - phonelist *, 328
Kattis - piano, 434
Kattis - pieceofcake2, 383
Kattis - pikemanhard, 477
Kattis - pizza *, 589
Kattis - pizza2, 382
Kattis - platforme *, 382
Kattis - playfair *, 327
Kattis - playingtheslots, 395
Kattis - plot *, 280
Kattis - plowking *, 584
Kattis - pointinpolygon *, 395
Kattis - polish *, 327
Kattis - pollygone, 307
Kattis - polygonarea, 395
Kattis - polymul1, 280
Kattis - polymul2 *, 527
Kattis - pop, 397
Kattis - poplava *, 584
Kattis - porpoises *, 320
Kattis - posterize, 418
Kattis - pot, 280
Kattis - powereggs *, 557
Kattis - powers, 320
Kattis - powerstrings *, 337
Kattis - prettygoodcuberoot, 473

601



INDEX c� Steven, Felix, Suhendry

Kattis - primalrepresentation *, 294
Kattis - primepath, 475
Kattis - primereduction *, 294
Kattis - primes2 *, 294
Kattis - primesieve *, 294
Kattis - princeandprincess *, 332
Kattis - program *, 476
Kattis - programmingteamselection *, 463
Kattis - programmingtutors *, 473
Kattis - progressivescramble, 327
Kattis - protectingthecollection *, 418
Kattis - prsteni *, 295
Kattis - pseudoprime *, 294
Kattis - pyro, 477
Kattis - queenspatio, 383
Kattis - quickestimate, 328
Kattis - quiteaproblem *, 337
Kattis - racingalphabet, 382
Kattis - ra✏e, 307
Kattis - rafting, 382
Kattis - raggedright *, 328
Kattis - ragingriver *, 572
Kattis - rainbowroadrace, 410
Kattis - ratings, 419
Kattis - rationalarithmetic, 281
Kattis - rationalratio, 281
Kattis - rationalsequence *, 279
Kattis - rats *, 311
Kattis - reactivity *, 464
Kattis - rectanglesurrounding *, 383
Kattis - rectangularspiral, 278
Kattis - recursionrandfun *, 418
Kattis - redrover, 337
Kattis - redsocks, 307
Kattis - reducedidnumbers, 473
Kattis - relatives *, 295
Kattis - remainderreminder *, 533
Kattis - repeatedsubstrings, 354
Kattis - researchproductivityindex *, 477
Kattis - reseto *, 294
Kattis - rhyming *, 328
Kattis - ricochetrobots, 410
Kattis - ridofcoins *, 464
Kattis - rijeci *, 303
Kattis - risk, 473
Kattis - roadtimes *, 588
Kattis - roberthood *, 395
Kattis - robotmaze *, 410
Kattis - robotprotection *, 395
Kattis - robotturtles *, 410

Kattis - rockclimbing, 473
Kattis - rollercoasterfun *, 418
Kattis - rootedsubtrees *, 500
Kattis - rot, 328
Kattis - rotatecut, 328
Kattis - roundedbuttons *, 383
Kattis - safe *, 409
Kattis - sanic, 382
Kattis - santaklas, 383
Kattis - satisfiability, 463
Kattis - schoolspirit, 280
Kattis - scrollingsign *, 337
Kattis - secretsanta, 307
Kattis - segmentdistance, 382
Kattis - selectgroup, 327
Kattis - selfsimilarstrings *, 473
Kattis - sendmoremoney, 409
Kattis - sequence, 278
Kattis - sequentialmanufacturing, 278
Kattis - seti *, 545
Kattis - setstack, 474
Kattis - settlers2, 280
Kattis - sheldon, 279
Kattis - shopping, 476
Kattis - shrine *, 477
Kattis - sibice, 382
Kattis - signals, 332
Kattis - simon, 337
Kattis - simonsays, 337
Kattis - simplepolygon, 395
Kattis - sjecista *, 537
Kattis - skijumping, 473
Kattis - skyline, 395
Kattis - slatkisi, 280
Kattis - smallestmultiple *, 295
Kattis - smartphone *, 328
Kattis - socialadvertising *, 463
Kattis - softpasswords, 328
Kattis - sound *, 484
Kattis - soylent, 278
Kattis - soyoulikeyourfoodhot *, 297
Kattis - sparklesseven *, 474
Kattis - speedyescape, 476
Kattis - splat, 474
Kattis - sprocketscience, 477
Kattis - squawk *, 320
Kattis - starnotatree *, 589
Kattis - stickysituation *, 383
Kattis - stirlingsapproximation, 280
Kattis - stringfactoring *, 332

602



INDEX c� Steven, Felix, Suhendry

Kattis - stringmatching *, 358
Kattis - stringmultimatching, 354
Kattis - subexpression *, 327
Kattis - subseqhard *, 484
Kattis - substrings, 354
Kattis - substringswitcheroo *, 362
Kattis - subwayplanning, 474
Kattis - sudokunique, 463
Kattis - su�xarrayreconstruction *, 354
Kattis - su�xsorting *, 354
Kattis - sumandproduct, 476
Kattis - sumkindofproblem, 278
Kattis - sumsets, 463
Kattis - sumsquareddigits, 279
Kattis - svm, 382
Kattis - taisformula, 383
Kattis - targetpractice, 474
Kattis - taxicab, 464
Kattis - temperatureconfusion, 281
Kattis - ternarianweights, 463
Kattis - tetration, 280
Kattis - textencryption *, 327
Kattis - textureanalysis, 328
Kattis - thebackslashproblem *, 280
Kattis - thedealoftheday, 475
Kattis - thekingofthenorth *, 434
Kattis - thermostat *, 281
Kattis - thesaurus, 473
Kattis - thinkingofanumber *, 297
Kattis - thore, 328
Kattis - threedigits *, 296
Kattis - tightfitsudoku, 463
Kattis - tightlypacked, 477
Kattis - tiles *, 527
Kattis - tiredterry, 476
Kattis - tolower, 328
Kattis - tomography, 434
Kattis - tourist, 572
Kattis - tracksmoothing, 382
Kattis - tractor, 419
Kattis - tram, 474
Kattis - transportation *, 434
Kattis - treasure, 410
Kattis - treasurediving *, 476
Kattis - triangle, 280
Kattis - triangleornaments, 382
Kattis - trilemma *, 383
Kattis - trip *, 281
Kattis - tritiling *, 304
Kattis - trojke, 382

Kattis - tsp *, 443
Kattis - tugofwar, 463
Kattis - tutorial *, 296
Kattis - twostones *, 278
Kattis - typo *, 358
Kattis - umbraldecoding *, 474
Kattis - ummcode, 327
Kattis - undetected *, 473
Kattis - unfairplay, 431, 434
Kattis - unicycliccount, 475
Kattis - uniquedice, 475
Kattis - units, 475
Kattis - unlockpattern *, 382
Kattis - unlockpattern2, 474
Kattis - unusualdarts, 474
Kattis - urbandesign, 474
Kattis - uxuhulvoting, 419
Kattis - vacuumba, 383
Kattis - vauvau, 296
Kattis - vivoparc, 463
Kattis - volumeamplification, 418
Kattis - vuk, 475
Kattis - waif, 434
Kattis - walkforest *, 476
Kattis - walkway *, 474
Kattis - waronweather, 397
Kattis - watchdog, 382
Kattis - water, 434
Kattis - weather, 477
Kattis - wedding *, 464
Kattis - welcomehard, 418
Kattis - whatsinit, 418
Kattis - wheels, 477
Kattis - wherehaveyoubin, 419
Kattis - wheretolive *, 589
Kattis - whichbase, 279
Kattis - wifi *, 473
Kattis - wipeyourwhiteboards, 297
Kattis - woodensigns, 419
Kattis - wordladder2, 475
Kattis - wordsfornumbers, 328
Kattis - wrapping, 395
Kattis - xentopia, 410
Kattis - yoda *, 281
Kattis - zapis, 332
Kattis - zipfslaw *, 328
Kattis - znanstvenik, 473
Knapsack, 442

Fractional, 442
Knuth’s Optimization, 563

603



INDEX c� Steven, Felix, Suhendry

Knuth, Donald Ervin, 326
Knuth-Morris-Pratt Algorithm, 333
Konig’s Theorem, 449
Kosaraju’s Algorithm, 456
Kuhn, Harold William, 440
Kuhn-Munkres Algorithm, 439, 574

LA 2577 - Rooted Trees Isomorphism *, 504
LA 5059 - Playing With Stones *, 542
LA 5061 - Lightning Energy Report *, 495
LA 6803 - Circle and Marbles *, 542
LA 6916 - Punching Robot *, 535
Law of Cosines, 380
Law of Sines, 380
Least Common Multiple, 288
Left-Turn Test, see CCW Test
Legendre’s Formula, 290
Lemma

Bézout, 292
Berge’s, 437, 573, 574, 577
Burnside’s, 537
Handshaking, 580
Nim-sum, 539

Levenshtein Distance, 329
Linear Algebra, 543
Linear Diophantine Equation, 292
Linear Programming, 586
Lines, 371
Logarithm, 275
Longest Common Prefix, 345
Longest Common Subsequence, 331
Longest Common Substring, 342, 352
Longest Repeated Substring, 341, 352
Lowest Common Ancestor, 458, 499
Lucas’ Theorem, 299, 534
Lucas, Édouard, 304

Magic Square, 582
Manacher’s Algorithm, 361
Manber, Udi, 354
Manhattan Distance, 548
Marin Mersenne, 281
Matching

Graph, 435, 574
String, 333

Mathematics, 273, 468
Matrix, 315
Matrix Chain Multiplication, 412, 497
Matrix Modular Power/Exponentiation, 317
Max Cardinality Bip Matching, see MCBM
Max Cardinality Matching, 439, 577

Max Edge-Disjoint Paths, 430
Max Flow, see Network Flow
Max Independent Paths, 430
Max-Clique, 461
Max-Flow Min-Cut Theorem, 420
Max-Independent-Set, see MIS
MCBM, 436, 574
Meet in the Middle, 407, 553
Mersenne Prime, 282
Mex, 541
Miller, Gary Lee, 281
Miller-Rabin Algorithm, 284
Min Cost (Max) Flow, 571
Min Cut, 429
Min Lexicographic Rotation, 354
Min-Clique-Cover, 460
Min-Feedback-Arc-Set, 461
Min-Path-Cover, see MPC
Min-Set-Cover, see MSC
Min-Vertex-Cover, see MVC
Minimax strategy, 312
MIS, 447

Max-Weighted-Independent-Set, 451
on Bipartite Graph, 449, 451
on Tree, 448, 451

Misére Nim, 540
Modified Sieve, 288
Modular Arithmetic, 290
Modular Multiplicative Inverse, 291, 293
Modular Power/Exponentiation, 317
Monotone Chain, see Andrew’s ...
Monty Hall Problem, 305, 585
Morris, James Hiram, 332
Moser’s Circle, 536
MPC, 454

on DAG, 454
MSC, 453
Multifactorial, 289, 405
Multinomial Coe�cients, 302
Multiset, 302
Munkres, James Raymond, 440
MVC, 447, 546

Art Gallery Problem, 546
Min-Weighted-Vertex-Cover, 451
on Bipartite Graph, 449, 451
on Tree, 448, 451

Myers, Gene, 354

N-Queens Problem, 402
Needleman, Saul B., 337

604



INDEX c� Steven, Felix, Suhendry

Needleman-Wunsch Algorithm, 329
Network Flow, 420, 423

Baseball Elimination Problem, 431
Max Edge-Disjoint Paths, 430
Max Independent Paths, 430
Min Cost (Max) Flow, 571
Min Cut, 429
Multi-source/Multi-sink, 429
Vertex Capacities, 429

Nim, 538
Nim-sum Lemma, 539
Nimber, 541
NP-hard/complete, 441

3-CNF-SAT (3-SAT), 455
Coin-Change, 442
Graph-Coloring, 459, 460
Hamiltonian-Path/Tour, 445
Knapsack, 442
Max-Clique, 461
Max-Independent-Set, 447–449
Min-Clique-Cover, 459, 460
Min-Feedback-Arc-Set, 461
Min-Path-Cover, 454
Min-Set-Cover, 453
Min-Vertex-Cover, 447–449
Partition, 461
Partition-Into-Cliques, 459, 460
Partition-Into-Triangles, 461
Shortest-Common-Superstring, 461
Steiner-Tree, 457
Subset-Sum, 442
Sudoku, 459
Traveling-Salesman-Problem, 443

Number System, 275
Number Theory, 282
Numbers

Bell, 537
Catalan, 300
Fibonacci, 298
Stirling, 537

O✏ine Queries, 490
Optimal Play, see Perfect Play

Padovan Sequence, 537
Palinagram, 361
Palindrome, 359
Pangram, 453
Parentheses, 301
Partition, 461
Partition-Into-Triangles, 461

Pascal’s Triangle, 299
Pascal, Blaise, 297
Path Cover, 454
Perfect Matching, 435, 574
Perfect Play, 312
Perimeter

Circle, 376
Polygon, 384
Rectangle, 381
Triangle, 378

Permutation, 301
Pick’s Theorem, 536
Pick, Georg Alexander, 536
Pigeonhole Principle, 281, 358
Pisano Period, 298, 303
Planar Graph, 536
PLCP Theorem, 347
Points, 368
Pollard’s rho Algorithm, 528
Pollard, John, 307, 528
Polygon

area, 385
Convex Hull, 390
cutPolygon, 388, 546
insidePolygon, 387
isConvex, 386, 546
perimeter, 384
Representation, 384

Polynomial, 276
Polynomial Multiplication, 508
Polytope, 587
Pratt, Vaughan Ronald, 332
Pre-processing, 485
Prefix Doubling Algorithm, 346
Primality Testing, 282, 528
Prime Factors, 284, 286, 289, 528

Number of, 286
Number of Distinct, 287
Sum of, 287

Prime Number Theorem, 282
Prime Numbers, 282

Functions Involving Prime Factors, 286
Primality Testing, 282
Prime Factors, 284
Probabilistic Primality Testing, 284
Sieve of Eratosthenes, 283
Working with Prime Factors, 289

Priority Queue, 548
Probabilistic Primality Testing, 284
Probability Theory, 305

605



INDEX c� Steven, Felix, Suhendry

Push-Relabel, 566
Pythagoras of Samos, 367
Pythagorean Theorem, 380
Pythagorean Triple, 380
Python

Fractions class, 277
pow, 317

Quadrangle Inequality, 562, 563
Quadrilaterals, 381

Rabin, Michael Oser, 281
Rabin-Karp Algorithm, 357
Randomized Algorithm, 528
Range Minimum Query, 485, 499
Recursive Descent Parser, 326
Regular Expression (Regex), 326
Rolling Hash, 355
Rotation Matrix, 370
Route Inspection Problem, 580

Satisfiability (SAT), 455
SCC, 455, 469
Sequence, 275
Shoelace Formula, 385
Shortest-Common-Superstring, 461
Siamese Method, 582
Sieve of Eratosthenes Algorithm, 283, 288
Simple Polygon, 384
Simplex Algorithm, 587
Simpson’s Rule, 396
Sliding Window, 483
Smith, Temple F., 337
Smith-Waterman Algorithm, 330
Solid of Revolution, 396
Spanning Tree, 536
Sparse Table, 485
Spheres, 397
SPOJ SARRAY - Su�x Array, 354
Sprague-Grundy Theorem, 541
Square Matrix, 315
Square Root Decomposition, 488
SSSP, 405, 469
Stack, 551
State-Space Search, 405
Steiner, Jakob, 456
Steiner-Tree, 457
Stirling Numbers, 537
Strassen’s Algorithm, 317
String

Alignment, 329

Border, 334
Hashing, 355
Matching, 333
Processing, 325

Subsequence, 331
Subset-Sum, 442
Sudoku, see Graph-Coloring
Su�x, 338
Su�x Array, 343

O(n log n) Construction, 346
O(n2 log n) Construction, 345
Applications
Longest Common Substring, 352
Longest Repeated Substring, 352
String Matching, 351

Longest Common Prefix, 345
Su�x Tree, 340

Applications
Longest Common Substring, 342
Longest Repeated Substring, 341
String Matching, 341

Su�x Trie, 338
Sweep Line, 547

Tarjan, Robert Endre, 456
Theorem

Art Gallery, 546
Chinese Remainder, 530
Erdős-Gallai, 536
Euler’s, 291
Fermat’s little, 291, 299, 535
Four Color, 459
Fundamental...of Arithmetic, 284
Hall’s Marriage, 440
Konig’s, 449
Lucas’, 299, 534
Max-Flow Min-Cut, 420
Pick’s, 536
PLCP, 347
Prime Number, 282
Pythagorean, 380
Sprague-Grundy, 541
Zeckendorf’s, 298

Tower of Hanoi, 496
Traveling-Salesman-Problem, see TSP
Tree

Lowest Common Ancestor, 499
Tree Isomorphism, 501
Triangles, 378
Trie, 338

606



INDEX c� Steven, Felix, Suhendry

Trigonometry, 380
TSP, 443

Bitonic-TSP, 443
Twin Prime, 294

UVa 00106 - Fermat vs. Phytagoras, 295
UVa 00107 - The Cat in the Hat, 280
UVa 00109 - Scud Busters, 395
UVa 00113 - Power Of Cryptography, 280
UVa 00120 - Stacks Of Flapjacks *, 553
UVa 00121 - Pipe Fitters, 280
UVa 00126 - The Errant Physicist, 280
UVa 00128 - Software CRC, 296
UVa 00131 - The Psychic Poker Player, 409
UVa 00132 - Bumpy Objects, 395
UVa 00134 - Loglan-A Logical Language, 327
UVa 00136 - Ugly Numbers, 279
UVa 00137 - Polygons, 395
UVa 00138 - Street Numbers, 279
UVa 00142 - Mouse Clicks, 474
UVa 00143 - Orchard Trees, 383
UVa 00148 - Anagram Checker, 362
UVa 00152 - Tree’s a Crowd, 382
UVa 00153 - Permalex, 304
UVa 00155 - All Squares, 383
UVa 00156 - Ananagram *, 362
UVa 00159 - Word Crosses, 328
UVa 00160 - Factors and Factorials, 296
UVa 00164 - String Computer, 332
UVa 00171 - Car Trialling, 327
UVa 00172 - Calculator Language, 327
UVa 00179 - Code Breaking, 327
UVa 00184 - Laser Lines, 474
UVa 00190 - Circle Through Three ..., 383
UVa 00191 - Intersection, 382
UVa 00193 - Graph Coloring, 463
UVa 00195 - Anagram *, 362
UVa 00201 - Square, 474
UVa 00202 - Repeating Decimals, 311
UVa 00209 - Triangular Vertices *, 383
UVa 00211 - The Domino E↵ect, 409
UVa 00213 - Message ... *, 327
UVa 00218 - Moth Eradication, 395
UVa 00254 - Towers of Hanoi *, 496
UVa 00257 - Palinwords, 362
UVa 00259 - Software Allocation, 428, 434
UVa 00261 - The Window Property *, 484
UVa 00263 - Number Chains, 328
UVa 00264 - Count on Cantor *, 280
UVa 00270 - Lining Up, 474

UVa 00273 - Jack Straw, 475
UVa 00275 - Expanding Fractions, 311
UVa 00276 - Egyptian Multiplication, 281
UVa 00290 - Palindroms  ! ..., 279
UVa 00294 - Divisors *, 295
UVa 00295 - Fatman *, 477
UVa 00298 - Race Tracks, 409
UVa 00306 - Cipher, 327
UVa 00313 - Interval, 383
UVa 00321 - The New Villa, 410
UVa 00324 - Factorial Frequencies, 296
UVa 00325 - Identifying Legal ... *, 327
UVa 00326 - Extrapolation using a ..., 303
UVa 00330 - Inventory Maintenance, 328
UVa 00332 - Rational Numbers ... *, 281
UVa 00338 - Long Multiplication, 328
UVa 00343 - What Base Is This? *, 279
UVa 00348 - Optimal Array Mult ... *, 498
UVa 00350 - Pseudo-Random Numbers *, 311
UVa 00353 - Pesky Palindromes, 362
UVa 00355 - The Bases Are Loaded, 279
UVa 00356 - Square Pegs And Round ..., 474
UVa 00361 - Cops and Robbers *, 395
UVa 00369 - Combinations *, 303
UVa 00373 - Romulan Spelling, 328
UVa 00374 - Big Mod, 320
UVa 00375 - Inscribed Circles and ..., 383
UVa 00377 - Cowculations *, 279
UVa 00378 - Intersecting ..., 382
UVa 00384 - Slurpys, 327
UVa 00385 - DNA Translation, 327
UVa 00387 - A Puzzling Problem, 409
UVa 00389 - Basically Speaking *, 279
UVa 00392 - Polynomial Showdown, 280
UVa 00393 - The Doors *, 475
UVa 00401 - Palindromes *, 362
UVa 00406 - Prime Cuts, 294
UVa 00408 - Uniform Generator, 311
UVa 00409 - Excuses, Excuses, 328
UVa 00412 - Pi, 295
UVa 00413 - Up and Down Sequences, 279
UVa 00422 - Word Search Wonder *, 337
UVa 00426 - Fifth Bank of ..., 328
UVa 00427 - FlatLand Piano Movers *, 383
UVa 00438 - The Circumference of ... *, 383
UVa 00443 - Humble Numbers *, 279
UVa 00446 - Kibbles ’n’ Bits ’n’ Bits ..., 279
UVa 00454 - Anagrams, 362
UVa 00455 - Periodic String *, 337
UVa 00460 - Overlapping Rectangles, 383

607



INDEX c� Steven, Felix, Suhendry

UVa 00464 - Sentence/Phrase Generator, 327
UVa 00468 - Key to Success, 327
UVa 00473 - Raucous Rockers, 418
UVa 00474 - Heads Tails Probability, 280
UVa 00476 - Points in Figures: ..., 383
UVa 00477 - Points in Figures: ..., 383
UVa 00478 - Points in Figures: ..., 395
UVa 00485 - Pascal Triangle of Death, 303
UVa 00494 - Kindergarten ... *, 327
UVa 00495 - Fibonacci Freeze *, 303
UVa 00496 - Simply Subsets *, 281
UVa 00498 - Polly the Polynomial, 280
UVa 00516 - Prime Land, 294
UVa 00521 - Gossiping, 475
UVa 00526 - String Distance ..., 332
UVa 00530 - Binomial Showdown, 303
UVa 00531 - Compromise, 332
UVa 00533 - Equation Solver, 327
UVa 00535 - Globetrotter, 397
UVa 00539 - The Settlers ..., 463
UVa 00542 - France ’98, 307
UVa 00543 - Goldbach’s Conjecture *, 294
UVa 00545 - Heads, 280
UVa 00547 - DDF, 311
UVa 00554 - Caesar Cypher *, 327
UVa 00557 - Burger, 307
UVa 00563 - Crimewave *, 434
UVa 00568 - Just the Facts, 296
UVa 00570 - Stats, 328
UVa 00574 - Sum It Up, 463
UVa 00575 - Skew Binary *, 279
UVa 00576 - Haiku Review *, 327
UVa 00580 - Critical Mass, 303
UVa 00583 - Prime Factors *, 294
UVa 00586 - Instant Complexity, 327
UVa 00587 - There’s treasure ... *, 382
UVa 00588 - Video Surveillance *, 546
UVa 00596 - The Incredible Hull, 395
UVa 00604 - The Boggle Game, 337
UVa 00613 - Numbers That Count, 281
UVa 00620 - Cellular Structure, 327
UVa 00622 - Grammar Evaluation, 327
UVa 00623 - 500 (factorial), 296
UVa 00624 - CD, 463
UVa 00630 - Anagrams (II), 362
UVa 00634 - Polygon *, 395
UVa 00636 - Squares, 279
UVa 00638 - Finding Rectangles, 474
UVa 00640 - Self Numbers, 279
UVa 00642 - Word Amalgamation *, 362

UVa 00644 - Immediate Decodability *, 328
UVa 00645 - File Mapping, 328
UVa 00651 - Deck, 278
UVa 00652 - Eight *, 550
UVa 00656 - Optimal Programs *, 550
UVa 00658 - It’s not a Bug ... *, 410
UVa 00671 - Spell Checker, 328
UVa 00672 - Gangsters *, 418
UVa 00681 - Convex Hull Finding, 395
UVa 00684 - Integral Determinant *, 545
UVa 00686 - Goldbach’s Conjecture (II), 294
UVa 00688 - Mobile Phone Coverage, 474
UVa 00694 - The Collatz Sequence, 279
UVa 00701 - Archaelogist’s Dilemma *, 280
UVa 00702 - The Vindictive Coach *, 419
UVa 00704 - Colour Hash, 410
UVa 00710 - The Game, 409
UVa 00711 - Dividing up *, 409
UVa 00714 - Copying Books *, 466, 473
UVa 00719 - Glass Beads, 354
UVa 00726 - Decode, 327
UVa 00736 - Lost in Space *, 337
UVa 00737 - Gleaming the Cubes *, 397
UVa 00741 - Burrows Wheeler Decoder, 327
UVa 00743 - The MTM Machine, 327
UVa 00756 - Biorhythms *, 533
UVa 00760 - DNA Sequencing, 354
UVa 00763 - Fibinary Numbers *, 303
UVa 00775 - Hamiltonian Cycle, 463
UVa 00808 - Bee Breeding, 280
UVa 00811 - The Fortified Forest *, 477
UVa 00812 - Trade on Verweggistan, 418
UVa 00815 - Flooded *, 397
UVa 00816 - Abbott’s Revenge, 410
UVa 00820 - Internet Bandwidth *, 434
UVa 00833 - Water Falls, 382
UVa 00834 - Continued Fractions *, 281
UVa 00837 - Light and Transparencies, 382
UVa 00843 - Crypt Kicker *, 474
UVa 00847 - A multiplication game, 314
UVa 00848 - Fmt, 328
UVa 00850 - Crypt Kicker II, 327
UVa 00856 - The Vigenère Cipher, 327
UVa 00858 - Berry Picking, 395
UVa 00866 - Intersecting Line Segments, 382
UVa 00880 - Cantor Fractions, 280
UVa 00882 - The Mailbox ..., 418
UVa 00884 - Factorial Factors, 295
UVa 00886 - Named Extension Dialing, 337
UVa 00890 - Maze (II), 328

608



INDEX c� Steven, Felix, Suhendry

UVa 00892 - Finding words, 328
UVa 00897 - Annagramatic Primes, 294
UVa 00900 - Brick Wall Patterns, 303
UVa 00911 - Multinomial Coe�cients, 303
UVa 00912 - Live From Mars, 328
UVa 00913 - Joana and The Odd ..., 278
UVa 00914 - Jumping Champion, 294
UVa 00918 - ASCII Mandelbrot *, 328
UVa 00920 - Sunny Mountains, 382
UVa 00922 - Rectangle by the Ocean, 474
UVa 00927 - Integer Sequence from ..., 279
UVa 00928 - Eternal Truths, 409
UVa 00930 - Polynomial Roots *, 280
UVa 00941 - Permutations, 304
UVa 00942 - Cyclic Number, 311
UVa 00943 - Number Format Translator, 328
UVa 00944 - Happy Numbers, 311
UVa 00948 - Fibonaccimal Base, 303
UVa 00960 - Gaussian Primes, 294
UVa 00962 - Taxicab Numbers, 279
UVa 00967 - Circular, 476
UVa 00974 - Kaprekar Numbers, 279
UVa 00976 - Bridge Building *, 476
UVa 00985 - Round and Round ..., 410
UVa 00989 - Su Doku *, 463
UVa 00991 - Safe Salutations *, 304
UVa 00993 - Product of digits, 296
UVa 01039 - Simplified GSM Network, 475
UVa 01040 - The Traveling Judges *, 477
UVa 01045 - The Great Wall Game *, 576
UVa 01048 - Low Cost Air Travel *, 410
UVa 01052 - Bit Compression *, 409
UVa 01057 - Routing *, 410
UVa 01069 - Always an integer *, 475
UVa 01076 - Password Suspects, 419
UVa 01079 - A Careful Approach *, 471, 477
UVa 01086 - The Ministers’ ... *, 464
UVa 01092 - Tracking Bio-bots *, 475
UVa 01093 - Castles, 477
UVa 01096 - The Islands *, 464
UVa 01098 - Robots on Ice *, 445, 463
UVa 01099 - Sharing Chocolate *, 415, 419
UVa 01111 - Trash Removal *, 395
UVa 01121 - Subsequence *, 484
UVa 01172 - The Bridges of ... *, 418
UVa 01180 - Perfect Numbers *, 294
UVa 01184 - Air Raid *, 464
UVa 01185 - BigNumber, 537
UVa 01192 - Searching Sequence ... *, 332
UVa 01194 - Machine Schedule, 464

UVa 01195 - Calling Extraterrestrial ..., 475
UVa 01201 - Taxi Cab Scheme, 454, 464
UVa 01206 - Boundary Points, 395
UVa 01207 - AGTC, 332
UVa 01210 - Sum of Consecutive ... *, 294
UVa 01211 - Atomic Car Race *, 418
UVa 01212 - Duopoly *, 452, 464
UVa 01215 - String Cutting, 328
UVa 01217 - Route Planning, 463
UVa 01219 - Team Arrangement, 328
UVa 01220 - Party at Hali-Bula, 464
UVa 01221 - Against Mammoths *, 473
UVa 01222 - Bribing FIPA, 418
UVa 01223 - Editor, 354
UVa 01224 - Tile Code *, 304
UVa 01230 - MODEX, 320
UVa 01231 - ACORN, 414, 418
UVa 01238 - Free Parentheses *, 413, 418
UVa 01239 - Greatest K-Palindrome ... *, 362
UVa 01240 - ICPC Team Strategy, 419
UVa 01242 - Necklace, 434
UVa 01243 - Polynomial-time Red..., 475
UVa 01244 - Palindromic paths, 332
UVa 01246 - Find Terrorists, 295
UVa 01249 - Euclid, 382
UVa 01250 - Robot Challenge *, 477
UVa 01251 - Repeated Substitution ..., 410
UVa 01252 - Twenty Questions *, 419
UVa 01253 - Infected Land, 410
UVa 01254 - Top 10 *, 354
UVa 01258 - Nowhere Money, 303
UVa 01263 - Mines, 475
UVa 01266 - Magic Square *, 584
UVa 01280 - Curvy Little Bottles, 397
UVa 01304 - Art Gallery *, 546
UVa 01315 - Crazy tea party, 278
UVa 01347 - Tour *, 464
UVa 01388 - Graveyard *, 382
UVa 01449 - Dominating Patterns *, 337
UVa 01566 - John *, 542
UVa 01571 - How I Mathematician ... *, 546
UVa 01577 - Low Power, 473
UVa 01584 - Circular Sequence *, 354
UVa 01595 - Symmetry *, 382
UVa 01600 - Patrol Robot *, 409
UVa 01636 - Headshot *, 307
UVa 01644 - Prime Gap *, 294
UVa 01645 - Count *, 537
UVa 01714 - Keyboarding, 410
UVa 10002 - Center of Mass?, 395

609



INDEX c� Steven, Felix, Suhendry

UVa 10003 - Cutting Sticks *, 565
UVa 10005 - Packing polygons *, 382
UVa 10006 - Carmichael Numbers, 279
UVa 10007 - Count the Trees *, 304
UVa 10010 - Where’s Waldorf? *, 337
UVa 10012 - How Big Is It? *, 474
UVa 10014 - Simple calculations, 278
UVa 10017 - The Never Ending ... *, 496
UVa 10018 - Reverse and Add *, 362
UVa 10021 - Cube in the labirint, 410
UVa 10022 - Delta-wave *, 280
UVa 10023 - Square root, 281
UVa 10029 - Edit Step Ladders, 418
UVa 10032 - Tug of War, 463
UVa 10040 - Ouroboros Snake *, 507
UVa 10042 - Smith Numbers, 279
UVa 10045 - Echo, 328
UVa 10047 - The Monocycle *, 409
UVa 10049 - Self-describing Sequence, 279
UVa 10056 - What is the Probability? *, 307
UVa 10058 - Jimmi’s Riddles *, 327
UVa 10060 - A Hole to Catch a Man, 395
UVa 10061 - How many zeros & how ..., 296
UVa 10065 - Useless Tile Packers, 395
UVa 10066 - The Twin Towers, 332
UVa 10068 - The Treasure Hunt, 475
UVa 10075 - Airlines, 475
UVa 10078 - Art Gallery *, 546
UVa 10079 - Pizza Cutting, 304
UVa 10085 - The most distant state, 410
UVa 10088 - Trees on My Island, 537
UVa 10090 - Marbles *, 297
UVa 10092 - The Problem with the ..., 434
UVa 10093 - An Easy Problem, 279
UVa 10097 - The Color game, 409
UVa 10098 - Generating Fast, Sorted ..., 362
UVa 10100 - Longest Match, 332
UVa 10101 - Bangla Numbers, 279
UVa 10104 - Euclid Problem *, 297
UVa 10105 - Polynomial Coe�cients, 303
UVa 10110 - Light, more light, 278
UVa 10111 - Find the Winning ... *, 314
UVa 10112 - Myacm Triangles, 395
UVa 10115 - Automatic Editing, 328
UVa 10118 - Free Candies, 418
UVa 10123 - No Tipping, 419
UVa 10125 - Sumsets, 463
UVa 10126 - Zipf’s Law, 328
UVa 10127 - Ones, 296
UVa 10136 - Chocolate Chip Cookies, 382

UVa 10137 - The Trip, 281
UVa 10139 - Factovisors, 296
UVa 10140 - Prime Distance, 294
UVa 10149 - Yahtzee, 419
UVa 10150 - Doublets, 474
UVa 10160 - Servicing Stations, 463
UVa 10161 - Ant on a Chessboard *, 278
UVa 10162 - Last Digit, 311
UVa 10163 - Storage Keepers, 418
UVa 10165 - Stone Game *, 542
UVa 10167 - Birthday Cake *, 474
UVa 10168 - Summation of Four Primes, 294
UVa 10170 - The Hotel with Infinite ..., 278
UVa 10174 - Couple-Bachelor- ... *, 296
UVa 10176 - Ocean Deep; Make it ... *, 296
UVa 10178 - Count the Faces, 537
UVa 10179 - Irreducible Basic ... *, 295
UVa 10180 - Rope Crisis in Ropeland, 382
UVa 10181 - 15-Puzzle Problem *, 550
UVa 10182 - Bee Maja *, 280
UVa 10183 - How many Fibs?, 303
UVa 10190 - Divide, But Not Quite ..., 281
UVa 10192 - Vacation, 332
UVa 10193 - All You Need Is Love, 295
UVa 10195 - The Knights Of The ..., 383
UVa 10197 - Learning Portuguese, 328
UVa 10200 - Prime Time, 476
UVa 10202 - Pairsumonious Numbers, 409
UVa 10209 - Is This Integration?, 382
UVa 10210 - Romeo & Juliet, 383
UVa 10212 - The Last Non-zero ... *, 296
UVa 10213 - How Many Pieces ..., 537
UVa 10215 - The Largest/Smallest Box, 280
UVa 10218 - Let’s Dance, 307
UVa 10219 - Find the Ways, 537
UVa 10220 - I Love Big Numbers, 296
UVa 10221 - Satellites, 382
UVa 10223 - How Many Nodes? *, 304
UVa 10229 - Modular Fibonacci *, 320
UVa 10233 - Dermuba Triangle *, 280
UVa 10235 - Simply Emirp *, 294
UVa 10238 - Throw the Dice *, 307
UVa 10242 - Fourth Point, 382
UVa 10243 - Fire; Fire; Fire, 464
UVa 10245 - The Closest Pair Problem *, 547
UVa 10250 - The Other Two Trees, 382
UVa 10254 - The Priest Mathematician *, 496
UVa 10256 - The Great Divide *, 395
UVa 10257 - Dick and Jane, 278
UVa 10263 - Railway *, 382

610



INDEX c� Steven, Felix, Suhendry

UVa 10268 - 498’ *, 280
UVa 10269 - Adventure of Super Mario *, 410
UVa 10283 - The Kissing Circles, 382
UVa 10286 - The Trouble with a ..., 383
UVa 10287 - Gift in a Hexagonal Box, 382
UVa 10290 - {Sum+=i++} to Reach N, 295
UVa 10296 - Jogging Trails, 581
UVa 10297 - Beavergnaw, 397
UVa 10298 - Power Strings, 337
UVa 10299 - Relatives, 295
UVa 10301 - Rings and Glue, 474
UVa 10302 - Summation of ... *, 280
UVa 10303 - How Many Trees, 304
UVa 10304 - Optimal Binary ... *, 418, 565
UVa 10306 - e-Coins, 409
UVa 10307 - Killing Aliens in Borg Maze, 475
UVa 10309 - Turn the Lights O↵, 409
UVa 10310 - Dog and Gopher, 474
UVa 10311 - Goldbach and Euler, 294
UVa 10312 - Expression Bracketing *, 304
UVa 10316 - Airline Hub, 397
UVa 10318 - Security Panel, 409
UVa 10319 - Manhattan, 464
UVa 10323 - Factorial. You Must ..., 296
UVa 10325 - The Lottery, 475
UVa 10326 - The Polynomial Equation, 280
UVa 10328 - Coin Toss, 307
UVa 10330 - Power Transmission, 434
UVa 10333 - The Tower of ASCII, 328
UVa 10334 - Ray Through Glasses *, 303
UVa 10338 - Mischievous Children, 296
UVa 10347 - Medians, 383
UVa 10349 - Antenna Placement, 464
UVa 10357 - Playball, 382
UVa 10359 - Tiling, 304
UVa 10361 - Automatic Poetry, 328
UVa 10364 - Square, 419
UVa 10368 - Euclid’s Game, 314
UVa 10372 - Leaps Tall Buildings ..., 473
UVa 10375 - Choose and Divide, 303
UVa 10387 - Billiard, 383
UVa 10391 - Compound Words, 328
UVa 10392 - Factoring Large Numbers, 294
UVa 10393 - The One-Handed Typist *, 328
UVa 10394 - Twin Primes, 294
UVa 10404 - Bachet’s Game, 314
UVa 10405 - Longest Common ... *, 332
UVa 10406 - Cutting tabletops, 395
UVa 10407 - Simple Division *, 295
UVa 10408 - Farey Sequences *, 279

UVa 10419 - Sum-up the Primes, 475
UVa 10422 - Knights in FEN, 409
UVa 10427 - Naughty Sleepy ..., 475
UVa 10432 - Polygon Inside A Circle, 382
UVa 10445 - Make Polygon, 395
UVa 10450 - World Cup Noise, 303
UVa 10451 - Ancient ..., 382
UVa 10453 - Make Palindrome, 362
UVa 10466 - How Far?, 382
UVa 10473 - Simple Base Conversion, 279
UVa 10480 - Sabotage, 429, 434
UVa 10482 - The Candyman Can, 418
UVa 10484 - Divisibility of Factors, 296
UVa 10489 - Boxes of Chocolates *, 296
UVa 10490 - Mr. Azad and his Son, 294
UVa 10491 - Cows and Cars *, 307
UVa 10493 - Cats, with or without Hats, 278
UVa 10497 - Sweet Child Make Trouble, 303
UVa 10499 - The Land of Justice, 278
UVa 10506 - The Ouroboros problem *, 507
UVa 10508 - Word Morphing, 328
UVa 10509 - R U Kidding Mr. ..., 278
UVa 10511 - Councilling, 434
UVa 10514 - River Crossing *, 474
UVa 10515 - Power et al, 311
UVa 10518 - How Many Calls?, 320
UVa 10522 - Height to Area, 383
UVa 10527 - Persistent Numbers, 296
UVa 10532 - Combination, Once Again, 303
UVa 10533 - Digit Primes *, 476
UVa 10536 - Game of Euler *, 314
UVa 10537 - The Toll, Revisited *, 473
UVa 10539 - Almost Prime Numbers *, 475
UVa 10541 - Stripe *, 303
UVa 10551 - Basic Remains, 275, 279
UVa 10555 - Dead Fraction, 281
UVa 10559 - Blocks, 418
UVa 10561 - Treblecross *, 542
UVa 10562 - Undraw the Trees, 328
UVa 10566 - Crossed Ladders, 473
UVa 10571 - Products *, 463
UVa 10573 - Geometry Paradox, 382
UVa 10577 - Bounding box *, 383
UVa 10578 - The Game of 31, 314
UVa 10579 - Fibonacci Numbers, 303
UVa 10585 - Center of symmetry, 382
UVa 10586 - Polynomial Remains *, 280
UVa 10589 - Area, 382
UVa 10591 - Happy Number, 311
UVa 10594 - Data Flow *, 572

611



INDEX c� Steven, Felix, Suhendry

UVa 10604 - Chemical Reaction, 418
UVa 10606 - Opening Doors, 473
UVa 10617 - Again Palindrome, 362
UVa 10620 - A Flea on a Chessboard, 280
UVa 10622 - Perfect P-th Power, 296
UVa 10626 - Buying Coke, 418
UVa 10633 - Rare Easy Problem *, 297
UVa 10635 - Prince and Princess, 332
UVa 10637 - Coprimes, 468, 475
UVa 10642 - Can You Solve It?, 280
UVa 10643 - Facing Problems With ..., 304
UVa 10645 - Menu *, 418
UVa 10648 - Chocolate Box *, 307
UVa 10650 - Determinate Prime *, 294
UVa 10652 - Board Wrapping, 395
UVa 10655 - Contemplation, Algebra *, 320
UVa 10666 - The Eurocup is here, 278
UVa 10668 - Expanding Rods, 473
UVa 10673 - Play with Floor and Ceil *, 297
UVa 10677 - Base Equality, 279
UVa 10678 - The Grazing Cows *, 382
UVa 10679 - I Love Strings, 328
UVa 10680 - LCM *, 296
UVa 10682 - Forró Party, 409
UVa 10689 - Yet Another Number ... *, 303
UVa 10693 - Tra�c Volume, 278
UVa 10696 - f91, 278
UVa 10699 - Count the ... *, 295
UVa 10710 - Chinese Shu✏e, 278
UVa 10717 - Mint, 475
UVa 10719 - Quotient Polynomial, 280
UVa 10720 - Graph Construction, 537
UVa 10722 - Super Lucky Numbers, 419
UVa 10733 - The Colored Cubes, 304
UVa 10734 - Triangle Partitioning, 474
UVa 10738 - Riemann vs. Mertens, 295
UVa 10739 - String to Palindrome, 362
UVa 10741 - Magic Cube *, 584
UVa 10746 - Crime Wave - The Sequel *, 576
UVa 10751 - Chessboard *, 278
UVa 10759 - Dice Throwing, 307
UVa 10761 - Broken Keyboard, 328
UVa 10773 - Back to Intermediate ..., 278
UVa 10777 - God, Save me, 307
UVa 10779 - Collectors Problem, 434
UVa 10780 - Again Prime? No time., 296
UVa 10784 - Diagonal *, 304
UVa 10789 - Prime Frequency, 473
UVa 10790 - How Many Points of ..., 304
UVa 10791 - Minimum Sum LCM, 296

UVa 10792 - The Laurel-Hardy Story, 383
UVa 10800 - Not That Kind of Graph, 328
UVa 10804 - Gopher Strategy, 473
UVa 10806 - Dijkstra, Dijkstra *, 572
UVa 10814 - Simplifying Fractions, 281
UVa 10816 - Travel in Desert *, 473
UVa 10817 - Headmaster’s Headache, 419
UVa 10820 - Send A Table, 295
UVa 10823 - Of Circles and Squares *, 474
UVa 10832 - Yoyodyne ..., 382
UVa 10843 - Anne’s game, 537
UVa 10848 - Make Palindrome Checker *, 362
UVa 10852 - Less Prime, 294
UVa 10854 - Number of Paths *, 327
UVa 10856 - Recover Factorial *, 470, 477
UVa 10859 - Placing Lampposts *, 464
UVa 10862 - Connect the Cable Wires, 303
UVa 10865 - Brownie Points, 382
UVa 10870 - Recurrences, 320
UVa 10871 - Primed Subsequence, 476
UVa 10875 - Big Math, 328
UVa 10876 - Factory Robot, 477
UVa 10882 - Koerner’s Pub, 278
UVa 10888 - Warehouse *, 576
UVa 10890 - Maze, 409
UVa 10891 - Game of Sum *, 476
UVa 10892 - LCM Cardinality *, 295
UVa 10897 - Travelling Distance, 397
UVa 10898 - Combo Deal, 418
UVa 10902 - Pick-up sticks, 382
UVa 10911 - Forming Quiz ... *, 411, 419
UVa 10916 - Factstone Benchmark, 280
UVa 10917 - A Walk Through the Forest, 476
UVa 10918 - Tri Tiling, 304
UVa 10922 - 2 the 9s *, 297
UVa 10923 - Seven Seas, 410
UVa 10924 - Prime Words, 294
UVa 10927 - Bright Lights *, 382
UVa 10929 - You can say 11 *, 297
UVa 10930 - A-Sequence, 279
UVa 10931 - Parity *, 279
UVa 10934 - Dropping water balloons *, 557
UVa 10937 - Blackbeard the ... *, 469, 476
UVa 10938 - Flea circus *, 500
UVa 10940 - Throwing Cards Away II, 278
UVa 10944 - Nuts for nuts.., 476
UVa 10945 - Mother Bear, 362
UVa 10948 - The Primary Problem, 294
UVa 10957 - So Doku Checker, 463
UVa 10958 - How Many Solutions?, 295

612



INDEX c� Steven, Felix, Suhendry

UVa 10964 - Strange Planet, 280
UVa 10970 - Big Chocolate, 278
UVa 10976 - Fractions Again ?, 281
UVa 10983 - Buy one, get ... *, 473
UVa 10990 - Another New Function *, 295
UVa 10991 - Region, 383
UVa 10994 - Simple Addition, 278
UVa 11000 - Bee, 303
UVa 11002 - Towards Zero, 418
UVa 11005 - Cheapest Base, 279
UVa 11008 - Antimatter Ray Clear... *, 474
UVa 11012 - Cosmic Cabbages, 382
UVa 11021 - Tribbles, 307
UVa 11022 - String Factoring, 332
UVa 11028 - Sum of Product, 279
UVa 11029 - Leading and Trailing, 320
UVa 11032 - Function Overloading *, 476
UVa 11036 - Eventually periodic ... *, 311
UVa 11038 - How Many O’s *, 278
UVa 11042 - Complex, di�cult and ..., 281
UVa 11045 - My T-Shirt Suits Me, 434
UVa 11048 - Automatic Correction ... *, 328
UVa 11053 - Flavius Josephus ... *, 311
UVa 11055 - Homogeneous Square, 281
UVa 11056 - Formula 1 *, 328
UVa 11063 - B2 Sequences, 279
UVa 11064 - Number Theory, 295
UVa 11065 - A Gentlemen’s ..., 447, 463
UVa 11068 - An Easy Task, 382
UVa 11069 - A Graph Problem *, 304
UVa 11070 - The Good Old Times *, 327
UVa 11072 - Points, 395
UVa 11076 - Add Again *, 296
UVa 11081 - Strings, 332
UVa 11082 - Matrix Decompressing, 434
UVa 11084 - Anagram Division, 332
UVa 11086 - Composite Prime, 295
UVa 11088 - End up with More Teams *, 463
UVa 11089 - Fi-binary Number, 303
UVa 11090 - Going in Cycle, 409
UVa 11095 - Tabriz City *, 463
UVa 11096 - Nails, 395
UVa 11099 - Next Same-Factored, 475
UVa 11105 - Semi-prime H-numbers, 476
UVa 11107 - Life Forms, 354
UVa 11115 - Uncle Jack, 304
UVa 11121 - Base -2 *, 279
UVa 11125 - Arrange Some Marbles *, 419
UVa 11127 - Triple-Free Binary Strings, 409
UVa 11133 - Eigensequence, 419

UVa 11151 - Longest Palindrome, 360, 362
UVa 11152 - Colourful ..., 383
UVa 11159 - Factors and Multiples *, 464
UVa 11160 - Going Together, 410
UVa 11161 - Help My Brother (II), 303
UVa 11163 - Jaguar King *, 550
UVa 11164 - Kingdom Division, 383
UVa 11167 - Monkeys in the Emei ... *, 434
UVa 11170 - Cos(NA), 278
UVa 11176 - Winning Streak *, 307
UVa 11181 - Probability (bar) Given *, 307
UVa 11185 - Ternary, 279
UVa 11195 - Another N-Queens ..., 402, 409
UVa 11198 - Dancing Digits *, 410
UVa 11202 - The least possible e↵ort, 278
UVa 11204 - Musical Instruments, 304
UVa 11207 - The Easiest Way, 383
UVa 11212 - Editing a Book *, 406, 407, 410
UVa 11218 - KTV, 419
UVa 11221 - Magic Square Palindrome, 362
UVa 11226 - Reaching the fix-point, 295
UVa 11227 - The silver ... *, 468, 474
UVa 11231 - Black and White Painting *, 278
UVa 11233 - Deli Deli, 328
UVa 11241 - Humidex *, 281
UVa 11246 - K-Multiple Free Set, 278
UVa 11258 - String Partition *, 332
UVa 11262 - Weird Fence *, 473
UVa 11265 - The Sultan’s Problem *, 395
UVa 11267 - The ‘Hire-a-Coder’ ..., 475
UVa 11270 - Tiling Dominoes, 304
UVa 11281 - Triangular Pegs in ... *, 383
UVa 11282 - Mixing Invitations *, 475
UVa 11283 - Playing Boggle *, 337
UVa 11284 - Shopping Trip, 476
UVa 11285 - Exchange Rates, 418
UVa 11287 - Pseudoprime Numbers, 294
UVa 11288 - Carpool, 477
UVa 11291 - Smeech *, 327
UVa 11294 - Wedding, 464
UVa 11296 - Counting Solutions to an ..., 278
UVa 11298 - Dissecting a Hexagon, 278
UVa 11301 - Great Wall of China *, 572
UVa 11309 - Counting Chaos, 362
UVa 11310 - Delivery Debacle *, 304
UVa 11311 - Exclusively Edible *, 542
UVa 11314 - Hardly Hard, 383
UVa 11319 - Stupid Sequence? *, 545
UVa 11324 - The Largest Clique *, 469, 476
UVa 11326 - Laser Pointer *, 383

613



INDEX c� Steven, Felix, Suhendry

UVa 11327 - Enumerating Rational ..., 295
UVa 11329 - Curious Fleas *, 410
UVa 11331 - The Joys of Farming *, 476
UVa 11343 - Isolated Segments, 382
UVa 11344 - The Huge One *, 297
UVa 11345 - Rectangles, 383
UVa 11346 - Probability, 307
UVa 11347 - Multifactorials *, 296
UVa 11353 - A Di↵erent kind of ... *, 295
UVa 11357 - Ensuring Truth *, 464
UVa 11361 - Investigating Div-Sum ... *, 332
UVa 11362 - Phone List, 337
UVa 11371 - Number Theory for ... *, 297
UVa 11374 - Airport Express, 410
UVa 11375 - Matches *, 419
UVa 11378 - Bey Battle *, 547
UVa 11380 - Down Went The ... *, 432, 434
UVa 11384 - Help is needed for Dexter *, 280
UVa 11385 - Da Vinci Code *, 327
UVa 11387 - The 3-Regular Graph, 278
UVa 11388 - GCD LCM *, 295
UVa 11391 - Blobs in the Board, 419
UVa 11393 - Tri-Isomorphism, 278
UVa 11395 - Sigma Function *, 296
UVa 11398 - The Base-1 Number System, 279
UVa 11401 - Triangle Counting *, 304
UVa 11403 - Binary Multiplication *, 328
UVa 11404 - Palindromic Subsequence *, 362
UVa 11405 - Can U Win?, 476
UVa 11408 - Count DePrimes *, 476
UVa 11414 - Dreams, 537
UVa 11415 - Count the Factorials, 475
UVa 11417 - GCD *, 295
UVa 11418 - Clever Naming Patterns *, 434
UVa 11419 - SAM I AM, 464
UVa 11426 - GCD - Extreme (II) *, 295
UVa 11428 - Cubes, 475
UVa 11432 - Busy Programmer *, 419
UVa 11437 - Triangle Fun, 383
UVa 11439 - Maximizing the ICPC *, 579
UVa 11447 - Reservoir Logs *, 395
UVa 11451 - Water Restrictions *, 409
UVa 11452 - Dancing the Cheeky ..., 328
UVa 11455 - Behold My Quadrangle, 383
UVa 11461 - Square Numbers, 279
UVa 11464 - Even Parity, 409
UVa 11466 - Largest Prime Divisor *, 294
UVa 11471 - Arrange the Tiles, 409
UVa 11472 - Beautiful Numbers, 419
UVa 11473 - Campus Roads *, 395

UVa 11474 - Dying Tree *, 474
UVa 11475 - Extend to Palindromes *, 358
UVa 11476 - Factoring Large ... *, 529
UVa 11479 - Is this the easiest problem?, 383
UVa 11480 - Jimmy’s Balls, 304
UVa 11483 - Code Creator *, 328
UVa 11486 - Finding Paths in Grid, 320
UVa 11489 - Integer Game *, 314
UVa 11500 - Vampires, 307
UVa 11505 - Logo, 382
UVa 11506 - Angry Programmer, 434
UVa 11511 - Frieze Patterns *, 311
UVa 11512 - GATTACA *, 354
UVa 11513 - 9 Puzzle *, 409
UVa 11515 - Cranes, 474
UVa 11516 - WiFi, 473
UVa 11519 - Logo 2, 382
UVa 11523 - Recycling, 418
UVa 11525 - Permutation *, 474
UVa 11526 - H(n) *, 281
UVa 11534 - Say Goodbye to ... *, 542
UVa 11536 - Smallest Sub-Array *, 484
UVa 11538 - Chess Queen *, 304
UVa 11549 - Calculator Conundrum, 311
UVa 11552 - Fewest Flops *, 332
UVa 11553 - Grid Game *, 576
UVa 11554 - Hapless Hedonism, 304
UVa 11555 - Aspen Avenue, 418
UVa 11556 - Best Compression Ever, 280
UVa 11574 - Colliding Tra�c, 474
UVa 11576 - Scrolling Sign, 337
UVa 11579 - Triangle Trouble, 383
UVa 11582 - Colossal Fibonacci ... *, 320
UVa 11584 - Partitioning by ... *, 362
UVa 11597 - Spanning Subtree *, 304
UVa 11609 - Teams, 304
UVa 11610 - Reverse Prime, 477
UVa 11626 - Convex Hull, 395
UVa 11628 - Another lottery *, 307
UVa 11634 - Generate random ..., 311
UVa 11635 - Hotel Booking, 475
UVa 11636 - Hello World, 280
UVa 11639 - Guard the Land, 383
UVa 11643 - Knight Tour, 476
UVa 11646 - Athletics Track, 466, 473
UVa 11648 - Divide the Land, 383
UVa 11660 - Look-and-Say sequences, 279
UVa 11666 - Logarithms, 280
UVa 11670 - Physics Experiment, 473
UVa 11693 - Speedy Escape, 476

614



INDEX c� Steven, Felix, Suhendry

UVa 11697 - Playfair Cipher, 327
UVa 11699 - Rooks *, 409
UVa 11713 - Abstract Names, 328
UVa 11714 - Blind Sorting, 280
UVa 11715 - Car, 281
UVa 11718 - Fantasy of a Summation *, 278
UVa 11719 - Gridlands Airports *, 537
UVa 11721 - Instant View ..., 475
UVa 11728 - Alternate Task *, 295
UVa 11730 - Number Transform..., 468, 475
UVa 11734 - Big Number of ... *, 328
UVa 11752 - The Super ... *, 294
UVa 11754 - Code Feat *, 533
UVa 11757 - Winger Trial *, 434
UVa 11762 - Race to 1, 307
UVa 11765 - Component Placement *, 434
UVa 11774 - Doom’s Day, 295
UVa 11780 - Miles 2 Km, 303
UVa 11783 - Nails *, 382
UVa 11800 - Determine the Shape *, 383
UVa 11806 - Cheerleaders, 419
UVa 11813 - Shopping, 476
UVa 11816 - HST, 281
UVa 11817 - Tunnelling The Earth *, 397
UVa 11825 - Hacker’s Crackdown *, 419
UVa 11827 - Maximum GCD, 295
UVa 11834 - Elevator, 383
UVa 11837 - Musical Plagiarism *, 337
UVa 11839 - Optical Reader, 328
UVa 11847 - Cut the Silver Bar *, 280
UVa 11854 - Egypt, 383
UVa 11855 - Buzzwords, 354
UVa 11888 - Abnormal 89’s *, 362
UVa 11889 - Benefit, 296
UVa 11894 - Genius MJ *, 382
UVa 11909 - Soya Milk *, 383
UVa 11936 - The Lazy Lumberjacks, 383
UVa 11952 - Arithmetic *, 279
UVa 11955 - Binomial Theorem *, 303
UVa 11960 - Divisor Game *, 473
UVa 11962 - DNA II, 328
UVa 11966 - Galactic Bonding, 473
UVa 11967 - Hic-Hac-Hoe, 467, 473
UVa 11970 - Lucky Numbers *, 279
UVa 11974 - Switch The Lights, 409
UVa 11986 - Save from Radiation, 280
UVa 12001 - UVa Panel Discussion, 304
UVa 12004 - Bubble Sort *, 278
UVa 12005 - Find Solutions, 295
UVa 12022 - Ordering T-shirts, 304

UVa 12024 - Hats, 307
UVa 12027 - Very Big Perfect Square, 278
UVa 12028 - A Gift from ..., 476
UVa 12030 - Help the Winners, 419
UVa 12036 - Stable Grid *, 281
UVa 12043 - Divisors *, 295
UVa 12063 - Zeros and Ones, 419
UVa 12068 - Harmonic Mean *, 281
UVa 12070 - Invite Your Friends, 475
UVa 12083 - Guardian of Decency, 450, 464
UVa 12097 - Pie *, 473
UVa 12101 - Prime Path, 475
UVa 12114 - Bachelor Arithmetic, 307
UVa 12125 - March of the Penguins, 434
UVa 12135 - Switch Bulbs *, 409
UVa 12149 - Feynman, 279
UVa 12155 - ASCII Diamondi *, 328
UVa 12159 - Gun Fight *, 475
UVa 12168 - Cat vs. Dog, 464
UVa 12208 - How Many Ones, 418
UVa 12218 - An Industrial Spy, 475
UVa 12230 - Crossing Rivers, 307
UVa 12238 - Ants Colony *, 500
UVa 12243 - Flowers Flourish ..., 328
UVa 12255 - Underwater Snipers, 473
UVa 12256 - Making Quadrilaterals *, 383
UVa 12281 - Hyper Box, 303
UVa 12293 - Box Game, 314
UVa 12318 - Digital Roulette *, 473
UVa 12322 - Handgun Shooting Sport *, 474
UVa 12335 - Lexicographic Order *, 296
UVa 12392 - Guess the Numbers, 477
UVa 12414 - Calculating Yuan Fen, 328
UVa 12416 - Excessive Space Remover *, 280
UVa 12428 - Enemy at the Gates, 473
UVa 12445 - Happy 12 *, 410
UVa 12455 - Bars *, 463
UVa 12457 - Tennis contest, 307
UVa 12460 - Careful teacher *, 473
UVa 12461 - Airplane, 307
UVa 12463 - Little Nephew *, 304
UVa 12464 - Professor Lazy, Ph.D., 311
UVa 12467 - Secret word *, 358
UVa 12469 - Stones, 314
UVa 12470 - Tribonacci, 320
UVa 12502 - Three Families, 278
UVa 12506 - Shortest Names, 354
UVa 12542 - Prime Substring, 294
UVa 12563 - Jin Ge Jin Qu hao, 418
UVa 12569 - Planning mobile robot ..., 410

615



INDEX c� Steven, Felix, Suhendry

UVa 12578 - 10:6:2, 382
UVa 12602 - Nice Licence Plates, 279
UVa 12604 - Caesar Cipher *, 358
UVa 12611 - Beautiful Flag, 383
UVa 12620 - Fibonacci Sum, 303
UVa 12641 - Reodrnreig Lteetrs ... *, 362
UVa 12703 - Little Rakin *, 294
UVa 12704 - Little Masters, 382
UVa 12705 - Breaking Board, 280
UVa 12708 - GCD The Largest, 295
UVa 12712 - Pattern Locker *, 303
UVa 12718 - Dromicpalin Substrings *, 362
UVa 12725 - Fat and Orial, 278
UVa 12747 - Back to Edit ... *, 332
UVa 12748 - Wifi Access, 382
UVa 12751 - An Interesting Game, 279
UVa 12770 - Palinagram *, 362
UVa 12786 - Friendship Networks *, 537
UVa 12796 - Teletransport *, 320
UVa 12797 - Letters *, 475
UVa 12802 - Gift From the Gods, 475
UVa 12805 - Raiders of the Lost Sign *, 294
UVa 12821 - Double Shortest Paths *, 572
UVa 12848 - In Puzzleland (IV), 281
UVa 12851 - The Tinker’s Puzzle, 473
UVa 12852 - The Miser’s Puzzle, 295
UVa 12853 - The Pony Cart Problem, 473
UVa 12855 - Black and white stones, 332
UVa 12869 - Zeroes *, 296
UVa 12870 - Fishing *, 418
UVa 12873 - The Programmers *, 434
UVa 12876 - City, 537
UVa 12894 - Perfect Flag, 383
UVa 12901 - Refraction, 383
UVa 12904 - Load Balancing, 476
UVa 12908 - The book thief, 473
UVa 12909 - Numeric Center, 278
UVa 12911 - Subset sum *, 463
UVa 12916 - Perfect Cyclic String *, 328
UVa 12918 - Lucky Thief *, 278
UVa 12934 - Factorial Division, 296
UVa 12960 - Palindrome, 362
UVa 12967 - Spray Graphs, 537
UVa 12970 - Alcoholic Pilots, 281
UVa 12992 - Huatuo’s Medicine, 278
UVa 13049 - Combination Lock, 278
UVa 13067 - Prime Kebab Menu, 296
UVa 13071 - Double decker, 278
UVa 13096 - Standard Deviation, 278
UVa 13108 - Juanma and ... *, 537

UVa 13115 - Sudoku, 464
UVa 13117 - ACIS, A Contagious ... *, 382
UVa 13135 - Homework, 473
UVa 13140 - Squares, Lists and ..., 278
UVa 13146 - Edid Tistance *, 332
UVa 13161 - Candle Box, 279
UVa 13185 - DPA Numbers I, 295
UVa 13194 - DPA Numbers II, 295
UVa 13215 - Polygonal Park *, 383
UVa 13216 - Problem with a ..., 278
UVa 13217 - Amazing Function, 311

Václav Chvátal, 546
Vector (Geometry), 372
Vertex Capacities, 429
Vertex Cover, 447, 448, 546
Vertex Splitting, 429

Waterman, Michael S., 337
Winding Number Algorithm, 387
Wunsch, Christian D., 337

Zeckendorf’s Theorem, 298
Zeckendorf, Edouard, 297
Zero-Sum Game, 312

616


	CP4: Book 2
	Contents
	5 Mathematics
	5.1 Overview and Motivation
	5.2 Ad Hoc Mathematical Problems
	5.3 Number Theory
	5.3.1 Prime Numbers
	5.3.2 Probabilistic Prime Testing (Java Only)
	5.3.3 Finding Prime Factors with Optimized Trial Divisions
	5.3.4 Functions Involving Prime Factors
	5.3.5 Modified Sieve
	5.3.6 Greatest Common Divisor & Least Common Multiple
	5.3.7 Factorial
	5.3.8 Working with Prime Factors
	5.3.9 Modular Arithmetic
	5.3.10 Extended Euclidean Algorithm
	5.3.11 Number Theory in Programming Contests

	5.4 Combinatorics
	5.4.1 Fibonacci Numbers
	5.4.2 Binomial Coefficients
	5.4.3 Catalan Numbers
	5.4.4 Combinatorics in Programming Contests

	5.5 Probability Theory
	5.6 Cycle-Finding
	5.6.1 Problem Description
	5.6.2 Solutions using Efficient Data Structures
	5.6.3 Floyd’s Cycle-Finding Algorithm

	5.7 Game Theory (Basic)
	5.8 Matrix Power
	5.8.1 Some Definitions and Sample Usages
	5.8.2 Efficient Modular Power (Exponentiation)
	5.8.3 Efficient Matrix Modular Power (Exponentiation)
	5.8.4 DP Speed-up with Matrix Power

	5.9 Solution to Non-Starred Exercises
	5.10 Chapter Notes

	6 String Processing
	6.1 Overview and Motivation
	6.2 Ad Hoc String (Harder)
	6.3 String Processing with DP
	6.3.1 String Alignment (Edit Distance)
	6.3.2 Longest Common Subsequence
	6.3.3 Non Classical String Processing with DP

	6.4 String Matching
	6.4.1 Library Solutions
	6.4.2 Knuth-Morris-Pratt (KMP) Algorithm
	6.4.3 String Matching in a 2D Grid

	6.5 Suffix Trie/Tree/Array
	6.5.1 Suffix Trie and Applications
	6.5.2 Suffix Tree
	6.5.3 Applications of Suffix Tree
	6.5.4 Suffix Array
	6.5.5 Applications of Suffix Array

	6.6 String Matching with Hashing
	6.6.1 Hashing a String
	6.6.2 Rolling Hash
	6.6.3 Rabin-Karp String Matching Algorithm
	6.6.4 Collisions Probability

	6.7 Anagram and Palindrome
	6.7.1 Anagram
	6.7.2 Palindrome

	6.8 Solution to Non-Starred Exercises
	6.9 Chapter Notes

	7 (Computational) Geometry
	7.1 Overview and Motivation
	7.2 Basic Geometry Objects with Libraries
	7.2.1 0D Objects: Points
	7.2.2 1D Objects: Lines
	7.2.3 2D Objects: Circles
	7.2.4 2D Objects: Triangles
	7.2.5 2D Objects: Quadrilaterals

	7.3 Algorithms on Polygon with Libraries
	7.3.1 Polygon Representation
	7.3.2 Perimeter of a Polygon
	7.3.3 Area of a Polygon
	7.3.4 Checking if a Polygon is Convex
	7.3.5 Checking if a Point is Inside a Polygon
	7.3.6 Cutting Polygon with a Straight Line
	7.3.7 Finding the Convex Hull of a Set of Points

	7.4 3D Geometry
	7.5 Solution to Non-Starred Exercises
	7.6 Chapter Notes

	8 More Advanced Topics
	8.1 Overview and Motivation
	8.2 More Advanced Search Techniques
	8.2.1 Backtracking with Bitmask
	8.2.2 State-Space Search with BFS or Dijkstra’s
	8.2.3 Meet in the Middle

	8.3 More Advanced DP Techniques
	8.3.1 DP with Bitmask
	8.3.2 Compilation of Common (DP) Parameters
	8.3.3 Handling Negative Parameter Values with O↵set
	8.3.4 MLE/TLE? Use Better State Representation
	8.3.5 MLE/TLE? Drop One Parameter, Recover It from Others
	8.3.6 Multiple Test Cases? No Memo Table Re-initializations
	8.3.7 MLE? Use bBST or Hash Table as Memo Table
	8.3.8 TLE? Use Binary Search Transition Speedup
	8.3.9 Other DP Techniques

	8.4 Network Flow
	8.4.1 Overview and Motivation
	8.4.2 Ford-Fulkerson Method
	8.4.3 Edmonds-Karp Algorithm
	8.4.4 Dinic’s Algorithm
	8.4.5 Flow Graph Modeling - Classic
	8.4.6 Flow Graph Modeling - Non Classic
	8.4.7 Network Flow in Programming Contests

	8.5 Graph Matching
	8.5.1 Overview and Motivation
	8.5.2 Graph Matching Variants
	8.5.3 Unweighted MCBM
	8.5.4 Weighted MCBM and Unweighted/Weighted MCM

	8.6 NP-hard/complete Problems
	8.6.1 Preliminaries
	8.6.2 Pseudo-Polynomial: Knapsack, Subset-Sum, Coin-Change
	8.6.3 Traveling-Salesman-Problem (TSP)
	8.6.4 Hamiltonian-Path/Tour
	8.6.5 Longest-Path
	8.6.6 Max-Independent-Set and Min-Vertex-Cover
	8.6.7 Min-Set-Cover
	8.6.8 Min-Path-Cover
	8.6.9 Satisfiability (SAT)
	8.6.10 Steiner-Tree
	8.6.11 Graph-Coloring
	8.6.12 Min-Clique-Cover
	8.6.13 Other NP-hard/complete Problems
	8.6.14 Summary

	8.7 Problem Decomposition
	8.7.1 Two Components: Binary Search the Answer and Other
	8.7.2 Two Components: Involving Efficient Data Structure
	8.7.3 Two Components: Involving Geometry
	8.7.4 Two Components: Involving Graph
	8.7.5 Two Components: Involving Mathematics
	8.7.6 Two Components: Graph Preprocessing and DP
	8.7.7 Two Components: Involving 1D Static RSQ/RMQ
	8.7.8 Three (or More) Components

	8.8 Solution to Non-Starred Exercises
	8.9 Chapter Notes

	9 Rare Topics
	9.1 Overview and Motivation
	9.2 Sliding Window
	9.3 Sparse Table Data Structure
	9.4 Square Root Decomposition
	9.5 Heavy-Light Decomposition
	9.6 Tower of Hanoi
	9.7 Matrix Chain Multiplication
	9.8 Lowest Common Ancestor
	9.9 Tree Isomorphism
	9.10 De Bruijn Sequence
	9.11 Fast Fourier Transform
	9.12 Pollard’s rho Algorithm
	9.13 Chinese Remainder Theorem
	9.14 Lucas’ Theorem
	9.15 Rare Formulas or Theorems
	9.16 Combinatorial Game Theory
	9.17 Gaussian Elimination Algorithm
	9.18 Art Gallery Problem
	9.19 Closest Pair Problem
	9.20 A* and IDA*: Informed Search
	9.21 Pancake Sorting
	9.22 Egg Dropping Puzzle
	9.23 Dynamic Programming Optimization
	9.24 Push-Relabel Algorithm
	9.25 Min Cost (Max) Flow
	9.26 Hopcroft-Karp Algorithm
	9.27 Kuhn-Munkres Algorithm
	9.28 Edmonds’ Matching Algorithm
	9.29 Chinese Postman Problem
	9.30 Constructive Problem
	9.31 Interactive Problem
	9.32 Linear Programming
	9.33 Gradient Descent
	9.34 Chapter Notes

	Index



